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A large class of nonelementary indecomposable representations of G = SU(2,2) is constructed
and the invariant integral operators are found. An example describing a photon and a linear
Weyl graviton field along with some auxiliary fields is studied. A nonsingular Lagrangian for
the system is given. The pure, linear Weyl gravity with a conformal invariant gauge fixing

condition arises as a particular case.

I. INTRODUCTION

The use of indecomposable representations' of the con-
formal group has proved to be indispensable in the efforts to
build conformally invariant gauge models such as the mass-
less spinor electrodynamics.>™'' The main idea was to extend
the conformal invariance of the physical sector to the full
indefinite metric space needed for a local and Poincaré-co-
variant formulation of a quantum gauge theory (see, e.g.,
Ref. 12). Such a formulation allows one to implement the
usual consequences of the conformal symmetry like com-
pletely known, two- and three-point functions, etc. (see, e.g.,
Refs. 5 and 13 for an introduction to conformal invariance in
QFT).

In the present paper we build a large class of nonelemen-
tary indecomposable representations of G = SU(2,2). Non-
elementary refers to the fact that they are induced by finite-
dimensional reducible (indecomposable)—and hence
nontrivial—representations of the nilpotent special confor-
mal transformations subgroup & of G. The indecomposable
elementary representations, induced by finite-dimensional
irreducible representations of the maximal parabolic sub-
group P of G, have been thorougly studied in the Euclidean'*
and Minkowski'’ cases and their structure was the essential
ingredient of the physical applications.>”'® Nevertheless,
for the purposes of the covariant gauge models building,
especially in the quantum case, they seem to be not enough
suitable (see a discussion in Ref. 11).

The representations of G =SU(2,2) built here (Sec.
II), are the group analogs of some algeba representations
(type Ib) of Ref. 2. The ““fields” here are actually (finite)
multiplets of the ordinary Poincaré-covariant fields grouped
together by the conformal symmetry. After giving their gen-
eral construction we show how the procedure of building the
(integral ) Knapp—Stein'’ intertwining operators can be gen-
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eralized to this case. Their knowledge is important since they
correspond to invariant two-point functions in the physical
applications and provide as well invariant local action terms.
Some of the multiplets in Sec. II are realized equivalently as
the odd and even parts of “supermultiplets” related to the
extended superconformal SU(2,2/N)-multiplets after re-
duction to SU(2,2).

In Sec. III we apply our general results to a particular
example which describes a multiplet of spin-1 (photon) and
spin-2 (Weyl graviton) fields together with some auxiliary
pure gauge partners as well as the corresponding currents
multiplet. A nonsingular Lagrangian giving a G-invariant
action for the system is written down. In a limiting case it
provides a nonsingular Lagrangian (equivalently G-invar-
iant gauge fixing conditions) for the linearized Weyl gravity.
Unlike a previous realization'® of this model based on ele-
mentary indecomposable representations, the action is in-
variant under local transformations of the fields. Other pos-
sible interpretations of the mixed model are given.

Finally in Sec. IV we relate our construction on one
example of Sec. III to the manifestly covariant six-dimen-
sional formalism,>'® where many of the formulas look
simpler. The Minkowski space picture is reproduced by a
standard reduction procedure.

We point out that the various realizations of the nonele-
mentary “multiplet” representations provide us a natural
method to introduce in the conformal invariant gauge theor-
ies the minimal set of auxiliary fields which are absolutely
needed for the “off shell” description of both local and con-
formal (and Poincaré) invariant gauge conditions. The
same problem arises in the string field theories'®: to con-
struct a local and reparametrization invariant string field
action the infinite set of the so-called Stueckelberg auxiliary
fields should be introduced. We believe that the construction
of nonelementary representations given in the present paper
can be extended to the case of reparametrization group and
might be useful in the building and understanding of the
string field theories.
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Il. NONELEMENTARY REPRESENTATIONS OF SU(2,2):
X-SPACE REALIZATION. KNAPP-STEIN
INTERTWINING OPERATORS

(1) Let ¢(g;z,z*) be a polynomial of maximal degree k
in geR* and a homogeneous polynomial of degrees 2/,, 2j, in
2z, z*eC? respectively. The space ¥, of polynomials
@(q;2,z") carries a representation D, of the subgroup
P=yAMN~NyAMCG(y~Z,/Z,, M=SL(2,C), AN-
subgroups of dilations and special conformal transforma-
tions) labeled by

X= (d;jlajZ;/l;k)y
A=j,~j (mod 1),

A€[0,2) (mod 2),
2.1)

d real,

and defined according to
(D, (yman)p )(g;2,2™")
=p~Yexp( — imdN )
X@(pl “'q*)" " —mzll*z*).
Here g =gq*0,,

i T | Vs [y
yman =2 (o Y \No /a1

€YMAN, (2.3)
N o=0,1(mod 2);i=n,6*;6" = — 0, 0o=1,,0; are
the Pauli matrices; the metric ( — 1,1,1,1) in M, is used;
1eSL(2,C), p> 0. We use the standard realization (cf,, e.g.,
Ref. 20)

(2.2)

SU((2,2) = [geSL(4,C), gtwg=w, w= (f tz)] .
2

Note that the coefficients of the polynomial in g can be
considered to represent elements of the irreducible finite-
dimensional representation spaces of SL(2,C). Some of
these coefficients can be chosen to be zero consistently with
(2.2), thus specifying additionally the general polynomial
introduced above.

The representation (2.1)—(2.3) of Pinduces a represen-
tation T, of the whole group G in the space C, of functions
feC= (R4V))

[T, (8) f1(x922%) = [D; '(nmay) f1(x'g:2.27)
2.4)

where

1. i
x = (02 lli) , xeR*,

and
x'=x'(x8), plxg), lxg),
are determined from the decomposition

Ny(x, g), and n(x, g)

g 'x =x'nmay (2.5)

which holds for all (g7'=(%),x) such that
det(icx + d) #0. As for the elementary representations, cer-
tain asymptotic behavior of the function f at infinity has to
be required to extend (2.4) for det(icx + d) =0, e.g.,

(T(w) f)(x.;9,2,27)

= lim {[D 7 (pxu)) f ] (*05g:221 )} < 0,
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x.eX, ={xeX, x> =0}, ix,, = (ix) . [Use (2.4), (2.5),
and (2.2) to extract the needed asymptotic behavior of f.]

Equivalently, the representations above can be realized
by the left regular action of G'in the space of C* functions on
G satisfying the covariant condition

F(gpigizz™) = (D 7 () F)(gg22™),

Fxp) = [T, (p)f1(x), Flwx,)=[T,(w)f](x.),
peP, geG. (2.6)

We can rewrite (2.4) in another equivalent form

(T(8) fUx:z:z™39)

=p? exp(imAN ) [zl =", (1Y) 72%5(1/p)lgl * + n)

=(Te (@)@ )x;z.2 39 +pl ~'n(I*)7Y). (24)
Forg = w (2.5) givesgl ~'n(l )~ ! = x/|x*|. Therepresen-
tation T (g) defined in (2.4') is such that the coefficients of
the polynomial in g + p/ ~ n(1*) " 'in therhs of (2.4') are
given exactly by transformed initial coefficients that are ele-
mentary representations.

(2) From now on we shall always assume that there is
one and only one nonvanishing term of highest degree k in
the polynomial ¢ (g). Furthermore any ¥, withj, —j, =0
(mod 1) can be imbedded in some space ¥, of polynomials
that start and end with scalar coefficients. Similarly for
|ji —jal =1 (mod 1), ¥, can be imbedded in a spinor
(J1 —J» = +1}) field. We shall consider here in detail the
scalar case y = (d;0,0;4,k).

We define a Knapp-Stein-type intertwining map

Ws: C,—C;, ¥ = (4—d+k0,04,k),
C, 2 f—(W;.5)(x191)

. d
fdx P, (g, X, 8&2) F (xwx;q,)
where w is the Weyl inversion and P, (a,b) is a homogeneous
polynomial of degree k /2 of the arguments a®,b %, a-b. (Note
that k& is always even for the scalar multiplets considered
here.)
The intertwining property of (2.7),

WyoT, =T Wy,

is easily checked using that

17,20

., (27)

;=0

(2.8)

xnyamwx = xwx'((yam) )™,

X =h+(/p)IH) ",

and exploiting (2.2) and (2.6). The operator (2.7) estab-
lishes in general a partial equivalence of y and } If P(a,b)
= const* (b?)*/?, the image of W; coincides with the ele-
mentary representation subspace of C; labeled by ;""“
= (4—d+k,0,041).

The operator (2.7) can be easily generalized to the case
of polynomials starting and ending with the same tensor type
of fields or, if these fields differ, by (j;, j5) = (/2 /;)- In the
more general cases, other invariants, i.e., like say

Lal,%p2,

etc. should be exploited along with @, 52, a-b.
(3) For k = 2 some of the representations above can be
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realized equivalently in a way reminiscent of the N = 1 su-
persymmetry. The space C consists of functions
®(x;Viz,z+) with the same properties with respect to z, z*
which are polynomials of degree 2 with respect to

v, =(1/2)60,0%, {66}=0={0"6}={6+6"}
Instead of (2.2) we have here
[D, (yamn)®] (v,2,2™)

=p~Yexp( — imAN)exp((1/p)tr Al (1 *)7Y).
S((1/p)l ~ ()2l * ). (2.9a)
More generally one can use polynomials of 6,0 *. Then
(2.9a) is replaced by
[D, (yamn)®](6,0 *;z,2*)

=p~Yexp( — imAN)exp((1/p)tr il ~'yl *+).

D1/ p)OLI 8+ (1 / p)zl] *z7). (2.9b)

[In both (2.9a) and (2.9b) the parametrization (2.3) is
used.] Obviously the odd and even parts of the multiplets
splitin an invariant way as implied by (2.9b). Note that here
the multiplets start and end automatically with the same
tensor type of fields. Unlike in (2.2) the dimension of the
fields in the multiplets ®(v) increases with v; let us give a
sample example exploited in Refs. 8-11:

X =(200,02), ()= —14, +A4%q, +A_¢°,

xs = (0;0,0;0;2), ®P(w)=A_ +A*Y, —A, V3

(2.10)

both give the same transformation laws for the multiplet of
fields (4_,4,,4,).

The representation 7, induced by (2.9) is (partially)
equivalent to the representation T3, Xs = (4-d-

2N; j, j1A;2N) (N = 1 here) via the intertwining map:
W;s:CXs =1 BN W;S(I)) (x;vl;z,z+)

where P(a) is a polynomial of 2 and the integral in (2.11) is
Berezin’s integral. If we drop the exp(tr xy) termin (2.11),
we get a direct sum of elementary representations spaces for
the image of W;_. Both (2.9) and (2.11) can be generalized
to N> 1 using v = 6,0%6,,i = 1,2,...,N (no summation in
). The two-point function emerging in (2.11) has been
found in Ref. 21 with the infinitesimal version of (2.9a) be-
ing used.

Having (2.11) one can define an invariant Hermitian
sesquilinear form on C, X C,:

const
(@) =—,—-,—fd (%,6,0 %)
¢¢ (&) #
X (x, -0 —a-, _a_)( Wy)x;v;z€,'ez™ ).
dz dz+
(2.12)
il. THE SPIN-2 EXAMPLE

Let y = (2;0,0;0;4). Consider the multiplet
P(xg) = — 34, (x) +¢*4,(x) + ¢°4_(x)
+9,9.87(x) — 2¢°¢"C, (x) — (¢*)°D(x).
(3.1

The dimension of the component fields starts fromd, =2
and goes down to d, = — 2. The field g,,, (x), dgm =0is
supposed to be symmetric and traceless. Using definition
(2.2) and (2.4'), one gets a set of inhomogeneous special
conformal transformation laws for the components. Note
that the tracelessness of the transformed g,,, is not achieved
automatically—a certain rearrangement of the shifted poly-
nomial modifying also the transformation law for 4 _ can be
done consistently. The resulting transformations include for
a given component field all the lower (in scale dimensions)

= f du(x,6,0 *)exp(ir xp,) components. Only the field D transforms according to an
elementary representation. 5
X P( — tr ;) P(xwx;v52% €'€z), The dual multiplet characterized by y = (6;0,0;0,4) is
€ =lio,, (2.11)  of the same type
J
D(x,9) = —iD(x) +¢“C, (x) + 2T #(x)9.9, + 3¢°H(x) — 2¢°¢*J, (x) — ¢*R(x), (3.2)
and is related to (3.1) by (2.7). Here T,,, = T,,,, T% =0. An invariant form on xx}} is provided by
{(p, ) = — fd‘x[A+R +AY, +4_H+"T,, + C“Z‘M + DD ] (3.3)
The Euclidean version of (2.7) more explicitly reads
. 1 1 \2—¢ X, 4 1
®(x,,9,) =lim fd“x(—) P("+—, —){———A (x,)
191 0 T(e)m 2 =, 2\ 41 2 o 24+ %2
uv I 1 ) 2 2 v A— (xZ)
+ (4, (x3)q,r*" + A4 (x2)x12p)-—2— + (g3 +x1, — 2x7,¢,,) RS
X12 (x12)
v, T v s g v l
+ (qur# gvp (x2)rp 92 + 2x12;¢g# (x2)rpaq2 + leyg“ (x2)x12v) W
2
2 2 v 2 2 D(x,)
- (g + x12 — 2x5,42,)(C,, (x)r **q,, + C,, (x,)x4,) — (q5 + X3, — 2x%,435) e
(x12) (x12)" )1, =0
(3.4)
253 J. Math. Phys., Vol. 28, No. 2, February 1987 Furlan, Petkova, and Sotkov 253



Here,

r,u.v = ﬂpv
PZ(arb)

2
- 2x12yx12v/x12’

= C(a®)? + C,a%a b + C,a*b? + C,(a-b)* + Cs(a-b)b? + C4(b )

For each of the components of ® Eq. (3.4) reduces to a differential operator acting on the fields in @. Inserting the result in

(3.3) we get an invariant foomon C, ® C,:

(o) = fd‘x L (x),

(3.5)

= Cl[ -7 —4,04+4,04_ +44,3,0,8" +44,00-C

+4443,0,4" — 4A*3,8,3,8" —
— (1/46)¢"°3,,00-C — 44#3, 04 _

where

+-;—A (O, — 3#6,,)L__IC"—%A ﬂa,,ma-c] —% [A_DZA_ +

14%43,00-C — (1/4112)°3,3,3,8,8°°
— (1/412)g"3,3,04 _
—pA4_OPA_ — (1/42)4A_0%9-C + (1/4!12)C"(9,,D28-C] + (terms containing D) + .%,

3.6)

- % [A “(8,0, — N DA” — 43,04 +—A*(Cin,, = 3,,)0,8"

iA_l:Pa-c]
4

¥ % [A_Daﬂavg"” + % £73,3,00-C — g3, (T, — 3,3,)3,8°

1

+ 45 OO (O, — a“av)CV] da

'V vV, 2 Vv lr g
4 Cra,0F0,C r [g“"l:] 10— 28°0,0,060 + = £°0,0,3,0.8°

6

vV 1 v, v 5?’ 6 Vv,
~£°3,(0n,, —8,,)0C" + ¢ a#avua,,cpl - C*1*(8,8, — 7,,0)C” + (% - T)C#ay 0%9+C,.

(The constants a, B, 7, 6 are expressed by the initial con-
stants C;.)

To simplify the model we shall choose a subspace of C,
such that 4 is expressed through the rest of the fields in a
covariant way

A, = —&PD + 403°C, + 43,9,8*

+i04_ —10%4,, (3.8)
and further we shall choose D = 0 (which is possible since D
is the lowest elementary field). Then we are left exactly with
the form provided by (3.7). To the multiplet
(C,, 8uv-A_,A4,) thus obtamed _there corresponds a short-
ened dual multlplet (J, ”,,,C ). Adding to (3.7) what
is left from the “interaction terms (3.3) we finally get
L =Lo+A", + T, +A_H+C*C,,  (3.9)

which provides a conformal invariant action for the fields
involved. We shall rewrite it in a compact form using an
obvious notation:

L= =y MDAy + A, f (3.9b)

Then (3.9b) implies the following set of (classical) equa-
tions of motion in the presence of the external source:

M)ty = . (3.10)

The free propagators (Schwinger functions) of the fields in
&/, can be combined in a matrix G,, (x, y) satisfying

M (3)-G = identity. (3.11)
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3.7)

The existence of G as an inverse of .# is related to the fact
that the Minkowski space Lagrangian corresponding to
(3.9b) [as well as the more general (3.6) ] is nonsingular for
all generic values of the constants involved. There is still
some arbitrariness in the choice of certain constants in G
which may be fixed by requiring G to coincide with the invar-
iant (matrix) two-point function obtained from the Euclid-
ean version of the intertwining operator (2.7). Note that
(2.7) itself reproduces the corresponding free Wightman
two-point functions.

The model built above has various interpretations.

(1) It obviously comprises as a particular case the con-
formal electrodynamics model of Refs. 6 and 8~11. Indeed a
choice g,, =0=C, reduces the field multiplet to
(4,,4_),0rto (4,.,4,,4_).

(2) Integrating over the field 4_ and then 4,, (or equiv-
alently choosing =0 = a) and postulating J, =0 = H,
one gets a model described by (y = 1)

ZE =4, {3C,.*" — [9,,9%¢7 — §(nSne — 1,.79,7)

X3%0 g1 — dm(,*(Og, 7 — 23,,0%2.°) 1}

+ 4¢*d, (On,, —4,d,)C* — 1g*3,8,08°C,

+ (6/2)Cc*0*(Oy,, —3,9,)C”

+ (¢ — 6/4)C*3,[%3°C,. (3.12)

This can be interpreted as a nonsingular Lagrangian for the
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linearized Weyl gravity that provides a conformally invar-
iant action (C,,”” is the Weyl tensor). We would arrive at
(3.12) starting from a polynomial of the type
Puv (9%) =8, (x) — 29, C,, (x) + 1,,4°C, (x) with dual
multiplet ®, (x,9) = C, (x) + 2T, (x)q".

A nonsingular formulation of the linearized Weyl gravi-
ty has been constructed recently'® using the indecomposable
elementary representations of Ref. 11. Starting from .’ %" in
(3.12) and integrating over the field C, (x) we will repro-
duce exactly the result of Ref. 16. Since effectively this ex-
presses C, (x) in a nonlocal way by g,,., one gets instead of
the simple linear transformations for (g,,,,C, ), the nonlocal
law of Ref. 16 for g, (x) which can be interpreted'* as a sum
of subrepresentations and of factor representations of ele-
mentary indecomposable representations. The experience
with the analysis of the renormalized equations of motion in
the massless quantum electrodynamics'' suggests however
that one can hardly go very far in the quantum case with the
approach of Refs. 7 and 16.

The Weyl tensor C,,,, is invariant under the gauge
transformations (local deformations) of the metric

gyv _’gyv - a(ué—v) + %nuvapé.p'
(The solutions of the equation
a(ygv) - %nyvapgp =0

(3.13)

(gpv (xl )gyp (x2) >

4

o [[488 — 6 3
=J (dp)1* [[ = Pub.Pyp, + (25 - —)n,,vmp

2

1 2
2

1
+ = Oy + mpﬂw>](p ) + 4 [ o — 20w + M1 M, 16(P),

1 2

1 1
- (— + 46) 17 (p,upyﬂvp +Pva77,;p +pypp1]vy +pvpp17yy) + p2

parametrize the infinitesimal conformal transformations.)
The equations of motion implied by (3.12) read
19"9°C,, +39,0,00°C, — 10%9,,,C,, — 471,.0°0°C,
=1T,, — 86(0°C, —31%9,8°C,) — #1°3,8°C,
+ 0%9%g,,, —39,0073"g,, =C,. (3.14)
In the presence of a conserved energy-momentum ten-
sor we have
39,0%°C, —O°C, =0, (3.15a)
which leads to the conformal covariant gauge condition
— 300%4,3°C, +10%3g,,, — 3,009 "g,, =C,.
(3.15b)

Note finally that as in Ref. 6 and 11 there exists covar-
iant expression for the current C,

C,=("9T,,, (3.16)

in terms of the energy-momentum tensor and the field d,, S,
which together with the constant field g transforms as the
pair (4,,A4_). A Kkinetic term for S as in Refs. 6 and 11
should be added if (3.16) is assumed.

The free propagator matrix (3.11) reduces in this sim-
ple case to the expressions

2—85

(PP Mys + PyPoM,0)

(3.17a)

(C,(x1)8,, (%)) = if (dp)l"‘”""{(;;) [ - 121%&-+ 200y + Py +p,,77w)]

, 1
+ ib (”waz + ”pﬂag' - —ﬂrpaﬁ)‘s(l’)] ’

2

(C.(x))C,(x,)) =a f (dp)!* =0, —23,8,)8(p), (dp) =d*p/(2m)*.

The two-point Schwinger function
<C‘u7vx (xl )Cyapﬁ (x2) )

that results from (3.17a) coincides with the elementary rep-
resentation invariant Knapp—Stein kernel. [ We assume here
that the (Euclidean) conformal group is enlarged to include
space reflections thus ensuring the irreducibility of the uni-
tary representation described by C,,,,,. . ] Note that the corre-
sponding Wightman two-point function of the Minkowski
field C,,,. (x) is well known to define an indefinite form, the
relevant subrepresentation of the Minkowski space confor-
mal group being nonunitary.2°

(3)Finally the Lagrangian (3.9) describes a mixed sys-
tem including the linear conformal gravity along with the
electromagnetic field. Note that %, in (3.9) can be looked
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(3.17b)

(3.17¢)

—
upon as a Hertz-type formulation of the free electromagnetic

field (see, €.g., Ref. 22). The fields C, and g, givein general
acontribution to the transversal as well as to the longitudinal
parts of the 4,, -propagator. There exists however a choice of
a constant § = 8(y,) such that only longitudinal terms are
produced—thus the whole system in (3.9) can be looked as
another version of the nonsingular massless electrodynam-
ics. Note that analogously to (3.16) all higher “currents” in
(3.9) can be realized explicitly in terms of the (elementary
representation) electromagnetic current j, and the field
d,S. An alternative Hertz-type model can be built using in-
stead of (3.1) the multiplet

Au + qunv + Zq#A_ - ZqZCM + 4q“q”Cp,
withH,, = —H,,, dy =0.

vp
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IV. MANIFESTLY O(4,2)-COVARIANT FORMALISM FOR
THE PHOTON-WEYL GRAVITON SYSTEM

As is well known (see Ref. 10 and references therein)
the manifestly O(4,2)-covariant [or O(5,1)-covariant in
the Euclidean case] formalism'® generates naturally just
nonelementary representations, the elementary ones, being
singled out by imposing subsidiary conditions.

In order to “translate” the results of Sec. III into the
manifestly covariant language, let us introduce the (isotrop-
ic) six-vector Q° (£;9) with homogeneity degree ( — 1),
whose components Q,, (M = + ,u, — ), inthe Aut Z basis
defined in Ref. 10, are given by

Q+=q2’ Qu=qu’ Qo_= -1 (4.1)
Let us consider the theory of a symmetric, traceless (and
then irreducible) O(4,2) [or O(5,1)] tensor field ¥ (£)
(six-dimensional Weyl graviton) with homogeneity degree
zero and corresponding six-dimensional “‘energy-momen-
tum tensor” .7 (£) with homogeneity degree ( — 4). Then
itis easy to get Egs. (3,1) and (3,2) again, once we define the
quadratic forms

P(x;9) =*GEV 2, (&) 2, (E49),
D(x,9) =57 EV 2, (E9) 2, (£:9),

with the following natural identification of the components
J

(4.2)
(4.3)

(TENTEDNE

of Gyy and tyy (M;N= +,u,— ) of ¥ and J in the
Aut & basis'®

A, = —1G,,, A_=3Gr= —}iG,_,

4,=-G,,, C,=-G,_, (4.42)
8w =G, —M,.G, D= —-G__,

and
D= -y, ., H=ytt=—1t,_,
Co=—t,,, J,=—t,_, (4.4b)
T, =ty —in.t° R=—t__

The invariant form (3.3) is simply given by
@®) =~ [ da, OFWOTO. @S

where

dp, (§) =2d°6 8(£*)8(&n—1).

In order to construct the invariant action for ¥ we
should find the (Euclidean) two-point functions of the ener-
gy-momentum .7 °?., Since the procedure is just the same as
in Ref. 10 (see Sec. I1I) we give here only the final expression
for the general manifestly covariant Euclidean two-point
function of .77%® (without tracelessness condition yet im-
posed)

= [ATETESET + AL TEETET +AETES +ETEDETET+E16) ][/ (=266 +*]
+ [Bn™(E5E5 +ETE5) + B (E5E3 +E363) + Bs( 6165 + ™ ESES +n™E5E65 + ™6 165)
+ B 35T + 1™ 3ET + 0" + e D [1/( = 26,767

+ [Clnabﬂcd_i_ Cz(nacnbd + ,”ad,’]bc')] [1/( _ 2§I,§2)d+2],

where the limit d -2 has to be performed. We note that the
limit d—» — 2 in Eq. (4.6) gives us the “6-Weyl graviton”
two-point function (¥°°(£,)9“(£,)) k- The well-known
reduction procedure (see, e.g., Ref. 10) allows us to derive
directly from (4.6) the x-space “current—current” (matrix)
two-point function (as well as the corresponding four-space
propagator matrix ). They coincide with those ones obtained
in Sec. III from the Lagrangian density (3.6), (3.7), once we
relate the constants a, 3, 7, 6, C, with those ones appearing
in Eq. (4.6).

We have to remark that the three constants B,, B,, and
C, do not appear in the expressions for the x-space current—
current two-point functions. Furthermore, if we impose the
tracelessness condition

naby-ab =O (4.7)

on the two-point function (4.6), we see that it simply implies
two relations for B, and B,. Therefore the condition (4.7)
has no influence on the x-space current—current functions
expressions.

Since the x-space currents appearing in the multiplet
(4.5) form an indecomposable representation of the confor-
mal group the conformally invariant current conservation
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(4.6)

laws mix them in general. Nevertheless we are able to write
such manifestly O(4,2)-covariant subsidiary conditions on
7% (&) that they provide us with the usual (electromag-
netic) current conservation

a“J, =0. (4.8)
In fact, from the condition
8,6,.T(£)=0 (4.9)

(where &, is the interior derivative defined in Ref. 10), we
get

d*J, (x) +10R(x) =0, (4.10)
while the subsidiary condition
£.6,.T(6) =0 (4.11)

gives simply R (x) = 0 and therefore altogether conditions
(4.9) and (4.11) imply Eq. (4.8).

To simplify the model we can impose here also condi-
tion (3.8). Its manifestly covariant counterpart is given by

6,8,9°(&)=0. (4.12)
The conformal invariant constraint D = 0 imposed in
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Sec. I1I is easily translated into the condition

E6,9%&) =0. (4.13)

Finally, we conclude that the manifestly covariant six-
dimensional formalism recovers in compact form all results
given in Sec. III and provides us with a simpler and easier
method to construct nonsingular conformally invariant lo-
cal Lagrangians (with invariant gauge-fixing terms). The
six-dimensional formalism [as well as nonelementary multi-
plet representations @ (x,q) ] seems to be the natural way to
introduce in the conformal invariant gauge theories a mini-
mal set of auxiliary fields needed to describe “off-shell” both
local and conformal invariant gauge conditions.
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The Clebsch—Gordan coefficients for the product (1001) ® (1001), where (1001) is the adjoint
representation of SU(5), with respect to the group basis and the subgroup basis in the
reduction SU(5) DSU(3) XSU(2) X U(1) are computed. One of the basic tools in this
computation is the exhaustive use of the Verma algorithm to find bases for the weight
subspaces of dimension higher than 1. It allows for the construction of bases in a systematic
way by using the so-called Verma inequalities. Only the coefficients for the dominant weights
are calculated. The other ones can be obtained by using the elements of finite order (charge

conjugation operators) of SU(5).

I. INTRODUCTION

The need to compute Clebsch—Gordan and related coef-
ficients was the main avenue used by group representation
theory to find its place in physics. As long as SU(2) was the
relevant group, it was possible to seek the properties of the
Clebsch~Gordan coefficients (CGC) in general, and in ev-
ery detail."? The situation is already quite different for rank
2 Lie groups in spite of the fact that some CGC’s are part of
the everyday life of particle physicists and that general ex-
pressions for CGC are known.?> For simple Lie algebras/
groups of rank 7> 3, many particular CGC’s were calculated
and a limited number of (infinite) series of special cases are
published.*

Obstacles in deriving CGC in other cases invariably
stem from the difficulty of building appropriate bases in rep-
resentation spaces. More precisely, a basis of an irreducible
space ¥, of dim ¥V, < o0, which decomposes into the direct
sum

Vi= & V() (L.1)

AeQ(A)
of subspaces V', (1) labeled by weights A ( = sets of suitable
chosen additive quantum numbers), is given by the weight
system 2(A) of the representation (A) as long as the sub-
spaces ¥V, (A) are all one dimensional. Once one has
dim ¥V, (A1) > 1 for some A, the construction of a basis be-
comes considerably more involved.

The purpose of this article is to present the Clebsch—
Gordan coefficients for an important particular case
[24 ® 24 of SU(5) ] where the dimensions dim V', (1) range
up to 10. In that respect, our case is the most complicated
ever worked out. Furthermore, our computation has two
other objectives: (i) to provide the CGC in a basis which
reduces naturally to the subgroup SU(3) XSU(2) XU(1)
of SU(5), and (ii) to proceed in a way not particular to
SU(5) or SU(n)-type Lie groups (more precisely Lie alge-
bras).

The first objective is clearly motivated by particle phys-

®) On leave of absence from Departamento de Fisica Tedrica, Facultad de
Ciencias, Universidad de Vallodolid, 47005 Valladolid, Spain.

" Present address: Departamento de Métodos Matematicos de la Fisica,
Facultad de Fisicas, Universidad Complutense, 28040 Madrid, Spain.
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ics. Virtually all theories of unification of electromagnetic,
weak, and strong interactions lead to groups such as SU(5)
(or larger) containing SU(3)€ XSU(2)¥ xU(1)¥ as a
subgroup (for a detailed description of these models, see Ref.
4). The second objective is of general interest. Thus for in-
stance, the well-known basis of Gel’fand—Zeitlin,®> which
could have been used to solve our problem here, would offer
no advantages imposing a restriction to groups of the type
SU(n) only.

The present article complements Ref. 6, where SU(5)
CGC were found for lower representations. The method
used here is that of Refs. 6 and 7. Its essential feature is a
tabulation of only a small number of representative CGC.
Any other CGC is obtained from our tables by application of
the charge conjugation operators R of Refs. 6-8. The new
feature here is a systematic exploitation of Verma bases® in
V. (4) of dimension > 1. These bases were not known at the
publication of Refs. 6 and 7.

In Sec. II, we present a short summary of some math-
ematical tools used in this paper. A detailed account of them
can be found in Refs. 6 and 7. We describe Verma bases in
Sec. III and compute the bases corresponding to the cases
studied here. Section IV contains some examples of the ex-
plicit computation of CGC in the group basis and the corre-
sponding tables. The next section is devoted to CGC in the
subgroups’ basis [SU(3) X SU(2) xXU(1) of SU(5)]. Fin-
ally, in Sec. VI we comment on some properties of the meth-
od.

Il. MATHEMATICAL PRELIMINARIES

In the following we will work with the Lie algebras
su(n), with n = 2,3,5. We choose the n”> — 1 generators of
su(#n) in the following way:

€ap Sap Py i=1losn—1, (2.1)
Carar,pr Sara,pr i=Loon—2, (2.2)
€+ tran_ 0 Siay+ o ra,_no (2.3)

where a,, i = 1, 2,...,n — 1, are the simple roots of the alge-
bra, considered as vectors of a real Euclidean space. The
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TABLE L. Branching rules for SU(5) DSU(3) xSU(2) xU(1).

(2002) 2(22)(0)(0) & (11)(2)(0) ® (11)(0) (0) @ (21) (1) (5) & (12)(1)(3) @ (10)(3)(5)
@ (01)(3)(5) @ (10)(1)(5) ® (01) (1) (5) @ (20)(2) (10) & (02) (2) (10) & (00) (4) (0)

® (00) (2) (0) & (00)(0)(0)

(0102) D (12)(1)(5) @ (03)(0) (0) & (11)(2)(0) & (11) (0)(0) & (10) (3)(3) & (02) (0) (10)
® (02)(1)(5) @ (00)(2)(0) @ (01)(2)(10) @ (01) (1) (5) ® (10) (1) (5)

(2010) D (21)(1)(5) & (30)(0) (0) ® (11)(2)(0) ® (11)(0) (0) ® (01)(3)(5) @ (20)(0)(10)
® (20)(1)(5) @ (00)(2)(0) ® (10)(2) (10) ® (10) (1) (5) & (01) (1)(5)

(0110)3(11)(2)(0) & (11) (0)(0) & (20) (1) (5) ® (02) (1) (5) & (10) (1) (5) ® (0O1) (1)(5)

@ (10)(0)(10) & (01)(0) (10) & (00) (0} (0}

(1001) 2 (11)(0) (0) ® (10) (1) (5) ® (01) (1) (5) & (00} (2)(0) & (00) (0)(0)

scalar product is

() =25; -6 (2.4)
The nonzero commutation relations of su(n) operators are
leasepl =Augarps [JSarsSpl =Aapfain> (2.5)

[ea9fa] =h“ ’ [ha’ea] =2ea’ [ha’fa] = _2fa ’
(2.6)

where a, §, and a + £ are roots of the aigebra, and 4 zare
constants that can always be chosen as integers. For more
details see Ref. 8. In the following we will write ¢; instead of
€, etc.

Each irreducible representation of a Lie algebra is char-
acterized by the highest weight. The irreducible representa-
tion space is spanned by the weight vector which we denote
by its weight. For instance, in the case of SU(S),
m = (m,,my,m;,m,). The coordinates of the highest
weight are non-negative integers. The weights of a represen-
tation with non-negative coordinates (in the basis of funda-
mental weights) are called dominant weights. There exists a
standard algorithm to compute all the weights of a linear
representation starting from the highest one.

Consider the subgroup SU(3)XSU(2)xU(1) of
SU(5) (see Table I). Its generators are linear combinations
of SU(5) generators. In standard conventions, the SU(5)
weights are related to those of the subgroup as follows:

i LIj—i » i,j= 1,2,-..,’1 -— 1 .

m =mP, (2.7)
where P is the projection matrix of Ref. 6:
1 0 0 2
1 01 1
P= . .
0 1 1 1 28
01 0 2

In particular, the roots of SU(5) are projected into roots of
the subgroup, and the generators of the three groups SU(3),
SU(2), and U(1) are

SU(3): él =€ 42 = [elseZ] ’

&, =e;,, = leye,],

El=h1+h2: }‘1 =ﬁ+2=[ﬂ’ﬁ]’ (2-9)
Sz =f3+4 =[/f/1d, i’z =hy + hy;

SU(2): e= €43= [82,83], f=f2+3 = [fz:f:v,]’
" (2.10)

&

=h, + hs;
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U(l): ﬁ=2h1—‘h2+h3-2h4. (2.11)

In the following the U(l) component of an
SU(3) XSU(2) xU(1) weight will not appear because it
does not vary within an irreducible representation and for
this reason, it is not necessary to compute CGC. It can al-
ways be found, for instance, using the generating function of
Ref. 9.

In our tables, there are only the CGC of the dominant
weight vectors, but one can easily compute the CGC of the
nondominant ones, making use of the charge conjugation
operators,” which are given by (a; is a simple root)

R; =exp( f;)exp( —e;)exp( f)

=0+fi+ U —e+ - )A+fi+).
(2.12)
These operators generate the finite Demazure-Tits sub-
group'® Nof SU(5). They act in the representation space V,
in the following way:

RV,(LY=V,(rA),

RA) = +|rnd) if rd #4 and |1)eV, (1),
(2.13)

where |4 ) denotes a weight vector of weight A and 7, is a
reflection in a plane orthogonal to the simple root a; (7; is an
element of the Weyl group). Determination of the sign is
done by direct computation or from the prescription given in
Ref. 6.

Finally, note that the product of two adjoint representa-
tions of SU(5) decomposes as

(1001) ® (1001) = (2002) & (0102) & (2010)

® (0110)  2(1001) @ (0000) . (2.14)

We choose the two representations ( 1001) as symmetric and
skew-symmetric ones with respect to the permutation of fac-
tors on the left side of (2.14).

Hi. VERMA BASES FOR SU(5)

One of the most difficult tasks in representation theory
of semisimple Lie algebras is to construct a basis in the sub-
spaces ¥, (A) of a representation space V, . In physics this
has often been called the “internal state labeling problem.”
Until very recently there has been no effective method appli-
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cable to all representations of semisimple Lie algebras of all
types although a large number of particular cases has been
solved.

Since Ref. 8, it is known how to construct a basis for any
V4 (1) of a finite-dimensional representation of the classical
Lie algebra G (and even for any rank 2 Lie or Kac-Moody
algebra) and it appears quite likely that the same will soon be
true for any exceptional simple Lie algebra. A complete basis
of a subspace ¥, (1) of ¥, consists of the vectors

S f 2 fiA) . 1<i <rank, (3.1

where the sequence of the subscripts /, ,...,/ of the lowering
generators is given by a chosen form of the opposite involu-
tion of G

(3.2)

Here X is the number of positive roots of the algebra, which
is also Racah’s number of required labels.'! In particular, a
basis vector of an SU(n)-irreducible representation space
with the highest weight A, can be written as an expression of
the following type:

(f‘l’Nf;N— 1., 'f:N_"+ ) (f‘lzN——n. . .f:N_—lzn+2)
(OSSN, N=n(n+1)/2, (33)
where the f; are the lowering generators of the SU(n) Lie
algebra, and the g, are integers limited by the following in-
equalities:
0<a,<m,, 0LKa,<m,+a,,
O<a,<m;+a,, 0<as<min(m; + aza,),
0<ag<min(myas), 0<a,<m,+a,, (3.4)
0<ag<min(m, + a5,a;) , 0<a,<min(m, + aqag) ,

0<a,;p<min(m,a,) .

inv=r, r

LY 3 I
ININ—1 L'h

0<a,<min(mya,) ,

These inequalities are a special case, # =5, of the general
inequalities of Table I in Ref. 8. For SU(3) [or SU(2)] one
should take, respectively, only the first three (or one) in-
equalities of (3.4).

Examples of Verma bases for SU(2) and SU(3) repre-

TABLE II. Multiplicities of the dominant weights (1001) and (0000) in
the representations (2002), (0102), (2010), (0110), and (1001) of SU(5).

(2002) (0102) (2010) (0110) (1001)
(1001) 4 3 3 2 1
(0000) 10 6 6 5 4

sentations were shown in Sec. I of Ref. 8. Since our task is to
decompose the tensor product (1001) ® (1001) of SU(S),
let us construct a basis in the representation space Vo0, . It
decomposes into a direct sum (2.1) of 21 different sub-
spaces, the first one being the highest weight subspace
V1001, (1001). All but one of the subspaces are one dimen-
sional and are related to ¥ ;o0,, (1001) by the charge conju-
gation operators (2.13). The corresponding basis vectors are
thus characterized by their SU(5) weights so that one does
not even need to use the fact that the inequalities (3.4) allow
precisely one choice of exponents a,,a,,... for each basis vec-
tor, The subspace ¥ ,40;, (0000) is quite different. Its dimen-
sion is 4 because the multiplicity of the weight (0000) in the
weight system Q(A) of the representation A = (1001) is
equal to 4 (see Table II).?

Let us construct a basis for ¥ ,40;, (0000) in detail (see
Table III). The weight (0000) is obtained from the highest
weight (1001) by subtracting four simple roots of 4,:

(1001) — a;, — a, — a; — a4 = (0000) . (3.5)
Recall that a,,(2,1,0,0), @, = (1,2,1,0). a, = (0,1,2,1),
a, = (0,0,1,2). We denote by [10001) the highest weight
vector of ¥,, and by |0000),,|0000),,|0000}),]0000), the
basis vectors of V4, (0000) which we now want to write
explicitly using (3.3) and (3.4). These are precisely the vec-
tors (3.3) satisfying

10

Z a,«=4.

i=1

Furthermore, for the representation (1001) one has from

(3.6)

TABLE II1. Verma bases for (1001) and (0000) weight vectors in the representations (2002), (0102), (2010), (0110), and (1001) of SU(5). The notation
represents the weight vector as a constant times a sequence of lowering operators applied to the highest weight.

(2002) (0102) (2010) (0110) (1001)
(1001), (1/y6) [4,3,2,1] (1/43) [4,3,2] ) [3.2,1] (142) [2,3]
(1/242) [34,2,1] (1) [3,42) ) [2,3,1] (1/42) [3,2]
(1/242) [2,34,1] hH [2,34] (1/y3) [1,2,3]

(1/:/6) [1,2,3,4]

(1/8V6) [1,2,2,3,3,4,4]
(1/8V2) [1,2,3,3,4,4,2]
(1/42) [1,2,3,4,4,3,2]
(1/4/8) [2,3,3,4,4,1,2]
(1/42) [2,3,4,4,3,1,2]
(1/2/6) [3,4,4,2,3,1,2]

(0000), (1/16y6) [1,1,2,2,3,3,4,4]
($) [1,2,2,3,3,4,4,1]
(%) [1,2,3,3,4,4,2,1]
(M) [1,2,34,4,3,2,1]
(1/1646) [2,2,3,3,4,4,1,1]
() [2,3,3,44,2,1,1]
(%) [2,3,44,32,1,1]
(1/16y6) [3,3,4,4,2,2,1,1]
($) [3,44,32,.2,1,1]
(1/16\6) [4,4,3,3,2,2,1,1]

() [2,3.4,1,2,3,1]
(1/242) [3,4,1,2,3,2,1]
(1/42) [4,1,2,3,3,2,1]
4 [34,2,3.2,1,1]
(1/8y2) [4,2,3,3,2,1,1]
(1/8/6) [4,3,3,2,2,1,1]

(1/42) [1,2,3,4]
(1/42) [2,3,4,1]
(1/42) [3,42,1]
(1/42) [4,3,2,1]

3 [2,3,4,1,2,3]
1) (3,4,1,2,3,2]
4 [4,1,2,3,3,2)
1) [3,4,2,3,1,2]
1 [42,3,3,1,2]
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TABLE IV. Verma bases for the (11), (10), (01), (00) weight vectors in
the representations (22), (21), (12), and (11) of SU(3). Note: The lower-
ing operators to be used in this table are f; i = 1,2 of SU(3) (2.3).

(22) (21) 12) (1

(1), (146) [1,2]

(1//6) [2,1]
(10), (1/¥3) [1,2]

M) [2,1]
(01), W) [1,2]
(43 [21]

(00), (1/4y6) {2,2,1,1] (1442 [1,2]

) [1,2,2,11
(1/4J6) [1,1,2,2]

(142) [2,1]

(3.4

) that

ay=as=a¢=0, a,+a;+as+a,=1,

3.9
a,+ag=1, S

a,+as+a,=1, a;=1.

This yields the following four linearly independent vectors
spanning the ¥V ,4,;, (0000) subspace

0000), =273, f, f3/21001) ,
10000, =271, £, £ £11001) ,
0000); =277, fo fo.£111001) ,
0000}, =2~ '*f, f, /> /1]1001)

(3.8)

Verma bases are not orthogonal in general. The matrix

TABLE V. Inner products of the bases of weight spaces (as given in Table III with same order), with multiplicity greater than 1.

[ 1 143 0 § 0 0
T 1 13 0 0 31 O VA R 0
[2002 N3 1 ;o 0102 o 1 23 4 0
1001 0 } 1 143 0000 LIS VAYE I VN < D D VYL
| 0 (R VI 0 1 } A3 1 IAB
| 0 0 0 i /3 1 ]
" 1 326 0 0 |} 0 0 0 0 o
3726 1 )0 3726 ! 0 0 0 0
0 | 1 3 146 | i 0 0 0
0 0 } 1 o i } 0 0 0
2002 1 3206 1446 0 1 326 0 | 0 0
0000 0 i y 1 3/246 1 y 26 0
0 0 1 0 } 1 1/46 ! 0
0 0 0o 0 i 3/2J6  1//6 1 37246 i
0 0 0 0 o0 i R Vo N 3/2/6
| 0 0 0 o© 0 0 0 i 3/2,/6 1
[ 1 N2 V&2 § 1722 1726
12 1 y 122 0
2010 1742} 1 /42 } 0
0000 b 1722 /42 1 142 2/V6
1/22 ! y 1/42 1 /43
[ 1/2y6 © 0 26 143 1
0102 A 2010 bl 0
[1001 A [1001 O 2]
) yo1 0 143 1
14 4 4 4
[ouo [1 ;] 0110 i ; : i i
1001 y o1 0000 P11y
LI B BT B
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of inner products of the basis vectors (3.8) is

1400
11 40

[(0000]0000) ] = 01 1} (3.9)
00 § 1

The same procedure can be applied to any of the weight
subspaces of dimension > 1. The bases in dominant weight
subspaces relevant to our problem are given in Table II1. The
basis vectors in the table are written in a shortened way.
Thus a vector

also give the inner products among the vectors of those bases
in Table V.

IV. CLEBSCH-GORDAN COEFFICIENTS IN THE GROUP
BASIS

In this section we describe briefly how to compute CGC
related to the tensor product (1001) & (1001). To do that,
we will give some examples which illustrate how the method
works.

First, we take an example from Table VI,

200 2]
[1001),€¥ 2002y (1001) C ¥ 3002, » [2 002~ (1001)(1001) , (4.1)
is found as
11000), = 6172 [4,3,2,1]56“’2ﬁf3f2f.l2002(>3. o [(2) ‘1’ g i = 2-172{(1001) (T101) + (T101)(1001)} ,
' ' (4.2)
Note that, e.g., for the same representation (2002) and .
dominant weight (1001), there are four vectors |1001),, 0102 =2-12{(1001)(1101) — (1101)(1001)} .
i = 1,2,3,4. Thus the first row corresponds to |1001),, the 010 2] (43)

second one to |1001),, etc.

We will also encounter some SU (3)-weights with multi-
plicities higher than 1. In Table IV we give the bases for these
cases, namely for the weights (11), (10), (01), and (00) of
the representations with highest weights (22), (21), (12),
and (11). In order to facilitate the use of Verma bases we

[Remark that ( ) () is a short expression for ( ) ® ( ).]

In this case the multiplicity for these three weights is 1.
The vectors on the left side are written with the highest
weight above the weight. That is sufficient to underline the
irreducible subspace to which the vector belongs. On the

TABLE VI. CGC of the weight vectors with dominant weight different from (0000) in the group basis. The last row, when it exists under the list of weight
vectors gives normalizing factors. In that case the corresponding whole column must be multiplied by that factor.

(2002)
(2002) § (2002) | (0102)
I(IOOI)(IOO1) 1 (0102) { (0102)
¢too1)(T101) | 17 | /2 | (2002)|(2010)
(Mo ¢roo1) | 1/z | -/E | (2010)|(2010)
ooy 1017y | /& | 1 [(2002)|(0102){(2010)[(0110)
ao1tyqoor) | 1/ | -1/ Jo110y|0110){(0110){(0110)
ooy dm | 4 i 3 3
(T117) (1001) 1 -1 -3 3
Tonao® | 3 | -4 14
aoDon (3 | 1|4 | -4
(2002) (0102) (2010) (0110) (1001), j(1001),
(1001), (1001), (1001), (1001),](1001), (1001), (1001), (1001}, (100t), (1001),}(1001), (1001),{(1001),|(1001),
(1101)(2100) 4 142 -1 4 W2 -y SN2 142
(2100) (1101) | 112 ! o e LS SN2 — 12
(101T)(0012) 1/42 4 42 | -1 -} 52 —1/\2
(0012) (1011) 172 i — 12—y ] -4 YA I VA)
(0111)(1110) } } § —14 ) § -1 -1 =SA2 -2
(1110)(0111) | | } i -1 -1 -1 -3 =S5A2 N2
(1001) (0000), 1 _3 -1
(0000),(1001) 1 - -3 1
(1001)(0000), 142 1442 142 1742 1 1
(0000),(1001) 172 — 142 — 12 1/42 1 -1
(1001) (0000), 1442 142 /42 112 1 -1
(0000),(1001) 1/42 — 142 — 142 1442 1 1
(1001) (0000),, 1 _3 1
(0000),(1001) 1 - -3 -1
IR VY5 2R VA5 XS VAL TS VA TS VAY/ IS VY7 R VY5 IR V2o XS VA SRS V212N VA /X VA5 [ L S VAL
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TABLE VII. CGC of the vectors with weight (0000) in the group basis. Normalizing factors for the columns are given in the last row.

(2002)
(0000),  (0000),  (0000);  (0OOO),  (00OC)s;  (00OO),  (000O);  (000Q)y  (0000), (0000,

(0000),(0000) 2
(0000),(0000), 4

(0000),(0000) , i

(0000),(0000), i

(0000),(0000), i

(0000),(0000), i

(0000),(0000), i

(0000),(0000), 2

(0000),(0000) )

(0000),(0000), i

(0000),(0000),, }

(0000),(0000}, i

(0000),(0000), 2

(0000),(0000) 4 1
(0000),,(0000), 1
(0000),,(0000),, 2
(1001) (1001)

(1001)(1001)

(1101)(1101)

(1101)(T1101)

(1011) (1011)

(1011)(1011)

(0111)(0111)

(0111)(0111)

(1D 1111)

(1111 (1111

(1110) (1110)

(1110) (1110)

(2100) (2100) 1
(2100) (2100) 1
(1210) (1210)

(1210)(1210)

(0121)(0121)

(0121)(0121)

(0012)(0012)

(0012) (0012)

B Bt B B i fr
.

B B

N N N
FE
P

Fos

N Y

PN N
P
—

S
—
[ W

146 1/4/6 1/4/6 /6

(0102) (2010)
(0000), (0000), (0000); (0000), (000O)s (0000)s | (0O0O), (0000), (00OO); (0000), (0000)s (0OOO),

(0000),(0000) ;

(0000),(0000), 1 -1

(0000),(0000) -1 4

(0000)1(0000)3 % _5

(0000),(0000) -1 i

(0000),(0000), J —1

(0000),(0000), -4 J

(0000),(0000),

(0000),(0000), 1 -1 -1

(0000)3(0000), -1 i J

(0000),(0000),, i -1
(0000),(0000), —1 )
(0000),(0000),

(0000),(0000), 1 -} -1
(0000),(0000), -1 }

(0000),,(0000) ,

(1001)(1001)

(1001) (1001)

(1101) (1101)

(1To1) (1101)

(1017)(1011)

(To11)(1011) -
(0111)(0111) ! } 1 1 }

|
B
|
P N O k.
D Babm

|
N N
|

B
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TABLE VII. (Continued.)

(0102) (2010)
(0000}, (0000), (0000); (000O), (0000)s (00OO)s | (0OOO), (00OO), (000D); (0000), (0000)s (0000)¢
(0111)(0111) —4 -3 =14 —i -4
(111D (1111) i i i i i i i i i
(1111 (1111) -4 -1 -1 -4 -1 -1 -4 -4 -4
(1170)(1110) } 4 i i
(1110)(1170) -y -1 —1 —1
(2100)(2100) } 4
(2100)(2100) -1 —4
(1210) (1210) ) ] ) i : :
(1210)(1210) -1 -1 -4 —3 -1 -4
(0121)(0121) i i ) i ) i i
(0121)(0121) -4 -4 -4 —4 -3 -4 —1
(0012)(0012) ) i )
(0012) (0012) -1 —4 -1
13 143 1443 1142 1/42 1143
(0110) (1001), (1001), (0000)
(0000), (0000), (0000); (0000), (0000);{(0000),, (0000),, (0000);, (0000),,](0000),, (0000),, (0000),, (0000),, |(0000)
(0000 ,(0000), -6 3
(0000),(0000),  —} 6 2 —3
(0000)2(0000)1 _i 6 2 _g
(0000),(0000) _i —4 2 3
(0000)5(0000), -1 —4 2 $
(0000)1(0000)4 _5 2 2 _i
(0000),(0000), -4 2 2 -1
(0000),(0000), 1 2 §
(0000),(0000);  —} -1 -4 -4 —
(0000),(0000),  —} -3 -4 -4 -4
(0000),(0000) -1 2 —4 g
(0000) 4(0000), -} 2 —4 i
(0000),(0000) 1 2 $
(0000),(0000), -4 2 6 -3
(0000),,(0000) -4 2 6 -3
(0000) ,(0000),, -6 $
(1001) (1001) i -1 -1 § -1 }
(1001) (1001) i -3 -3 -1 i i
(T101) (1701) I} i -3 -3 3 4 4 4 -4
(1101)(1101) i p -3 -3 3 ) -4 ) ~}
(101T)(To11) i i 3 -3 -3 -1 -} -1 -1
(foiny(to11) i i 3 -3 -3 4 4 ) —1
(0111)(0111) i i -3 -3 —1 4 4 -4 )
(01T1)(0T11) i i -3 -3 -3 —4 -4 4 4
A aiin 4 i i i i 3 3 i i -1~ ) } )
(1111) (1111) P i i i i 3 3 3 3 ) } —4 -4 4
(1170) (1110) i i -3 -3 —13 i -1 —4 )
(1110 (1170) i 3 -1 -3 —3 -4 i ) }
(2100) (2100) i -1 -1 -1 -4
(2100) (2100) i -3 1 } -
(1210)(1210) i i -3 i i i -1
(1210) (1210) ] ] -3 3 -1 -1 —4 -4
(0121)(0121) i | 3 —3 y _1 -3 —1
(0121)(0121) ! i i -3 } 1 4 -1
(0012)(0013) | -3 4 1 -4
(0012)(0012) i -3 -4 -1 -4
V105 1/J105 14105 1IA105 145 145 143 145 146
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TABLE VIII. CGC of the weight vectors with nonzero dominant weight in the subgroup basis (first part). Normalizing factors for the columns are given in the last row.

foez]
J22x0) | (2002) [0102)
§ 22x0) § 22%0)|03x0)
fcooncioon [y (03X0){(03X0) | (2002) [(2010)
aoon 1) | -/ | 1@ [ (22X0)](30X0)
T | -1/E |-1/& J30X0)|30X0) [ (2002) |0102)
aoon(mTo) | 1 | & Ju2xXnfaaxn
(1170) (1001) e |-/ Jaaxnjazxn [ ooz o1
ooy (1o | /g | Y& [ @Xn|@ixXn)
(Mo (toot) | & |-1/& Jnm|eixn 2002|0102 [2010) | 0110)
aoon@otl) i | & Faxm|azxn|eoxn|eoxn
gothyaooty 12 [ -V K aox1)|czoxn|(zoxn)| zoX1)
(oo (1270) | 3 'R
azimaoon| § [ -3 | -3 | 1 [ 002|102 ]c010 0110
miodion| 3 1 13 11 Fanmleam]eixnion
monmio| 4 -4 3|1 02X ce2)1){co2x1) | 02X1)
1001y (072D | -4 13| 3
(2002) [(2010) 2D oo | -3 | -4 3 A )
(20X2)[(20%0) ot Tin | -} 1 3|3 o) )
(20x0) | zox0) [ (2002)] (0102) | (2010} | (0110) otinaod| -3 (-4 | -+ | -2 ) Eoe) S ERD)

@Too oD | V& | -1 | (02)X2)] (02X0)} (10X2)) (10X0) (T101) (T101> 0% | 02| C1ox2)

o1 2To0) | 1/ | & | (10x0)| (tox0)| (1oX0)| ¢10X0) Toorncomn = TR R
©Zndon | -3 3 7 1 Mon@270) | iz |vVE Jraox2)|01x2
Mon@iz) | -3 | 4 | -3 | 3 J (2002)](0102)|(2010) [(0110) dziodion | ve |-ve  Joxa|eix [ 002 |©o102)
i) @2ty | -3 | -3 | -3 | -3 [ ox@|o1x2)]zoxo]wixe !

(1210)(0072) | -} 1 1 | -3 [ wooeno|oxoloxe 2:;;2?:32 zg 13; gﬁ; 22;;2
@2lo0) (0721 | -3 | 4 3| -3 .
(72D (z100) A REE (2002) ((0102) J(2010) [(0110) araqun | de |ve
a1y (1310) -4 R 1 1 (T101) (0072 |-y&E | v&
W10 o1 -4 -4 3 1 X1 IXD[(11X2){(11X2)
A1 [C11X{011X2)
ooy (| 1 ' HENE;
(T117) Cloon) % '% -% % (2002) [(0102)
aornon | 4 1|3 |1 Joom|aom
donaod| 3 | -4 | 1 | -1 Faom|uom] @oo2]coi0
QoD AND | V& | Y& | ©01X3)01X3)
Aunao® | V& | -8 [ onm|on®] e
auon | & | -/& ] ooxa)
Gon @D | v& | Y& J(ooxq)
TN A1) 1




TABLE IX. CGC of the weight vectors with nonzero dominant weight in the subgroup basis (second part). Normalizing factors for the columns are given in

the last row.

(2002) (0102) (2010) (0110) (1001),] (1001),
(12)(1) (01)(3)J(OL) (1)} (12) (1) (0O1) (1)] (20X () {(OLY(R} (O (1) (20) (L[ (OH (D} (O1) (1] (O1) (D)
(01),(1) (O1),(1)| (01} (1)} (O1) (1)}(01),(1) (O1),(1H|(01) (1)] (01) (1) {(O1) (1) [ (O1) ()| (OL) (1)} (OL)(1)f (O1)(1)] (O1)(1)
(1001)(2100) ! 3 ! -1 ) 3722 I =122 =542 —1/42
(2100) (1001) J 2 -1 [} -4 —3/242 I —1/2y2 =542 — 142
(0111) (1210) -1 —1n2 3 -1 —1A2 = -4 /22 -1 — /202 —5A2 — 142
(1210) (0111) -1 =142 3 4 1742 | 4 —3/22 -1 -2 —5/2 142
(1117) (0012) —142 1 1 1IN2 —1/2 —1A2 52 — 12
(0012) (T111) — 142 1 —1 —142 A2 —1/42 5/2 A2
(1101) (0000), /42 322 — 142 /22 142 ER VA7) ! 2
(0000),(T101) 142 /22 IA2 — /22 —1/42 -3 —-142 4 2
(1101)(0000), —1/\2 1 5/22 142 —-1/22 —1/42 1 i 2 -y 1 1
(0000),(1101)  —1/42 1 5/242 — 142 1722 142 —1 -1 /42 — 142 1 -1
(1101)(0000), -1 -1 —1A2 1 12 -1 1 1 1 -1
(0000),(1101) -1 -1 =142 -1 —1A2 1 -1 1 1 1
(1101)(0000), 1 N2 -1 1442 -3 1
(0000),(1101) 1 32 1 —142 -3 -1
W27 2N VYR VA SRR V'Y WS VY7 D VAV B VA1 SRS VA7 SN VAT KIS V25 IS VY7 R VA S VAV [ - I VA1
(2002) (0102) (2010) (0110) (1001), | (1001),
2N (10)(3)] (10)(1)| (02) (1) [ (10)(3) }(10) ()| (21) (1) (10) (1)[ (02) (1) | (10) (1) [ (10) (1) [(10) (1)
(10) (1) (10), (D] (10) (1| (10) (1)} (10) (1) | (1O) (1) [ (10) (1) [(10),(1) (10),(1H{ (10) (1)} (10) (1) | (10) (1)} (10) (1) [(10) (1)
(1001)(0012) i 2 -1 37242 ! i -1 /W2 -5/42 142
(0012)(1001) J 2 1 —3/2\2 - -1 - /22 —5/2 —1/2
(1110)(0121)  — 142~} 3 1 /22 12 -] i J 17202 =512 1/2
(0121)(1110)  — 142 —} 3 -1 —3/22 —1A2 l -4 ) /22 —5/42 —1/42
(T1111)(2100) 142 1 —-1/42 —1/2 -1 142 542 A2
(2100) (T11T) 1/42 1 142 142 1 N2 542 —1/42
(1017) (0000), 1 32 -1 —1/2 -3 -1
(0000),(1011) 1 N2 1 1/42 -3 1
(1011) (0000), —1 1 —1A2 1 1 1 — 12 —1 1 1
(0000),(1011) -1 1 —1A2 -1 -1 -1 1742 -1 1 -1
(1011) (0000), —142 -1 5/22 142 —1 4 N2 17242 =142 1 1 -1
(0000),(1011) —142 -1 5/22 — 12 1 - — 12 — 1722 —1/\2 ) 1 1
(1011) (0000), 1/42 3242 — 142 3 — A2 —1/22 12 —) 2
(0000),(1011) 1142 /22 142 —3 /2 1722 12—y 2
WA V27 R V2 I V27 W V27 S VAYK N VAYSE TS VA TS VAY/ TR VAL TR VAY/ IS VAL IS VA i I VAL
(2002) (0102) (2010) (0110) (1001), |(1001),
(11)(2) (00) (4)] (00)(2) [ (11)(2) (00)(2)](11)(2) (00)(2)] (11)(2) (00)(2)](00)(2)
(00),(2) (00),(2)] (00) (2)} (00)(2){(00),(2) (00),(2))(00)(2) j(00}),(2) (00),(2)|(00) (2)](00),(2) (00),(2)[(00)(2){(00)(2)
(1101) (0012) 4 1 -y =142 1 =142 -1 =542 2
(0012)(1101) 4 1 ) 172 - 1/42 -1 =52 —142
(1210) (0121) -1 —1 1 1 TR VS A S VA/) 4 1 =542 142
(0121)(1210) —1 - 1 -1 -4 1742 ! J 1/42 ) L =542 —1/42
(1017)(2100) s 1 ) 2 -1 2 -4 —5/2 —1/2
(2100) (1011) ! 1 - — 142 ! —142 -} ~5/2  1/42
(1117)(0000) 1/42 22 — 142 -1 —1/2 1 1/\2 2
(0000),(T111) /42 22 142 1 1/42 -1 1242 2
(1111)(0000), —1/2 1 2 142 1 /2 2 —1/\2 1 1
(0000),(T11T) —1/42 1 142 =142 -1 —1/42 -2 —1/42 1 -1
(1117) (0000), —142 -1 1/42 42 =2 142 =1 — 12 1 -1
(0000),(T11T) —1/42 -1 /42 — 142 2 — 142 1 —1/42 1 1
(1117 (0000), 142 2/2 -2 -1 — 142 1 1/42 2
(0000),,(1117) /2 2/32 12 1 w2z -t 1442 2
VA7 VA7 I VA /R VA7) WS VA, SN VAY/ TS VAVS TSR VA /SN VA7 VAV TS VAV, XS VA7 X VA T I VA
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TABLE IX. (Continued.)

(2002) (0102) (2010) (0110) (1001), | (1001),

(22)(®) (1) (2)](11)(0) |(03)(0)) (11)(2) {(11)(0) [ (30) (0) |(11)(2) | (11}(0){ (11)(2) J(11)(0) |(11)(O) (11)(0)

(11),(0) (11),(®] (11 (0) [ (11)(0) [(11)(0}] (11)(0) 1(11)(0) | (11)(0) |(11)(0) ] (11} (0)] (11)(0) } (11)(0) [(11)(0)f (11)(0)

(1101)(2100) 1 522 -1 =322 b2 -y -2 52 IN2

(2100)(1101) 4 5/22 } 3/2{2 -1 =¥22 ~} —1/22 52 -2

(1017)(0012) - 5/22 -4 /202 } o —3242 ) =122 SHZ -2

(0012) (101T) -1 522 y =322 -} V22 W22 SA2 IAR2

(Ol1H1170)  — 142 — 142 N2 —1A2 — 142 ~ 142 1/\2 ~1IN2 —5HZ —1/2

(1170)(0111)  — 142 — 142 N2 A2 N2 142 -1/ —2 =542 12
(1001) (0000, 1 2 1 2 -3 -1
(0000),(1001) 1 2 -1 -2 -3 1
(1001)(0000),  —1 42 4 12 3 -1 N2 -y 142 } 1 1
(0000),(1001)  —1 142 } 142 -3 1 =142 3 142 A |
(1001)(0000), -1 —142 | 1 =142 —y — 142 ] -2 } 1 -1
(0000),(1001) -1 —1A2 y —1 1442 i 2 -3 -1\ | 1 1
(1001)(0000), 1 2 -1 2 -3 1
(0000),(1001) 1 2 1 -2 -3 -1

WZVE IS VAL TS V5 S VAV I VA< RS VA S VAT TR VAV IS V27D VA | LIRS VA /RN VA B VAT I VAL

right side, the weights of the representation (1001) denote
the basis vector of the product space. The expression (4.2) is
computed in the following way:
200 2] 2002
2! /2 [
3002 0102
because [3093 ] is an element of a triplet of SU(2)a, [sub-
group of SU(5) associated to ] and, in the same way, the
right side of (4.1) is
2002
A 2002

(4.4)

]={f,}(1001)(1001)

= (T101)(1001) + (1001)(T101),  (4.5)

where {f;} =f, ® I+ I® f,. [Note that (1001) is an ele-
ment of a doublet of SU(2),,, ]. Then we get (4.2). The high-
est weight vector [$103 ] does not belong to the subspace
generated from [3937 ]. Itis then orthogonal to it. Choosing
conveniently its phase, one gets (4.3).

One can compute all the CGC for weights with multi-
plicity 1 in the same way.

A more complicated case appears when the weights are
degenerated. Let us take Table VI corresponding to the

weight (1001), with multiplicity 14. The first vector gives
2002y __,, [2002
100 1]_6 f‘f3f2f‘2002 '

Using our previous results (4.1) we can write

2002
—1/2
6 f4f3f2f1[2 002
=62 { fH AH £LH £13(1001) (1001)

=3~12[2-Y2(1011) (0012) + 2~ "/2(0012) (1011)
+ (1001) (0000), + (0000),(1001)] . 4.7)

The situation is similar for the other vectors with weight
(1001) in (2002), (2010), (0102), and (0110). Finally,
vectors [}901 ], and [130} ], are chosen (symmetric and
skew symmetric) in the subspace orthogonal to the subspace

(4.6)

267 J. Math. Phys., Vol. 28, No. 2, February 1987

generated by the other vectors. With a convenient phase we
obtain the values of Table VI. The symmetry and skew sym-
metry mean that the vectors of the tensorial product basis
must appear like [(a)(d) + (b)(a)] and [(a)(b)
— (b)(a)], respectively.

In Tables VI and VII only the dominant weight vectors
appear. The CGC for a vector not in the tables can be ob-
tained in two ways, as shown in the following examples:
(i) via charge conjugation operators,

[2002 _R [2002
22021 "™l2002

=R, (1001)R,, (1001) = (1101)(1101),

(4.8)

2002 200 2] - -
032 2]—Ra2 w3 0 0 2] = OUDOIL),  (49)
2002 [2 002] - -
003 4] =RaRaRa |, o o 5] = (0012)(0012),

(4.10)

(ii) via the expression of the vector in the Verma basis,

2002]_._, 2[2002
2202172 /12002
=271 { £,}3(1001)(1001) = (T101)(T101) .

(4.11)

Similarly,

2002__122[2002_ _ _

022 2]‘4 FiFil, o o o) = OUDOND).
(4.12)

V. CLEBSCH-GORDAN COEFFICIENTS IN THE
SUBGROUP BASIS

In this section we want to express the CGC for a basis of
SU(3) xSU(2) XU(1). Each basis vector of SU(5) has a
definite SU(3) XSU(2) XU(1) weight and, as in the pre-

del Olmo et al. 267



TABLE X. CGC of the weight vectors with weight (00) (0) in the subgroup basis. Normalizing factors for the columns are given in the last row.

(2002)
(1) (11)(0)
(00),(0)  (00),(0) | (00),(0)  (00),(0)

(22)(0)
(00),(0)  (00),(0)  (00)3(0)

(00)(4)
(00)(0)

(00)(2)
(00)(0) .

(00)(0)
(00)(0)

(0000), (0000) 2 2
(0000)1(0000)2 -2 %
(0000)2(0000)1 -2
(0000)1(0000)3 “% —i
(0000)3(0000)1 _i _i
(0000),(0000), 4

(0000),(0000), i

(0000),(0000), 2 -1
(0000),(0000), 4 i
(0000),(0000), i i
(0000)2(0000)4 _% %
(0000),(0000), -4 4
(0000),(0000), 2 1 -1 2 -2
(0000)3(0000)4 -2 _5 _g 2
(0000),(0000) -2 -4 -3 -2
(0000),(0000), 2 4

(1001) (1001)
(1001)(1001)
(1101)(1101)
(1107)(1101)
(1017)(1011) -1 i

(lo11)(1017) ‘ -1 H

(0T11)(0111) ~1 -1 -4

(OITD)(0T11) -1 -4 -1

aun I ; 1
ATInaun -1
(1110) (1110) -1 -1 -
(1110)(1170) —1 —1 —

(2100) (2100)
(2100) (2100)
(1210) (1210)
(1210) (1210)
(0121)(0121)
(0121) (0121)
(0012) (0012) _
(0012)(0012) -

Nowms
|

[

(SO
L
— N N R e e MR N N NI

| i
o Nk —

i

[

|

(8] [ 8]

|

[

—_
1

(S 7} [ VY
|
&

[\
|

[ YN U Y G I N

[N

RS
o
B B N N

-1
—1

1
1
1

B B B B B e

—1 —s 1
-3 1
-3 —1
3 -1
3 -1
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TABLE X. (Continued.)

(0102) (2010)
(11)(2) (11)(0) (03)(0) | (00)(2) | (11)(2) (11)(0) (30)(0) | (00)(2)
(00),(0) (00),(0) | (00),(0) (00).(0) | (00)(0) | (00)(0) |(00),(0) (00),(0)[(00),(0) (00).(0) | (00)(0) | (00)(0)
(1001) (T001) } -1 -} -} } }
(1001)(1001) -4 i ) 4 -3 -1
(T101) (1701) -1 -1 —4 i H —4
(11o1)y(1101) i i 4 -4 -1 )
(1017) (T011) -1 H -4 i -1 -1
(1o11)(1011) ] -3 4 -4 3 i
(0111)(01T1) -4 -1 } ~14 1 -1
(o1I1)(0111) } 1 -1 -1 -1 }
(aunatin -3 —1
(a1indnn 3 3
(1110)(1110) 1 4 ] -1 -
(1110)(1170) -1 -} -1 ! ! }
(2100) (2100) i i } -1 —1 }
(2100)(2100) -4 -3 -1 i 3 -4
(1210)(1210) E} i 3 3 -1 -1 -3 -3 -3 =1
(1210) (1210) -4 -4 -3 -3 4 i i 3 3 )
(0121)(0121) ] i -1 -3 -1 ~4 -1 i i -4
(0121)(0121) -1 —4 i i i i i -3 - 4
(0012)(0012) 1 -3 ) -3 3 4
(0012)(0012) -4 i -4 i -3 -4
V2 R VA | 143 WWATH IVI5 1415 1443 1715
(0110) (1001), (1001), (0000)
(11)(2) (11)(0) (00)(0)[ (11)(0) (00)(2) [ (00)(0) [ (11)(0) (00)(2)|(00)(0) }(00) (0)
(00),(0) (00),(0)[(00),(0) (00),(0) [(00) (0}{(00),(0) (00),(0){(00)(0)}(00)(D) [(00),(0) (00),(0)}(00)(0) | (00)(0) | (00)(0)
(m)l(m)l —6 —i g
(0000), (0000), i } -1 4 2 # -3
(0000),(0000),, } 4 -1 4 2 # -1
(0000),(0000);  —} —3 -1 —4 -2 -2 -3 ;
(0000),(0000), —} -1 ~1 —4 -2 -2 ~3 3
(0000}, (0000),, 1 1 -} 2 2 4 -4
(0000),(0000), 1 1 -1 2 2 & -1
(0000),(0000), ~1 -1 3 -2 2 A $
(0000),(0000) 5 4 -4 } 4 -1 4 4 -4 -4
(0000),(0000), } ~4 i 4 -1 4 4 -4 -1
(0000),(0000),, } -1 -} -2 —4 2 —3 3
(0000),,(0000), 4 -1 -4 -2 -4 2 -1 3
(0000),(0000), 1 -1 $ -2 -2 4 §
(0000),(0000),, -1 ) -1 4 -2 # -3
(0000) (0000) -1 b -y 4 -2 i —3
(0000),(0000),, -6 -1 $
(1001) (T001) -1 -1 ] -3 ~3 -1 4 -4 i
(TooT) (1001) -1 -1 3 -3 -3 -1 } -1 )
(1101) (1701) -1 - i i ~1 =i 4 4 } -1
(1101)(1101) -1 —4 i 3 -1 -1 -1 ) -4 -4
(1017)(1011) | -1 4 i 3 -1 ) ) -4 )
(1011)(1017) i -4 i 3 i -1 } -1 ) -4
(0111)(011T) 4 i 3 —1 -4 -1 i
(o111 (0111 } ¢ 3 -3 } 1 }
aunain } ! - :
ATy (11 } 1 }
(1110)(1110) } i 3 -3 1 } }
(1110)(1170) } 3 3 -3 _1 _ )
(2100) (2100) -1 -3 ) 3 -3 -3 -1 -4 -1 -4
(2100) (2100) -4 -4 1 -3 -1 J | i -4
(1210) (1210) i i E i i ~ -3 -4 -1 -1 ) 4 ) )
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TABLE X. (Continued.)

(0110) (1001), (1001), (0000)
(11)(2) (11)(0) (00)(0)[ (11)(0) (00)(2)](00)(0)] (11)(0) (00) (2) [(00)(0)] (00) (0)
(00),(0) (00),(0)[(00),(0) (00),(0)| (00) (0){(00),(0) (00),(0)[(00)(0) | (00) (0)|(00),(0) (00),(0}[(00) (0) | (00) (0)| (00) (0)
(1210) (1210) ) H b P ¢ —3 -3 -3 ) 4 } —4 -4 —4
oDy -5 -} ! 4 I i - ) ) S
(0131)(0121) -1 —i i i 3 —3 -3 3 -1 -1 -4 -1 ) —4
(0012) (0012) i -4 i 3 3 —4 i -4 4 -4
(0012)(0012) i -4 i 3 3 -1 -4 ) -4 —1
143 143 142 4105 14105 4105 147 WA 1A 1A 143 146

vious case belongs to a subspace, irreducible with respect to
the subgroup.

Every SU(5) weight, m = (m,,m,m,m,), corre-
sponds to a definite subgroup weight v = (v,0,) (v5) (v,) giv-
en by

v=mP = (m, + mypm; + m,)(m, + m3)
X(2m; —my,+m;—2m,), (5.1)

where the parentheses indicate the SU(3), SU(2),and U(1)
weights, respectively, and P is given in (2.8).

Each subgroup weight vector belongs to one irreducible
subspace. This subspace is generated from the highest
weight by the operator f; = [ £}, /21,2 = [ f5, £4]1 for SU(3);
f=1f»f.] for SU2); and h =2h, — h, + h, — 2h, for
uU(l).

We also have the charge conjugation operators and re-
flections ; and R, where i labels a root of SU(3) or SU(2).
In this case there are more dominant weights and Tables
VIII-X are bigger. We have omitted the U(1)-part of each
weight to simplify the notation.

We present some examples. In the tables, the first line of
each column indicates the SU(5) irreducible subspace. The
second line gives the highest weight of each irreducible sub-
space with respect to the subgroup. The third line corre-
sponds to a dominant weight of that subspace. Finally, the
following lines give the linear combinations of the corre-
sponding vector as a function of the tensorial product basis
vectors, as in Sec. IV.

For the subspace of weight (2002), the highest weight is
now (22)(0). The weight (1112), which is not a dominant
weight in the group basis, corresponds in the subgroup basis
to the dominant weight (03) (0). In Table VIII we find

[2 2 [O] = (1001)(1001) , (5.2)

e

=2""2{[ f,, f21}(1001) (1001)
= —2-Y2[(1001) (0111) + (0111)(1001)] .

(5.3)
Similarly,
02][2] _ _l/z*[o 2][2]
[o 2“0]_2 o 2ll2
=272 {[ £, A1}(A101) (T101) 54
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where the expression of the vector [33 ] [3 ] is given in Table
VIIL

There are also degenerate weights. We consider the fol-
lowing example in the weight subspace (0102) in Table IX.
In the subalgebra with highest weight (12) (1), there are two
vectors belonging to the subspace weight (01) (1). Their ex-
pressions are

[cl) ﬂ.m =274k i i“i] (5.5)
lo kL= (5:6)

For the weight vectors which are not dominant, we can
apply the charge conjugation operators, R , Rg,, and R, to
the vectors of the subspaces of SU(3) and SU(2), respec-
tively.

Thus, in the weight subspace of (2002), we can take the
vector [ 32 ][] ] corresponding to (0320). We have

AN

=R, ;. (27"2(1001)(1101)
+272(1101) (1001))

=2""2[(1110) (1210) + (1210)(1110)] .
(5.7)

Another method is

[ 3l =272 L
=2-"{£}-"2(1001)(1101)
+272(1101) (1001))
=2""2£(271[(1001) (1210) + (1210)(1001)
+ (1110)(T101) + (T101) (1110)]),  (5.8)

where we have used the expression of the vector [{3][}] or
121[1] accordingly to Table IX; and finally acting with f;,
we get (5.3).

VI. CONCLUSIONS

An extensive use of the Verma algorithm has been made
through all the computations. Because of the high degener-
acy of some weight subspaces, the difficulties of finding a
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basis are overcome by using this algorithm. This method can
be used with other Lie groups, different from SU(n).
Though only CGC corresponding to dominant weights have
been computed, the other ones can be found easily through
charge conjugation operators. The results presented in this
article complements those of Refs. 4 and 5, about CGC in
unification theories. Some other calculations are found in
recent papers® about CGC in supersymmetric theories. Qur
method can be easily applied to these cases.
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Finite-dimensional representations of the Lie superalgebra si(1,3)
in a Gel’fand-Zetlin basis. Il. Nontypical representations
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All nontypical irreducible representations of the special linear Lie superalgebra sl(1,3) are
considered. Explicit expressions for the transformation of the basis under the action of the
generators are given. The results of this paper together with those obtained in Paper I {T. D.
Palev, J. Math. Phys. 26, 1640 (1985) ] solve the problem of the finite-dimensional irreducible
representations of s1(1,3). The results are compared with those obtained by the Young
supertableau technique. A mapping of the supertableau basis on the Gel’fand-Zetlin basis is

given.

. INTRODUCTION

In Ref. 1 (hereafter referred to as I) we gave explicit
expressions for all typical representations of the basic Lie
superalgebra (LS) s1(1,3) in a Gel’fand—Zetlin basis. In the
present paper we solve this problem for the nontypical repre-
sentations.

We recall that the finite-dimensional irreducible repre-
sentation (IR’s) of any basic LS resolve into two classes:
typical and nontypical.> The module ¥ over the LS 4 (and,
hence, the corresponding representation of 4 in V) is said to
be typical, if, whenever ¥ is a submodule of a larger 4 mod-
ule W, there always exists a complement to ¥ subspace V',
whichisalsoan4 module,i.e., W= Ve V', AV'CV’ . Ifthis
is not the case, i.e., there exists an 4 module W, containing V'
as a submodule and in the same time, it is impossible to
determine a complement to a ¥'submodule, then ¥ (and also
the representation of 4 in V) is called nontypical.

Let A be a basic LS, U its universal enveloping algebra,
A, the even subalgebra, P, the linear span of all odd positive
root vectors, and P the subspace sum of 4, and P,
P=A4,0P_. Consider an arbitrary 4, module ¥V, and ex-
tend it to a P module, assuming P, ¥, = 0. Let ¥ be the
factor space of the tensor product U ® F,, with respect to the
linear envelope 7 of all elements up @ v — u & pv, ucU, peP,
vel,, ie.,

V=UsVy/I (1.1)
The space ¥ is turned into an 4 module in a natural way:
guov) =guev, ged, usvel. (1.2)

The A module Vs said to be induced from the 4, module ¥,

Let F be the family of 4 modules ¥, induced from all
irreducible finite-dimensional 4, modules V. The family F
carries information about all finite-dimensional irreducible
representations of the LS A4 (strictly speaking the statement
below is true for the type I LS’s, but with minor modification
it holds for all other basis LS’s) in the following sense. De-
note by F,CF (resp. F..4 CF) those induced 4 modules
VeF that contain no (resp. that do contain) nontrivial invar-
iant subspaces: F = F,UF,_,. If VeF., and I is the maximal
invariant subspace in ¥, then the factor module ¥ = ¥ /I is
irreducible. Let F,, be the set of all such modules,
F, ={V|V=V/I, VeF,.,}. Then it turns out that all 4
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modules from F, are typical, whereas those from F,, are
nontypical. The relevance of this construction stems from
the observation that every typical (resp. nontypical) repre-
sentation of 4 can be realized in a certain 4 module from £,
(resp. from F,,).2

In I we have worked out the induced representations of
the LS sl1(1,3), whose even subalgebra is gl(3). We wrote
the results in two different bases: the induced basis and the
Gel’'fand-Zetlin basis (GZ basis). Both of them may be as-
sumed to be orthonormed. The transformation properties of
the vectors from the induced basis are relatively simple [see
I, (4.14)] and this is its advantage. This basis is inconve-
nient, however, for the construction of the nontypical repre-
sentations, because most of the basis vectors have nonzero
projections both on the maximal invariant gl(3) module 7
and on its orthogonal complement. This was the reason to
introduce a new basis, which is reduced with respect to the
even subalgebra. To this end we considered ¥ as a represen-
tation space of gl(3) Csl(1,3) and represented it as a direct
sum of its irreducible gi(3) submodules ¥,

V=3 eV, (1.3)
As abasis I', within every V,, we chose the Gel'fand—Zetlin
basis® and defined an orthonormed Gel’fand-Zetlin basis in
V tobe ' = U, T,. It turned out that n<8.

In Sec. II we collect some of the results from I and give
the action of the superalgebra generators on the GZ basis
vectors. These relations, which in fact determine all typical
representations, will serve as a starting point for the con-
struction of the nontypical representations (Sec. III). In
Sec. IV we show in a matrix form the lowest-dimensional
nondecomposible representations. In Sec. V we relate our
results with those obtained in the frame of the Young super-
tableau approach.*® We establish a mapping of the super-
tableau basis (Weyl basis) on the Gel’fand-Zetlin basis in a
similar way as this was done for the Lie algebra sl(n) (Ref.
10). This mapping is one to one for all nontypical represen-
tations.

Il. INDUCED REPRESENTATIONS OF si(1,3)

Let e, 5, A,.B =0,1,2,3, be a 4 X4 matrix with 1 on the
A throw and B th column and zero elsewhere. The LSs1(1,3)
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can be defined as the linear span of the even generators
E;=e; +6;ey Ii,j=123, 2.1)

which are the generators of the Lie algebra gl(3), and the

odd generators

i=123. (2.2)

The induced sl(1,3) modules are labeled by three com-
plex numbers [m5,m,;,m3;]1=[m]; with the only restric-
tion that m,; — my3,m,; — m;; are non-negative integers,
i.e., myy — my€l,, my; — my€Z . By V([m],)eF we de-
note the corresponding to [m];s1(1,3) module. In I we have
shown that ¥([m],) is typical (and, hence, irreducible) iff

my#i—1, i=123. (2.3)
There are three classes of reducible (but not completely re-
ducible) modules
T/( [O,m23,m33] ),_V( [m13,1:m33] ),T/( [m139m23,2] )EF,ed .

(2.4)

In order to determine the corresponding nontypical repre-
sentations, we have to factorize each space (2.4) with re-
spect to its maximal nontrivial invariant subspace

€0is€i>s

I([0,my3,m33]), I([my3,1,m53]), I([m3,my3,2]),
(2.5)
respectively.

Every induced sl(1,3) module from the family F is a
direct space sum of (no more than) eight finite-dimensional
irreducible gl(3) modules V([m];). As a basis in each
V([m],) we choose a GZ basis®

tent with the “betweenness condition”

M3 — My, M gy — My3,Mo3 — Ma3,My; — Mas,
my,—my,my —myEeL . 2.7

Introduce the abbreviations
[m] = [min +6,i,my, + 8550y, £6,;], (2.8)
[m +cl, = [my, +cmy, +c,.sm,, +c]. (2.9)

Then the sl(1,3) module V([m] 3), induced from the gl(3)
module V([m],), reads

3

V(imly) =V(mlye Y eV(m—113)
i=1
3
® > o V([m—1};7HeV([m—2],,
! (2.10)
with

3

Vollmly) =V(Iml)e 3 eV ([m—1159,

i=1

(2.11)

and
3

Vilml) =V(m—2]e Y eV(lm—113)
i=1
(2.12)
being the even and the odd subspaces of V([m],), respec-
tively.
In order to write the transformation properties of the

GZ basis under the action of the generators, it is convenient
to introduce the notation

my3; My Mjy [m], lij =my; =4 (2.13)
my My = |[m],). (2.6) S ) = {1, for i<j, (2.14)
my, m, J=11, fori>j, '
The numbers [m,,,m,,] =[m], and m,, label the basis vec- €, an antisymmetric tensor with €,5, = 1. (2.15)
tors in ¥([m],). They run over all possible values, consis-  Then one has’
]
[m];
eok [m]2 = O’ k = 1a2’3) (2.16)
my,
[m], 3 2
€10 [m]Z - Z E S(ly.])S(.])I)
i=1j=1
my,
[m — 1]
X‘ M g1 Ui =l Uis —la = DG a s = 1) |71 11; 217)
(L=l —j+ DU =1y "j+2)ni¢i=1(lk3 —13) m ?
11
(m]; 3 2
ey |[m],; )= z z S, )
m“ i=1j=1
[m — 113
Up =t DIG gy G =l = DIy Gis = 1) |7 | 1]; 2.18)
Up—Ly—j+ DUy =Ly —j+ DR (s —13) i .
m;,—1
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[m—1]4

[m]3 3 2
ME_ (e, — 1 — 1|
e | [m], =2 k31 £z : [m—-11,),
my, i=1 Hk;éi=l(lk3—li3) my; — 1
[m—1]3 )
eOl [m]2 =(ls3 +1) z S(s9j)s(j;1)
i=1
my,
I o (o =+ Dy — W) o s 1) [ |71
(o =lLa+j =D —ba+j =DMy s =) || 77 [
11
[m—1]3
e [[m], =(l3+1) ZS(SJ)
Jj=1
my,
m
X’ U =LOTB Uy — I (s — ) |2 {m]i”_,.
Up=la+i— DU —by+j= DI (s —13) m“+1’ ’
[m—1]3 2 [m]
IZ_, U, —13)
eps |[m], =3+ 1) 'H3k . (klz ; ) [m+1]2>,
m,, kes=1Uk3 —ia my + 1
[m —113 3 3 2
eo| [mly )=3 X X €SGLHSOLD
m” I=1i=1j=1
m-—1];
(153_11“2)(113_Iﬂ_I)Hi#j=l(lk2_lll)(lk2_'l,'3) 172 [[m 1]]3j
(o —loy —j + DUy — by =+ DTG iy (s — 1) o]
1
(m—1]3 3 3 2
e20 [m]2 = z 2 z shS(i!j)
my, S
[m—1]5
’un—lp—l)(lss—lﬁ)(lu— — DGy U =l
U=l —j+ D=l —j+ 2, (s — 13) 12 ’
1"n—
[m—1]5 s 3 E_, (, 1) |7 [m—11;
e30 [m]2 = z z sli H3 (l —l ) [m_1]2 )
m,, =1i/= k#i=1Ugks3 3 my — 1
[m—1]5 3 3 2
e(): [m]2 =Z z z 6_,,,~(113 +1)S(l,j)S(j,l)
my, §= =1j=1
[m —1]4
Us =) Us —lp = DIGyor e —hi 4 DG —hs 4 D |V 07
(=l +ji—DUp— 22+J"“2)H13c;61=1(1k3_113) m ay
1
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(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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(m—1]57

3 3 2
€02 [m], = 2 z 2 €l + DS ))
=11

my, -t
[m—1]4
U = 1) Us =1 = D Up —h)TB ey — Ly + D] [m+1]i,
U=l +j— DUy — by +j =2 o (s — 113) >l
my; + 1
m—1174  , [m — 11}
H2= (I _ +1) 172
coltml )= 3 3 ot ey [T iy, )
my, i=1j=1 Hk;éj=l(k3_1f3) my, + 1
m—1174
€ | [m], = 2 S NS0
my, =t
m-—2
Hi#j:l(lkz — LU, — 15 + I)Hlsc#s=l (s —13) V2 {m _ 1};
=l —J+ DU — by —j+ 2R L (hs — 1) m 2
11
[m—1]7 )
€20 [m]2 =2 S(S,_])
my, =
-2
(lﬂ “‘lu + l)ni#j=l(lk2 —lsS + l)ni;es=1 (Ik3 —lﬂ - 1) vz {: _ 1113
Uy =l —j+ DUy =Ly —j+ 2D o Ly — 1) iy
m;, —1
11~ _
St WYYy P DY R B
€390 [m]2 = H3 (l _’ ) [m-—l]z ’
my, k#s=1\tk3 53 m”_l
[m_2]3 3 2
eOl [m]2 = 2 z (ll3 + I)S(l’j)s(jyl)
my, I=1j=1
[m—1];
Mgy (s =l t Dl —la DM s =l =D 1) 7
=Ly +j—DUn =Ly +j =2 = (s — 1,3) m 2l
11
[m_2]3 3 2
ey | [m], = 2 2'(113 + DS, )
=1=1
my,
(m—1]1;
Up = h)Wgyo s = his + DMhroy s = =D P21
he=lp+j—= DU — by +j— DI i (s — 3) a
my+1
m—21) ) (m — 115
M2_, (., — 1 +2) |
s |lml;  )=3 (s +1) |2 Im+1), ),
my, =1 Hk;él=1(lk3 —13) my + 1
[m;2]3
eo |[m], =0, k=123
my,
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(2.29)

(2.30)

(2.3

(2.32)

(2.33)

(2.34)
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We do not write here the action of the even generators.
These relations are known, they have been given in I, Eq.
(3.22) and can be easily derived from the anticommutators

E; = {eg,eq}. (2.36)

_ The dimensions of T’([m_] 3), its even subspace
Vo([m]3), and its odd subspace V,([m];) are

dim ¥ ([m],) = 2 dim V,([m]5)
=2dim V,([m],)
=4(m;3 —my; +2)(My; — M3 + 1)
X(myy—myy + 1), (2.37)

For any admissible triple [m,;,m,;,m;;] formulas
(2.16)—(2.35) define an induced representation of sl(1,3) in
an orthonormal GZ basis. If in addition the condition (2.3)
holds, the representation is irreducible. Hence, the family F,
of all typical sl(1,3) modules is determined with Egs.
(2.16)—-(2.35) and (2.3). This solves the problem about the
typical representations of s1(1,3).

lIl. NONTYPICAL (IRREDUCIBLE) REPRESENTATIONS

If one of the conditions (2.3) is not fulfilled, the induced
representation is indecomposible. The corresponding
s1(1,3) module V([m] ;) contains a maximal invariant sub-
space 1([m],), such that its orthogonal complement is not
an invariant subspace. The factor module V(lml;)/
I([m],) carries an irreducible nontypical representation of
s1(1,3). In order to write the formulas (2.16)—(2.35) in the
corresponding factor spaces, we now proceed to determine
the maximal invariant subspaces (2.5). To this end we first
prove some preliminary assertions.

Proposition 1: Let V be a finite-dimensional irreducible
gl(3) module and U be the universal enveloping algebra of
gl(3). Then for any nonzero vector xeV,

Ux=V. (3.1)

The proof is evident, since all finite-dimensional repre-
sentations of gl(3) are completely reducible. Indeed, if
Ux C ¥V and in the same time if (3.1) is not true, then Ux will
be a proper gl(3) submodule in ¥, which is impossible.

Proposition 2: Let I([m] ;) be the maximal (nontrivial)
invariant subspace in ¥V([m],). Then [see (2.10)]

V(lm —21;)CI([m],). (3.2)

Proof: 1t is easier to carry out the proof using the in-
duced basis [I, (4.12) ]. Suppose 0#xel([m];). Then

X = Z z a(91’02:03;(m)3)

6,,6,,6, = 0,1 (m),

X (€10)% (€20)%(€30)% ® | (m)3) 0, (3.3)
where the second sum is over the basis in V([m],), i.e., over
all admissible GZ patterns (m); in Vy([m],;) [remember
that V,([m];) is the gl(3) module, inducing T’([m]3)].
Suppose that all coefficients (6,,8,,6,;(m),) are equal to
zero if 6, + 0, + 0, <k, and that for certain 69,089,609,
09 + 609 + 09 =k and for a certain GZ pattern (m°),,
a(99,02,09;(m®);)#£0. Then the first sum in (3.3) is over
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all 6,,0,,0, such that 8, + 6, + 6,3 k. One can easily derive
from [I, (4.12)] and [I, (5.12)] that

_ g0 g9 9
07‘5(310)1 t9'(320)1 82(‘-’30)[ ®3x

€e,0820€30® Vo(Imls)=V([m —21,). (3.4)
Thus,
0 (e10)' ™ %F(ez0)! %% (es0)' ™ x

el([m];) NV ([m —2];) (3.5)

and, therefore, according to Proposition 1, (3.2) holds.
Proposition 3: The maximal invariant subspace I( [m] ;)
has zero intersection with the gl(3) module V([m],):

I([m];)NV([m]) =0. (3.6)

Proof: Suppose

0#£xel([m];) NV ([m]y), (3.7
then, according to Proposition 1,

V(Iml;) =18 ¥y([mly) CI([m]y). (3.8)

Hence, also

»

6,,0:,6,

= z (elo)o'(ezo)ez(eao)a’® Vo([m]s)

6,,6,,6;

(910)8'(920)8’(330)9’] (1e ¥o([m],))

=V([m];) CI([m]s),

ie, V(lml,) =1([m];), which is impossible, since
I([m];) is a proper subspace ofT’([m];). [ |

Let g be a linear operator in a (finite-dimensional) Hil-
bert space ¥, I be a proper g-invariant subspace of ¥ with a
basis f;,..., f,,» and W = VOI be the orthogonal complement
to 7 in ¥ with a basis €y5...,€,. Then

gei=3 4¢+ 3 Bulfy
=1 p=1 (3.9)
& =3 Cul
Consider the factor space ¥ /T and denote by x'e¥V /I the
equivalence class containing xe¥. The mapping f(x) = x’ of
¥V on ¥ /T is linear. Moreover, its restriction on W is one-to-
one. Indeed, let x,yeW and suppose that f(x) = f(y). Then
f(x —y) =0 and, therefore, x — ye? Since, on the other
hand, x — 17, one concludes that x = y. Thus, the linear
spaces W and ¥ /T are isomorphic. The classes e; ,...,e, con-
stitute a basis in ¥ /7, whereas all f;=0,p=1,.,m. Inthe
factor space the operator g acts by definition as gx’ = (gx)’.
Therefore,

ge; = (ge,) = (Z A6+ 3 Bpl‘fp)
=1 p=1

n
= z A€l

j=1

(3.10)

As usually we shall identify the spaces Wand ¥ /T, denoting
with the same symbol, for instance x, both a vector fzom W
and the corresponding to it equivalence class from ¥ /7. Then
g, considered as operator in the factor space (or, which is the
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same, in W), transforms the basis as

ge;, = z Aje.
Jj=1

Corollary: To obtain the transformation of ¥ /T = Wun-
der the action of the operator g one has simply to replace in
(3.9) all £,,..., f,, by zero.

(3.11)

A. The class m4;=0 nontypical representations

As we have already proved in I, Proposition 3, the in-
duced s1(1,3) module 7([0,m,;,m,;]) is reducible.

Proposition 4: The subspace I([0,m,;,m;5]) of
V({0,m,3,my;]) defined as

I([0,m;3,m33])
= V([0,my3 — 1,m3; — 1])
& V([ —2,my; —2,m5; —2])
o V([ — Lmy; — L,my; —2])
& V([ — Lmy; —2,m;5; — 1]) (3.12)

is an sl(1,3)-invariant subspace of the maximal invariant
subspace I( [0,m,3,m45]).

Proof: Using the transformation relations (2.16)-
(2.35) one shows in a straightforward way that
I([0,m,3,m,;]) is an invariant subspace of ¥ ([0,m,5,m3,]).
It remains to show that

I([0,m43,m43]) CI([0,my5,m55]). (3.13)

Since [see (3.2)]
V([ — 2,my, — 2,m33 — 21) CI([0,m;3,m43]),
then
eos V([ — 2,my; — 2,my3 — 21) CI([0,my3,m43]).

In particular,

—2, my;—2, my—2

€o3 —2, my;—2
-2
- 1’ ma; — 1: m33_2
=¢, -1, my—1 =y,
—1
where

(o=l +2) Uy — L +2) |12
(1 4+ 153) (s — L)

Proposition 1 now yields that together with the nonzero vec-
torer( [ — 1,m23 — I,M33 bt 2] YNI( [09m23’m33] )

V([ — 1,my — 1,my; — 21) CT([0,my5,ma3]). (3.14)
In the equality

Cl = (133 + 1) #0.
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-1,

€ -1,

my—1, my3—2
ny; —2
—1
0, my; —1, my;—1
0,m,; — 1 ,
0

=c2

the constant ¢, is different from zero (if, certainly,
V([0,m,; — 1,m;; — 1]) #0) and, therefore,

V([0,m,; — 1,msy — 1]) CT([0,mp3,m43]).
The last inclusion we need is
V([ — 1,my — 2,ms; — 11) CI([0,m43,m331), (3.16)

which follows, for instance, from

(3.15)

0, my;—1, my;—1
€3 | Mp—1, my—1
my,
—1, myy—2, my;—1
=03 My —2, My —2 ,
m;,—1

where ¢; #0if V([ — 1,m,3 — 2,my; — 1]) #£0.

From (3.2), (3.14), (3.15), and (3.16) one concludes
that also the sum (3.12) is a subspace of K (0,my3,m55]),
ie.,

I1([0,m;;,m33]) CI( [0,my3,m35]).

which completes the proof.
Proposition 5: The linear subspace I([0,m,3,m35] ) is the
maximal sl(1,3)-invariant subspace in V([0,/m,3,m3,]).
Proof: For simplicity we introduce the abbreviations

3.17)

T/( [09m23,m33] ) = T/’ j( [O,m23,m33] )= 7,

(3.18)
I( [0,m23,M33] ) = I.
Let x be an arbitrary vector from 7, )
xel( [0,m;3,m33]) =T (3.19)

From (2.10) it follows that every vector from ¥ and, in par-
ticular, the vector x can be represented uniquely as a sum

3 3
x=x0+.2 x,--I-ch_,A—}-x4 (3.20)

i=1 i=1

of its projections

x€V([0,mp3,ms3]), x4V([ — 2,my; — 2,my5 —21),
X €V([ —1£81my— 1 4£8,,m3—1485). (3.21)

Proposition 4 asserts that

Xy 4+ X_p+X_5 + X4l (3.22)
and, therefore, also
Xo+ X5 + X3 + x_ €l (3.23)

We now proceed to show that each term in the sum (3.23) is
equal to zero. Suppose first that x_,5%0 and choose
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geU (gl(3)) (Proposition 1) to be such that

-2, my;—1, my;—1
gx_,= -2, my;—1 (3.24)
-2
Acting on both sides of (3.23) with g one has
8(Xo+ X3 +x3 +x_,)€l. (3.25)
Therefore, also
€03E35e03 8(Xo + X3 + X5 +x_1)€7- (3.26)
An explicit computation gives (¢;#0)
€03E3,e05 8(xo + X, + X3+ x_ )
b 2, m23 _— 1, m33 - l
= ep3E55603 -2, my—1
-2
- 1, m23, M33 - l
= ¢1803E3; —1, my
—1
—1, mymy—1
= 62803 -_ 1, m23 — 1
—1
0, my, msy B
= C3 0, m23 Eln V( [0,m23,m33] ), (3.27)
0

i.e, V([0,my3,m33])NI([0,my3,m5,]) #0, which, accord-
ing to Propositions 3 is impossible. Thus, the assumption
that x_,70 is wrong, i.e.,

x_;=0. (3.28)
To go further we shall use the relations
-1, my, my—1 0, my, my
€o3 —1, my—1 =¢ 0, my, )
—1 0
¢, #0, (3.29)
=1, my—1 my 0, my, my,
€93 =1, my-—1 =0 0, my, s
-1 0
¢, #0. (3.30)

Assume that in (3.23) x,5#0. Choose geU (gl(3)) such
that

—1, my, my;—1

—1, my;—1 (3.31)

—1

gx, =

and represent gx, as a sum of the highest weight vector (if
gx; has a nonzero projection on it) of
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V([ — 1,m,; — 1,m,;]) and an orthogonal-to-it vector Vs

-1, my—1, my,
&=« —1, my;—1 + y;. (3.32)
—1
Then
8(xo + X, + Xx3) =gxo+ ¥,
- 1, m23, m33 - 1
+ -1, my—1
-1
=1, my—1, my,
+a —1, my—1 el.
-1
(3.33)

In order to eliminate the last term in (3.33), we act on both
sides with the operator ey;E;,E,;. Since

—1, my;—1, msy,
E,, -1, my;—1 =0 (3.34)
—1
and
—1, my, my—1
EE,; -1, my-—1
-1
—1, my;, my;—1
=:B - 1) my; — 1 ) B 9&0’ (335)
—1
we obtain from (3.33)
z = eg3E3Ex;(xp + X, + X3)
0, my, my
= eg3EnEynys + ¥ 0, my
0
eINV([0,my,ms;]), ¥7£0. (3.36)

Because of the special choice of y, [see (3.32)], the term
eosEs,E,; v in (3.36) is a linear combination of weight vec-
tors from V' ([0,m,3,m,;]), which does not contain the high-
est weight vector ( = has zero projection on the highest
weight vector). Therefore, z#0, which is impossible. Hence,
the assumption that x,70 cannot be true, i.e.,

x2 = 0. ( 3 . 37 )

Suppose that x; 7#0 [see (3.23) ] and choose ge U (gl(3))
so that

—1, my;—1, ma,

-1, (3.38)

my; — 1
—1

8x; =
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Then (¢#0)

which completes the proof.

0 Let
, M, m =
2 33 W([0,my3,m;3])
€3 8(Xxo + X3) =¢ 0, my,
0 = V([0,my3,m3;]) @ Vi — 1,mys,msys — 1])
Jv 13 o V([ — 1,my — 1,ms;])
NV ([0mz3mas1), (3.39) ® V([ — 2,y — Lymys — 11) (3.45)
which is impossible. Hence, be the orthogonal complement to 7 in ¥V([0,m,3,ms;]).
x;=0 (3.40) Then, according to the corollary, in order to obtain the
and, therefore, tTie(u[l(s)formatior]l ;)j' Tt?E: (;rreduciblis)nontﬁy}zi[cgl s1(1,3) -]I;xodule
-~ y M3, 33 WM3,M33] ) = ,M33,M33]), One
x&lNV([0,m;3,m33]) (341)  has to insert my; =0 (/;; = — 1) in (2.16)—(2.35) and to
has to be also zero, replace everywhere in these relations the vectors
=0. 3.
%o G4 fm— 113\ |Im— 11577
Inserting (3.28), (3.37), (3.40), and £3.42) into [m] [m] ,
(3.20), we finally conclude that every vector xef can be rep- 2 ’ 2
resented as i " (3.46)
X=X +X_,+X%X_5+x, (3.43) [m—11%\ |[m—2],
Therefore, xel (Proposition 4), i.e., I([0,m,3,m3;]) (m], | [m];
CI([0,my;,m33]). This inclusion together with the inverse my, my
(3.17) implies that _ by zero. The final result is the following.
I([0,my3,m55]) = I([0,my,,m55]), (3.44) Nontypical representations with m,; =0
i
0, m,;, mi;
eok mlz, m22 = 0, k = 1,2,3, (3.47)
my,
0, my, ms 3 2 ! 2 172
4+ DI oy s — ) i (L — L)y — 1 — 1
e My M _ z ES(i,j)S(j,l) (jz ) k 23 (ks '12) k 5j 1 k2 : 1) (k2 3 )
m =2 =1 s + DU =l —j+ DU =Ly —j+2) U — 1)
11

-1, myu+6,—1,
X mp+6,;—1,

my,

0, my, my PR

msy; + 63 — 1

My + 62] -

’ (3.48)

(112 + 1)(112 ~ I+ l)nk;ei:z,s (L3 _ljz)ni;éjzl (hy =13 — 1) 2

€20 myy My = z Z S, j)

i=2=1
my,

—1, my+86,;—1,
m;,—1

0, m‘, m
23 33 3 Hi=l(lk2_li3_1) 172

=i=2 (I + 1)Uy — 1I33)

€30 My My
my,
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(li3 + 1)(112 22 _.]+ 1)(112 - 122 _.]+ 2)(123 - 33)

ms; + 85 — 1
X my, +51j -1, my, +62j -

, (3.49)
My + 8y — 1, myy+6; —1
my—1, my—1 , (3.50)
my;—1
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—1, mu+6,—1, my;+6,, —1

2
€01 m,, My =z +1) z S(s, H)SCLD
my, =t
x Up + DI 455 Uys _Iﬂ)ni¢j=l(lk2 =L+ DU, = 1) |2
Us+ D= by +j~ DU~ +j—2) (1~ 133)
0’ My3, Moy
X m12_61j+1’ m22—62j+1 y S=2,3, (3-51)
my,
—1, m23+523—1’ m33+53s—1 2
€02 my, My = (ISS + 1) z S(s,/)
my, =t
< Up + DUp — LDy g2 ey — DI L (e — 1) |2
Ug+ DU —=ly+i—DUp =Ly +j—=2)Uy — I3)
0, my;, ms
X |my —511' +1, my —521' +1), s=2,3, (3.52)
my; +1
=1, my+8 —1, my+86y —1 2 172 0, my, my,
M (2 —13)
€03 My My =z +1) -+ DA ) mp+1, mp+1), s=23,
m,, 3 23 — 33 my + 1
(3.53)
—1, my+6,—1 my;+6,—1 PR
€10 Myp My =2 2 asSGHSUD
i=1j=1
my,
x (s — 1)U, +2)ni#j=l(lk2 — 1)Uy = 13) 2
g + DU =Ly —j+ DU — by —j+2)(1s — 13y)
~2, my—1, my—1
X imy, +51_,' -1, my +52j -1 , §=23, (3.54)
my,
—1, my+6,—1, my+6,,—1 s
€20 my, My, =Y Y €.5))
i=1j=1
my,
| e+ 20— by — Vs = 1)y i ez — 1) 2
s + DU =l —j+ DU =l —j+2)yy — 1)
-2, my—1, my—1
X m12+81j_‘19 m22+52j—1 , §=23, (355)
m!l —1
—1, my+8—1, my+8;,—1 3 _ (e, — 1) |2 =2, myuy—1, my-—1
€30 Mz My = 2 €5 D ) my,—1, my—1 y $=2,3,
m,, i=1 o) 23 — 33 myy — 1
(3.56)
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3 3 2
€o1 My My = 'Zn 121 21 € (3 + DS NS
my, mhi=l=
x (lﬂ +2)(I,-3 - lﬂ)ni¢j=l(lkz —111 + 1)(Ik2 —‘113 + 1) 172
U+ DU =l +j— DU — by +j—2) Uy — L3)
—1, myu+6,—1, my+6;—1
X| mp—68;+1, myp—35§;+1 , (3.57)
my,
- 2, m23 —_ 1, m33 - 1 3 3 2
€02 myy My, = 'Z1 121 'Zn € (L3 + DS ))
my, T
% (p +2)Us — 1)U, I o Uiy =13 + 1)
U+ DU =l +i—=DUp =l +j—2) (s — 133)
—1, my+6;~1, my+86;—1
X m, —51,' +1, my _62j +1 , (3.58)
my +1
=2, my—1, my;—1 3 3 2 12
Mo Uy — 1z + 1)
e my, m = €3 +1) £l
03 12 22 i;l ;;l ui Up Uy + Dl — 1)
my,
—1, my+6,—1, my+6;—1
X m,+1, my+1 ) (3.59)
my,+1
~2 myuy—1, my—1
€xo mp,, m,, =0, k=1.23. (3.60)

my,

B. The class m,;=1 nontypical representations

In a manner similar to the previous section one proves the following.
Proposition 6: If m,; = 1, the maximal invariant subspace I([m3,1,m33]) of V([m;3,1,m;;]) is

7( [mi3,1,my3]) = V(Imys — Lims; — 1) @ V([my; — 2,0,m55 — 1])

o V([my; — 1,0my; —2]) @ V([m3 — 2, — 1,m;; — 21). (3.61)
In order to obtain the irreducible nontypical representaions of s1(1,3) from this class one has, according to the corollary, to
insert my; = 1 (l,3 = — 1) everywhere in (2.16)—(2.35), assuming in addition
m;—1, 1, my;—1 msz—2, —1, my—2
myy, My, =0, My My =0,
my, my,
miz—2, 0, my—1 my—1, 0, my—2 (3.62)
My, My, =0, My My =0.
my, my,

The result gives all the nontypical representations with m,; = 1:

mys, 1’ My,
€ox My My =0, k=123, (3.63)
my,
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my, 1, ms; 2
e | My myp )= 3 ¥ SGHSOL
i=13=1
my,
v (I + 1)“1;&,‘:1”}:2 — L) Uy =1y — DI g3y — 1) 12
Us + DU =Ly —j+ DU =l —j+2)(3— 1)
myz+6,;,—1, 0, my+6; —1
X| myup+8,;—1, my+6,;—1 s (3.64)
my,
my, 1, ms; s
€ | My My = z Z S, j)
i=13j=1
my,
x (o + DU =1+ I)Hi¢j=l(lk2 — Iy = DI o155 —13) 2
Us + DU =Ly —j+ DU =Ly —j+2)(U;3— 1)
myz+6; —1, 0, my+6; —1
X| mp+6;—1, my+6y-—1 s (3.65)
my;—1
6, —1, 0, - — 1
my, 1, ms, IG_, (L, — Iy — 1) [ mys + 0y, my; + 8,
€| My My )= Z 10— mp,—1, my,—1 , (3.66)
m,, i3 i) 13— 433 my—1
mi+6,—1, 0, my+6;—1 )
€01 My My ={s+1) Z S(s,/)S(41)
myn =t
X (l, + l)ni¢j=1(lkz =l + DUy — 1)y 13 — 1) 2
U+ DU =Ly +j— DU — by +j—2)U;3 — 133)
ms, 17 ms;
X m12_6lj +1, m12'—52j +1), s=13, (3.67)
my,
my+8,—1 0, my+6;—1 2
€02 Mmyy, My =z +1) z S(s, /)
my, =
% (U + D, —lll)ni;éj:l(lkZ — I My o513 s — 1) 2
Us+DUp—lp+j—DUn—Iln+i—2)U;3—13)
my, 1, mg;
X |my ‘511' +1, my “52j +1), s=13, (3.68)
m;,+1
my+8,—1, 0, my+8; —1 M_ (U, —1) | my, 1, may
€g3 Mmyy, My = (ls3 “+ 1) (l __|,. 1)(1 i ) ny, —+ 1, ms, =+ 1 , §= 1,3,
my, s3 13 = f33 my, +1
(3.69)
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my;+ 8, — 0,

1,

my; + 8y — 1 s 2
€10 my;, My = .21 '2’1 €55, )S()p1)
i=1j=
my,
x U =) Uy + DI o Uy — L) Uiy — 1) 2
=l —j+ DU =l —j+2)Us— 1) U5 + 1)
myz—1, —1, my;—1
X {my, +61j -1, Mmoo +62j -1 , §= 1,3, (3.70)
my,
mya+6,—1, 0, my+6;—1 3 2
€59 my; My, = '21 ‘21 €2i:S(i’j)
i=1j=
my,
% L+ -1, -1 3_112)Hk¢1—~1(1k2"‘113) 2
Us + DU =Ly —j+ DU =l —j+2) 53— 13)
msz—1, =1, my;—1
X{mpp+6;—1, myuy+6,;—1), s=13, (3.71)
n—1
muy+6,—1, 0, my;+8;—1
. B ! m m BT _ z . i (e, — 1) |72
’° T 1 T U= L) Uy + 1)
my,
=1L =1, myp—1
X my,—1, my,—1 , §s=13 (3.72)
m,; —1
m13 - l, - 1, m33 - 1 3 3 2
€01 my My z 2 z € (L + DSLHSL)
=1l=1j=1
my
o | e +2Us — I Uy =l + DUy =1 + D |2
Uy + DU =l +j—D U=+ —2)Uy3 — L33)
m+6;—1, 0, my+8;—1
X| mp—=6,;+1 my—5,+1 , (3.73)
my,
my;—1, —1, my;—1 s 3 2
€02 myz My = 2 z z € (I3 + 1S ))
my, T
% Up +2)Us — YU =L o ey — L3 + 1) |72
(s + DU —bp+j—1D Uy =l +j—2) (13— L53)
mpiz+8;—1, 0, my+6;—1
X| mp—8;+1, my -8, +1 , (3.74)
m;;+1
m;—1, —1 my—1 3 3 2
M_ (I, —1,+1)|"2
€03 myy,m;; = z Z (Is + Dey; == 1_ k2
m == (L3 33)(j3+1)
11
mi3+8;, —1, 0, my+8y—1
X myo+1, my+1 »
my; + 1
283
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my;—1, —1, my;—~1
eko mlz, m22 = O, k =3 1,2,3.
my,

C. The class m;3;=2 nontypical representations
Proposition 7: If my; = 2 the maximal sl(1,3)-invariant subspace 7([m,3,m,5,2]) of ¥ ([m;,m,;,2]) is
I([my3my,21) = V([mys — Lmyy — 1,21) @ V([my; — Lmys — 2,11)

o V([m;—2my— L1 e V([my; — 2,myyy — 2,0]). (3.76)

According to the corollary, one obtains this class of nontypical irreducible representations of s1(1,3) by inserting m;; = 2

in (2.16)-(2.35) and assuming that

my;—1, my—1, 2 m;—2, my—2, 0
mpy, My, =0, My My =0,
my, my
ms;—1 my;—2, 1 my;—2, my,—1, 1
My My, =0, Mmy,, My =0.
my, my

As a result one obtains all the nontypical representations with m,, = 2:

mys, My, 2

o | My My )=0, k=123, (3.77)

my,

mys, My, 2

2 2
€10 My My = Z Z SLHSLD
iZ1j=1
my,

(lp + I)Hi #j:l(lkz =L, =15 — I)Hi¢i=|(lk3 - 112) o
Up—lp—j+ DUy =1 —j+ DU =L)Us+ 1)

mpi+6,;—1, my+86,—1, 1

X| mp+6;—1, my+48,;—1 ; (3.78)

my,

My, My 2

2 2
€20 Mz My = Z Z S, /)

i=1j=1
my,

p + DU =1+ I)Hi¢j=l(lk2 —15 - l)nlzc;éi=l(1k3 —1y) 2
=Ly —j+ DU —ln—j+2)Us— 1)Uz + 1)

my+6;—1 my+8,—-1, 1

X| mp+6;—1 my+6;—1 , (3.79)

m;, —1

8, — 1, 8, —1, 1
my, My, 2 2 T2 _, (Ly — 1y — 1) |2 M3 + 0y My + 0,
€30 My My = TR YRR Y my,—1, my—1 s (3.80)
m, i=1 13 23 i3 m“—l
my+8,—1, my+6,—1 1 N
e01 m12’ m22 = (ls3 + 1) z S(S,_])S(_],l)
my, =t
x (112 + 1)H2¢j=l(lk2 — I+ D, _ls3)ni#s=l(lk3 - Ijz) 12
U=l +j—DUp =l +j—=2)Us = 53Uy + 1)
M3, My, 2
X{mpp—6;+1 myuy—=6+1), s=1,2, (3.81)
my,

284 J. Math. Phys., Vol. 28, No. 2, February 1987 Tchavdar D. Palev



mia+6,—1, my+6,—1, 1

€02 my hy =z +1) z S(s, /)
my, =
> (o + DU =L L Uy, —I ;L (s — 1)
(=l +j—DUn—b+j—=2)Us=1n)Us + 1)
My, My, 2
XMy — 51,' +1, my— 52;' +1)), s=1.2 (3.82)
my + 1
my+8,—1, my+86,,—1, 1 _, (U, —1;) |V M3, My, 2
€03 my My, =z +1) T _1 X - 1 mp+1, my+1), s=1.2,
My =13}z + 1) my, + 1
(3.83)
my+6;,—1, my+6,,—1, 1 s 2
€10 my My 2 z €55, NS
my, -
x (g — 1)U, +2)Hi¢j=l(lk2 — 1)U, = 13) 2
o=l —j+DUp—lyn—j+2)U3—1L3)Us + 1)
ms—1, my—1, 0
X |mp+6; —1, my+6,;—1), s=1,2, (3.84)
my,
myy+8,—1, my+6,,—1, 1 s 2
€20 My, My = z z €358 (, )
my, o
5 (L +2)Uy =1, — DU — lfz)nk;ej_l(lkz -1y |2
o=l —j+ DU — Ly —j+2)U3 = 1) U5 + 1)

m13— 1, m23_ 1, 0

X|mpp+8;—1, my+6;—-1), s=12, (3.85)

my; —1
myp+6,—1, my+6,,—1, 1 3 B_, (e, 1) | myz—1, my—1, 0
€30 M M =2 | Ga D ma= b Ml s=12
mll i=1 13 23 i3 mll _1
(3.86)
my—1, my;—1, 0 s 3 o
€o1 My My z z 2 €&l + DSULHSOLD
my, Sti=tet
> (U +2)U5 _lﬂ)nlzc#j=l(lk2 —hh+ DUy, =1+ 1D |2
U=l +j—DUn— by +j—2)U — L), + 1)
my+6;,—1, my+38,—1 1
X| my —511 +1, my —5zj +1 s (3.87)
my,
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m13 - 1, m23 - 1, 0 3 3 2
€02 My My = z Z z € (I3 + DS )
i=1l=1j=1
my,
X (ljz +2)(; —‘112)(112 —lll)ni#j=l(1k2 -l +1) 12
(=l 4+ =D =l +j =)= 13) s + 1)
mpup+6;, —1, my+8,,—1, 1
X mi, '—611' +1, my "“521‘ +1 ’ (3.88)
my; + 1
myz—1, my—1, 0 3 3 2 172
Hk=l (1k2 - l'3 + 1)
e my, m = Ly + ey, s
03 12 22 ;;1 jgl (13 3ji (113 _ 123)(11.3 + 1)
my
mpuz+6;—1, my+8,—1, 1
X Mmy+1, my+1 , (3.89)
my+1
msz—1, my;—1, 0
€xo mi,, My = 0, k = 1,2,3. (390)
my
l —
IV. NONDECOMPOSIBLE REPRESENTATIONS OF (L1 = v(0,0,— 11
LOWEST DIMENSION
) eV([—-1,—-1,—-1]) 4.7)
_ It was alreadg_ shown that the induced s1(1,3) modules d rth | . ¢
V([0,my3,m33]1), V([mys,1,m33]), and V([m3,m,,2]) are an E_'f orthogonal complemen
reducible, but not completely reducible. Here we consider w((1,1,1]) =V({1,1,1]) & ¥([1,0,0]); (4.8)
the lowest dimensional cases. There are three such modules, dim 7([1,1,1]) = dim W([1,1,1]) = 4. (4.9)

each one of dimension 8.
(1) The space

¥([0,0,01) = #([0,0,0]) ®7([0,0,0]), (4.1)
with a maximal invariant subspace
I([000D) = V([ —1,—1,-2])
@ V([0,—1,—1])
eV([—2,-2,-2]) (4.2)
and an orthogonal complement to 1([0,0,01)
w([0,0,0]) = ¥([0,0,0]). (4.3)
In this case
dim7([0,0,0]) =7, dim #([0,00])=1.  (44)

Therefore, in a proper homogeneous basis the elements of
sl1(1,3), written as matrices, will have the form

a;,, O 0

si(1,3) = 2 2 s (4.5)
dg1  ds2 Qgg,

(2) The space

V([1,1,1]) = W([1,1,1]) e I([1,1,1]), (4.6)

with a maximal invariant subspace

286 J. Math. Phys., Vol. 28, No. 2, February 1987

In this representation the elements of s1(1,3), written as ma-
trices, will have the form

ay, Q4 0 0
si(1,3) = 0 0 (4.10)
as, asq4 Qs asg
31 g4 Qgs dgs
(3) The space
V([2,22]) = W(12,2,2]) @ I([2,2,2]), (4.11)
with a maximal invariant subspace
1([2,2,2]) = ¥([0,0,01) (4.12)
and an orthogonal complement
w([2,2,2]) = V([2,1,1])
@ V([1,1,0]) @ ¥([2,2,2]); (4.13)
dim7([2,2,2]) =1, dim W([2,22])=7. (4.14)
In a matrix form this representation reads
ap, a, O
sl(1,3) = . E : (4.15)
7 a; O
81 dg7 Qgg
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V. A MAPPING OF THE YOUNG SUPERTABLEAU BASIS
(WEYL BASIS) ON THE GEL’FAND-ZETLIN BASIS

In Refs. 4 and 5 it has been shown that the Young tab-
leau technique can be generalized also in the case of LS’s.
This approach has been developed in more detail for the LS
sl(m,n) (Ref. 6) and along this line several important prop-
erties of the finite-dimensional representations of sl(m,n)
have been derived.” In this section we translate our results
in the Young supertableau language.® In a manner similar to
that of Ref. 10 we construct a mapping of the Young super-
tableau basis on the GZ basis.

To begin with we recall that a given irreducible s1(1,3)
module W([m],) is characterized in our notation by the
coordinate m3,m,;,m;s;  of its highest weight A:
m; = A(E,;), which are the eigenvalues of the Cartan gen-
erators (2.1) on the highest weight vector x,, i.e.,

i=123. (5.1)

In the notation of Kac? the same module is represented by a
Kac-Dynkin diagram

E;x\, =myx,,

ag (!1 0.2

(3.2)
*—O0—0

where (aqa,,a,) are the coordinates of A in the dual to
ho=E,, h =E, —Ey, h,=E;,—E; basis, ie,
a,=A(h,), A=0,1,2, and, therefore, (see 1.4.23)

Qo =My, @) =M — My, a=My— My (5.3)

The defining ( = the fundamental) representation of
sl(1,3), given with the matrices (2.1) and (2.2) is realized in
the space

w(LLiy = 1 0 0

————0——0 - (54)

In the Bars—Balantekin notation W([1,1,1]) is denoted &
and its elements are called covariant tensors of first rank.
The conjugate to W([1,1,1]) module W([0,0, — 1]) is de-
noted [7] and its elements are the contravariant tensors of first
rank. Thus, we have

J
Notation of
Present Kac Balantekin
paper Bars
Fundamental . o o
s1(1,3) module: w(i,1,1]) = e——o——0 =@ (covariant tensors),
Conjugate to the (5.5)
. _ 0 1 )
fundamental: w([0,0,—-1}) = o-—-g——o ={A (contravariant tensors).
|
The above relations indicate that the covariant and the  between the basis e, and the GZ basis in [:
contravariant tensors are transformed according to nontypi-
cal representations of s1(1,3). These representations [con- LL1 10,0
trary to the case of the LA sl(n)] are inequivalent. Both 4 e=|1.1), =10},
and (& spaces are four dimensional. One can introduce a 1 0
grading in them in two ways. Choose a basis e, in 2 (resp. g 1.0.0 1.0.0 (5.10)
in @), 4 = 0,1,2,3 in such a way that the B th coordinate of o ’
e is6.- ie e;=110), es=1]00
€4 4B> 1€ 0 0
(e4)s =08,p [resp. (g")%=68"]. (5.6) Similarly,
C—e __ ( — 1) +BUO } 11
The representation of s1(1,3) in & (resp. in []) is said to be . €15 8 ( ) 6“.C g (5.11)
class I, if the degree (4) of e, (resp. of g*) is which together with (3.47)-(3.60) yields
(A) =0 for A=0 and (4) =1 for 4 =1,2,3. (5.7) -1, -1, —1
If = -1, -1 ,
(4) =1 for A=0 and (4) =0 for =123, (5.8) -1
0, 0, —1
the representation is said to be of class II. The class I and the g=3| 0 —1 ),
class II representations in [1 (resp. in ) are equivalent. _1
Therefore, without loss of generality we consider only class I (5.12)
representations. 0, 0, —1
The s1(1,3) generators transform the basis in & as fol- &= - \/3 0, -1 s
lows (we write e;; instead of E;;, i, j = 1,2,3): 0
esec =Bzces, AB,C=0,123 5.9 0 0 -1
AB~C — YBC%A4» L i R L I (’) gj=\/§ 0,0
From (5.9) and (3.63)-(3.75) one obtains the relation 0
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A. Covariant representations

The s1(1,3) modules corresponding to these representa-
tions are tensor products of covariant rank-1 tensors. The
pth tensor power of [, namely

Wop)=Qelds -2 4 (5.13)

is a carrier space of the covariant tensors of rank p with a
homogeneous basis

(p times) ,

€1, 804,88y, Aydy..d,=0123  (514)
In general this space is reducible. The key point for decom-
posing it into a direct sum of irreducible modules comes
from the observation*” that the LS commutes with the group
§p of graded permutations, where 3’,, gives a faithful repre-
sentation of the permutation group S, in W(0,p). The opera-
tor 7 (i,i + 1)€S,, corresponding to the neighbor transposi-
tion (i,i + 1)€S,, acts as

”(l;i'l' 1)[“.®e"i®e‘.‘+l ®"']
= _(_])(Ai)(Ai+l)[...®eAi+l@eAiQ...]. (5‘15)

To determine the action of any other permutation it suffices
to represent it as a product of such neighbor transpositions,
which is always possible. Thus, #(0,p) is turned into an S,
module. Decompose it into a direct sum of irreducible S,
modules W(0,[4 ],),

W(0p) = ; e W(p;[1],). (5.16)

(71

Then each term W(0;[4 ],) turns to be an irreducible mod-
ule over the LS (which is sl(1,3) in our case) and it can be
represented as

W(0;[41,) = Y(0;[11,) W(0p), (5.17)

where the Young symmetrizer Y(0;[4 ],) is a projection
operator, corresponding to the Young tableau [ ],, which,
following Ref. 5, will be called a supertableau. The decompo-
sition (5.16) is rather standard. The sum is over all legal
Young supertableaux. A given supertableau [4 ],

C{ « e e Cm

44 v,
g, =142 Zi] .

Y ’

] by

(5.18)

contains p covariant boxes, where
b; counts the boxes of the row i,
¢; counts the boxes of the column j,
and
b,>b,> - >b,, >0,
120> 2, >0.
For s1(1,3) the supertableau [4 ], is legal if’
b, <3801 (5.20)

The boxes are enumerated with the numbers from 1 to p
(1,2,...,p) lexically: the numbers in each row increase as read
from left to right and in column as read from top to bottom.

Turn now to the basis labeling problem in #(0;[4 1,).

(5.19)
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The action of the symmetrizer Y(0;[A4 ],) is defined in a
similar way as for the LA’s (see, for instance, Ref. 10), how-
ever, because of the sign factor in (5.15) the odd indices
appearing in one and the same row (resp. column) are anti-
symmetrized (resp. symmetrized). Therefore, the basis in
W(0;[4 1,) is in one-to-one correspondence with the stan-
dard Weyl patterns (1), containing p boxes. For sl(1,3) a
Weyl pattern (4), is a Young supertableau [A ], in which
the boxes have been “filled in” with integers selected from
1,2,3, and 0. It is convenient to assume that

1«<2<3<0. (5.21)

In this ordering the Weyl pattern (1), is standard if the
sequence of integers 1,2,3 appearing in each row of [4 ], is
strictly increasing as read from left to right followed by any
admissible (from the shape of the diagram ) number of zeros
and the sequence of integers 1,2,3 appearing in each column
is nondecreasing as read from top to bottom, followed by no
more than one 0. For instance, if p = 15, then the table

1{2]3/0/0]}
1213
o, = [1]2]3) (5.22)
1[2]0
O-.

is an example of a Weyl pattern, i.e., a Weyl basis vector in
W(0;[4] 15)-

We are now ready to define a mapping F of the Weyl
basis of a given irreducible s1(1,3) module onto the GZ basis.
The idea is the same as developed in Ref. 10 for the LA
gl(n). The mapping F may be defined by three projection
operators F,, F,, and F;. To determine them take any weight
vector xe W(0;[1 1,,).

(1) Consider all nonzero projections of x on the gi(3)
irreducible submodules from W(0;[4 ],). Then Fyx is the
projection of x on those gl(3) submodule ¥{([m],), which
has the biggest gl(3)-highest weight.

(2) Similarly, F,F;x is the projection of F,x on that
gl(2) submodule V([m],) C¥([m];) which has the big-
gest highest weight among all those s1(2) submodules in
V([m];) on which F;x has nonzero projections.

(3) F\F,Fyx is the projection of F,F;x on that gi(1)
submodule V(m,,) C ¥V([m],) which has the biggest high-
est weight among all those gl (1) submodules from V({m],)
on which F,F,x has nonzero projections.

Then Fx is the normed to unity vector F,F,Fyx, i.e., [see
2.6)]

[m];
[m],).
my,

Fx = (5.23)

The operator F defines one to one mapping of the Weyl pat-
tern basis onto the GZ basis. To write down the action of F
explicitly one has to take into account the following.

(a) Each index k = 1,...,n appearing in the k£ th column
of the Weyl pattern (1), can be transferred into k by a prop-
er action of the gl(n) generators, n = 1,2,3.

(b) The basis vectors in [ are weight vectors. The corre-
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spondence with their weight is

eee>(1,1,1), e,<(1,0,0),
e,>(0,1,0), e;<>(0,0,1). (5.24)
As a result one has
ms, My, Msy
FQi), = my, my, , (5.25)
my,

where m;; is equal to the number of the 1’s, 2’s,..., j’s, which
appear in the ith column of (1), plus the number of all zeros
in (1),.

From (5.25) one derives that the set of all Young super-
tableaux with two covariant columns corresponds to the
class m,; = 2 nontypical modules. More precisely,

= W( [m13,m23,2] )- (5.26)

+
I m,; — 1 boxes in the second column

m,; — 1 boxes in the first column

B. Contravariant tensor representations

The representation space W(q;0) of the contravariant
tensors of rank ¢q is

W(gq,0) = oA18...0 (g times), (5.27)

and it decomposes into a direct sum of irreducible sl(1,3)
modules W([4 ],;0)

Wg0) =Y e W([1],0)
A1,

(5.28)
The sum is over all contravariant legal Young supertableaux
(A 1,- The supertableau [A 1, contains g boxes (@l ordered as

cm,..., ‘1
b [

=[11, (5.29)

bn
and it is legal if the inequalities (5.19) and (5.20) hold for 3,,
¢;,i=1,.,nandj=1,..., m. All boxes of (A 1, are enumer-
ated lexically with 1, 2,..., ¢ from right to left and from top to
bottom. The definition of the Weyl pattern (1 ), correspond-
ingto [4 1, is as in the case of the covariant boxes The only
difference is that one “fills in” 1, 2, 3, 0 from right to left. All
A ), corresponding to ¥ ], constitute a basis, the Weyl
basns, in W([1 1,;0). The dlagrarn

jolofofolo

Ofw|w
{w]ef]e
1O [ {w N [

(5.30)

is an example of a Weyl basis vector in W([4 ],0;0).
The mapping F of the Weyl patterns basis (1) o onto the
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GZ basis is easily derived if one takes into account that the
correspondence between the basis vectors g# in # and their
weight is

go(")(_lv_]-’—l)’ 819(—1,0,0),

5.31
829(0,—1,0), 839(090,_1)- ( )
Then
_ My, My3, May
F(l)q = mlz, m22 ’ (5-32)

my,

where ( — m;;) is equal to the number of the 1’s, 2’8,..., 'S,
which appears in the (j — i + 1) + th column of (/1) plus
all zeros in (/1) For instance,

2 -1, —4 -7

3
F {3]2]| T -2, -4

9 -3

EW( [0’ - 49 - 6] )~

(5.33)

The correspondence in this case is also one to one. The set of

all Young supertableaux with two contravariant columns
gives the class m,; = 0 nontypical modules:

)t = W([0,my;,m3;]).

(5.34)
L'lﬂ

+
I|m33| boxes in the first column

|m,;| boxes in the second column

C. Mixed covariant-contravariant tensor
representations

The representation space of the tensors with ¢ contra-
variant and p covariant indices is

Wgp)= A®---8[7 e\m ®--- ® ZJ,

— ~
q times p times

(5.35)

It res_olves into a direct sum of sl(1,3) invariant subspaces
W([A1,:0)e W(0;[A1,):

Wigp)= 3
(A (41,

The sum is over all legal Young supertableaux [1 ], and
[4 1,. Each mixed tensor

teW([21,;0) 8 W(G[41,), pg#O0, (5.37)
can be uniquely decomposed in terms of the tensor basis:

e W([11,;,00e W(0;[41,). (5.36)

"®gA"®eBI ® "®ey.

(5.38)
Let
W(21,;(41,) CW(A11,:00e W(O0;[1],) (539)

be the subspace of all tensors such that the supertrace with
respect to any two pairs of covariant and contravariant in-
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dices vanishes, i.e.,

R T

3

crdy_ 1, CoA e
2 (_1)(C)t.B ICB+| =0’
C=0

(5.40)

Then W([A 1,:[4 1,) is either an irreducible or nondecom-
posible sl(1,3) module.”® The Young supertableau corre-
sponding to it is

Vr=1,.,¢s=1,.p.

Eﬁ‘,-.a, El,cl,..., Cm

by

/] b

b

1
(5.41)

A v :
a4 s
Such a supertableau is legal if ®

b, + 5,<3,

and its contravariant and covariant boxes are enumerated
with the numbers 1, 2,..., ¢ and 1,..., p as this was already

or b,+ b,<3

described for the pure contravariant and pure covariant ten-
sors. The mixed tensors with one covariant and one contra-
variant rows describe all nontypical representations from
the class m,; = 1. The correspondence is

= W([m5,1,ms]). (5.42)

f
m,; covariant boxes

1 — mj, contravariant boxes

In this case one cannot define a Weyl pattern in the way
this was done for the purely covariant or purely contravar-
iant tensors. One possible generalization of this concept is
the following. Consider for simplicity only Young supertab-
leaux of the shape (5.42). The tensor product of the Weyl
patterns,

il 3

contravariant boxes — 8|__| «covariant boxes,

Jp_ (5.43)

constitute a basis in W([1 ] 20 W(0;[1],). Weset

; (=1)

The patterns (5.44) cozrespond to traceless tensors and con-
stitute a basis in W([4 ],;[1],). We call them Weyl pat-
terns. Then the one-to-one mapping of the Weyl pattern ba-
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sis onto the GZ basis is defined as

i {3y i
i |3, i,
Pl =F[ | + (5.45)
ip :
i i
i
For instance,
2 | 2 2 2
rlo]2]|a rlols+rl2
3 3
T S
covariant boxes
contravariant boxes
-1, -1, -1 3, 0 O
= -1, =2 +1 2, 0
—1 0
2, —1, =2
= -1 =2 (5.46)
—1

We conclude that the Young supertableaux describe all
nontypical representations of the Lie superalgebra sl(1,3).
With this technique one can construct several other repre-
sentations, irreducible or nondecomposible, all of them cor-
responding to integer coordinates [m,5,m,3,m;;] of the
highest weight.

VI. CONCLUDING REMARKS

In Ref. 1 and in the present paper we have constructed
all finite-dimensional irreducible representations of the Lie
superalgebra sl(1,3). More precisely, we wrote down explic-
it expressions for the transformation of the basis within ev-
ery finite-dimensional irreducible s1(1,3) module under the
action of the generators. In solving the problem we have
essentially used the results of Kac? on the induced represen-
tations of the basic Lie superalgebras. The main difficulty we
had to overcome was to introduce a basis in such a way that
every basis vector has a nonzero projection only on one irre-
ducible gl(3) submodule. To this end, we have essentially
used the tensor properties of the odd generators under the
adjoint representation of the even subalgebra gl(3). This al-
lowed us to establish that every induced sl(1,3) module
V([ m,3,m,3,ms;]) can be considered as a direct sum of four
gl(1,3)-invariant subspaces, each such subspace being a ten-
sor product of two irreducible gl(3) modules. Therefore, the
coefficients, connecting the tensor-product basis (the in-
duced basis) with the basis we were looking for (the GZ
basis), can be chosen to be Clebsch—Gordan coefficients of
gl(3). Since we knew the action of the generators on the
induced basis, the problem to express the transformation of
the GZ basis was reduced to a rather standard transforma-
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tion from one basis (the induced one) to another basis (the
GZ one). The main difficulty along this way was of a techni-
cal nature—one had to sum several terms (the coefficients in

front of the basis vectors) and it was not clear from some
general considerations that the summation can be carried
out. Luckily, because of several, presumably not accidental
cancellations, we succeeded in writing the final result in a
rather simple form. The similarity of the formulas (2.16)-
(2.35) suggests that it should be possible to go further and to
unify them (as in case of Lie algebras), expressing all of
them in terms of only two relations—one for the positive
root generators and one for the negative root generators. We
leave this task for the future.

The method that has been used here can be immediately
applied also to the Lie superalgebrasl(1,n), since in this case
the necessary for the computation Clebsch-Gordan coeffi-
cients are known. From a technical point of view the prob-
lem will be more difficult. We believe, however, that also in
this more general case it will be possible to carry out all
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summations and to write down the final results in a closed
form.
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Regular subalgebras of Lie superalgebras and extended Dynkin diagrams

Joris Van der Jeugt®

Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit Gent, Krijgslaan 281-59, B9000 Gent, Belgium
(Received 19 March 1986; accepted for publication 8 October 1986)

Using the method of extended Cartan matrices and extended Dynkin diagrams, a classification
of maximal regular semisimple subalgebras of the basic classical Lie superalgebras is obtained.
Especially in the case of exceptional Lie superalgebras, some curious inclusion relations are

discovered.

I. INTRODUCTION

Since the work of Corwin, Ne’eman, and Sternberg,' Lie
superalgebras have become increasingly important in theo-
retical physics.” Simple Lie superalgebras were classified
completely,>* and it was shown that basic classical Lie su-
peralgebras can be described by a Cartan matrix or, equiv-
alently, by a Kac-Dynkin diagram.

In this paper we make a first step in the classification of
subalgebras of basic classical Lie superalgebras. Besides hav-
ing a mathematical interest, the investigation of subalgebras
of Lie superalgebras is also important for physicists. Indeed,
in physical models where Lie algebras or Lie superalgebras
are used, one is very often concerned with a chain of subalge-
bras.

The first class of subalgebras to be considered are the so-
called regular subalgebras. These are generated by some root
vectors of the original Lie superalgebra L. The aim of this
paper is to obtain a classification of all maximal regular
semisimple subalgebras of basic classical Lie superalgebras.
The method we use is similar to the one introduced by Dyn-
kin® in his classification of regular subalgebras of simple Lie
algebras. The Lie superalgebras we investigate here are
A(m,n) (m#n), spl(mm), B(m,n), C(n), D(m,n),
D(2,1;a), G(3),and F(4), where we have used the notation
of Kac.? Note the difference in notation between a Lie alge-
bra and a Lie superalgebra: C(n) is the Lie superalgebra
osp(2,2n — 2), whereas C,, is the Lie algebrasp(2n). All Lie
algebras are denoted by means of an index.

In his classification, Dynkin used the method of ex-
tended simple root systems and extended Dynkin diagrams.
In Sec. II we show that a similar method can be used here.
There is, however, one main difference: for simple Lie alge-
bras, all simple root systems are W equivalent (W = Weyl
group). For Lie superalgebras this is not the case: in fact
there exists a so-called distinguished choice of the simple
root system such that only one simple root is odd.> Besides
the distinguished choice, there are other choices possible,
which give rise to a different Cartan matrix and Dynkin dia-
gram. In our analysis, all possible simple root systems have
tobe taken into account. But we shall give details only for the
distinguished choice, and simply state the results for all oth-
er choices.

In Secs. ITI-VIII we analyze systematically the semi-
simple regular subalgebras of the basic classical Lie superal-
gebras. The main results are summarized in Table I, and are

® Senior Research Assistant N.F.W.O. (Belgium).
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particularly remarkable in the case of inclusions among ex-
ceptional Lie superalgebras. The construction of the ex-
tended Cartan matrices and Dynkin diagrams for the basic
Lie superalgebras may also be important from another point
of view. Indeed, it is well known that the extended Dynkin
diagrams and the extended Cartan matrices of the simple Lie
algebras are precisely the Dynkin diagrams and Cartan ma-
trices of the so-called nontwisted affine Kac-Moody alge-
bras.” It seems natural to ask whether there correspond any
infinite-dimensional “affine” Lie superalgebras with the
Cartan matrices listed in this paper. This question, however,
falls beyond the scope of the present work.

Let us finally mention that the Lie superalgebra bracket
is always denoted by [x,y] throughout the paper. Whether
[x,y] must be interpreted as a commutator or as an anticom-
mutator depends on the degree of x and y, and is always clear
from the context.

ll. GENERAL METHOD TO CONSTRUCT REGULAR
SUBALGEBRAS

Throughout this paper, a simple Lie superalgebra L is
always a basic classical Lie superalgebra of type 4 (m,n)
(m#n), B(m,n), C(n), D(m,n), D(2,1;a), G(3), or F(4).
These Lie superalgebras and their properties have been de-
scribed by Kac.? We say that a Lie superalgebra is semisim-
ple if it is the direct sum of components which are either of
the previously mentioned simple type, or simple Lie alge-
bras, or else of type spl(n + 1,n + 1). Then the semisimple
Lie superalgebras coincide® with the finite-dimensional con-
tragredient Lie superalgebras G(A4,7), described by a Cartan
matrix 4 and a subset 7 of the index set I = {1,...,7} (for the
notation, see Ref. 3). The matrix A4 satisfies

a; = 0a; =0. (2.1)
Moreover, if

Vi, jel, there exists a sequence #,,...,i,l

for which q;, @, - +-a, ; #0, (2.2)

then the contragredient Lie superalgebra is either simple or
elseof typespl(n + 1,n + 1). If (2.2) is not satisfied, then 4
splits into the direct sum of matrices of type (2.2), and hence
G(A4,7) is semisimple (according to our definition of semis-
implicity).

Definition 1: A subalgebra L * of a simple Lie superalge-
bra L is regular if, for a proper choice of the Cartan subalge-
bra H of L, the relation
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(h + > ea) €el’, heH, e,elL?,
aeld
where A is the set of roots of L relative to H and L “is the root
space, implies that ‘
heL’' and e,el’.
An equivalent defintion is given by the following.
Definition 1': A subalgebra L' of L is regular if there
exists a basis of L' consisting of elements of some Cartan
subalgebra H of L, and of root vectors of L relative to H.
Let L be asimple Lie superalgebra and L * a regular sub-
algebra. Then L'’ can be written in the following form:
L'=H's Y L 2.3)
aed’
with H'CH,A'CA.Ifa,BeA’, and e,, ez are corresponding
root vectors, then [e,,e; ]eL’. Hence if @ + BeA, it also be-
longs to A'. If @ and — a belong to A’, thene  ,€L’, and

[ea’e—a] = (e,.e_g)h,. (2.4)

Herein, ( , ) is the unique (up to a constant factor) nonde-
generate invariant supersymmetric bilinear form (see Prop-
osition 2.5.5 of Kac?), and 4, is defined by

(hgsh) =a(h), VheH. (2.5)

In (2.4),h,eL’'NH, hence h,€H'. Therefore,if L 'isaregu-
lar subalgebra written in the form (2.3), then the following
conditions are valid:

(a) a,feA’ and a4 PeA=>a + PeA’;
(b) @, —aeA'=h, eH’.

Conversely, suppose that L’ is a subspace of L of the form
(2.3) suchthat (2.6) aresatisfied. Then [A ',A "] = 0eL’, for
all h',h"eH’. Further, [he,] =a(h)e,el’ for heH’,
ael’. Finally, for a,fed’, [e,,e5] = 0ifa + BeA, [e,.e5]
=e, , g if a + BeA, but then also a + BeA’, and [e,,ez]
~h, iff = — a.Hence L' is a subalgebra, and obviously it
is regular.

A Cartan subalgebra of L is a Cartan subalgebra of its
even part, the Lie algebra L. All Cartan subalgebras of Lg
are conjugate under inner automorphisms of Ls. Hence, in
order to find all regular subalgebras (up to conjugacy) of L,
we can use the following procedure: (1) consider a particu-
lar Cartan subalgebra H of L and the corresponding root
system A; (2) consider all possible subspaces of the form
(2.3);and (3) determine which subspaces also satisfy (2.6).
From now on, we may suppose that H (and consequently
also A) is fixed.

Definition 2: Let A be the root system of L. A subset I' of
A is called a regular subsystem if

(a) a,pel = a — PeA;
(b) T is linearly independent.

Proposition: Let H be the Cartan subalgebra and A the
rootsystem of L. Let ' = {a,,...,a,, } be aregular subsystem
of A, and let L'’ be the subalgebra of L generated by the root
VECtOTS €, ,..s€, +€ _ o, 3-s€ _ o - Then L' is a regular semi-
simple subalgebra of L and T" is a system of simple roots for
L’. Conversely, every regular semisimple subalgebra L ' of L
(up to conjugacy) can be obtained by such a construction.

(2.6)

2.7
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Proof: The subalgebra L' is regular since (2.6) is ful-
filled. Put

ei =ea,-’ f: =e—a,!

h; = (€48 0 P, (2.8)

The elements 4, are linearly independent, since I is a regular
subsystem. Then L' is the contragredient Lie superalgebra
G(A,r) with 4 determined by

[hise;] = aye, (2.9)
and 7 consisting of those i for which «; is an odd root. From
(2.8) it follows that A4 satisfies (2.1). Hence, L ' is semisim-
ple, and obviously I' is a set of simple roots of L '. Conversely,
let L ' be a semisimple regular subalgebra of L. We may sup-
pose that the Cartan subalgebra of L’ is contained in H:
L' =H'+ z Le,

ach

(2.10)

and (2.6) is satisfied. Since L' is semisimple, we have
(2.11)

Let T be a set of simple roots for L’. Then T is linearly
independent and a,Bel’ implies o — B¢A’. But if a,Bel,
then (2.11) gives a, — BeA’. Now (2.6a) implies

a,—Bed’, a+ (—pB)¢d=a+ (—B)eA. (2.12)

Hence (2.7a) is valid and I is a regular subsystem. Obvious-
ly, L' is generated by the root vectors of the simple roots and
their negatives.

The problem of finding semisimple regular subalgebras
of L is now reduced to the following: determine all the regu-
lar subsystems " of the root system A of L. When L is a Lie
superalgebra of rank n, every regular subsystem will always
be contained in a regular subsystem of order n. Hence, we
only have to classify the “maximal” regular subsystems.

Definition 3: A regular semisimple subalgebra L ' (#L)
of L is called maximal if there does not exist any other regu-
lar semisimple algebra L " such that L 'C L " CL (all inclu-
sions are strict).

Let I be a simple root system of L: obviously, Il is a
regular subsystem. Extend IT by a root ¥ of A to II°

= ITU{y} such that (2.7a) is still satisfied. We call I1¢ the
extended simple root system. It follows from the following
sections that there is in general only one way to extend II
(only in some situations I can be extended by either y or else
by 27, if both ¥ and 2y belong to A). Then, one obtains a
maximal regular subsystem I'? by deleting one root from
IT°. Now, I'"" can be extended by a root ¢, and again deleting
a root gives another regular maximal subsystem ", and so
on. All possible maximal regular subsystems are obtained in
this way. However, the regular subalgebra determined by
I'? is contained in the one determined by I'". Hence, in
order to find the maximal semisimple regular subalgebras,
only the first extension has to be considered, unless I'"" gives
rise to a subalgebra isomorphic to L.

The method to find all maximal semisimple regular su-
balgebras of L is now clear. The only difference with Lie
algebras is the following: for Lie algebras all simple root
systems are W equivalent (W = Weyl group), whereas for
Lie superalgebras there are in general several nonequivalent

acA's — ael'.
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simple root systems. In Secs. IIT-VIII we shall construct the
extended simple root systems, the corresponding extended
Cartan matrices, and the extended Dynkin diagrams for the
distinguished choice* of I1 for all basic classical Lie superal-
gebras L. Moreover, we shall state the results for all other
simple root systems, and hence obtain all maximal semisim-
ple regular subalgebras of L.

Ill. THE LIE SUPERALGEBRAS A(m,n) (m#n) OR
spl(n+1,n41)
The special linear Lie superalgebras are defined by

splim+ 1,n+ 1)

=[]

str(x) =tr(a) —tr(d) = 0], (3.1)

where a, b, ¢, and d are (m+1)X(m+1), (m+1)
Xn+1),(n+1)X(m+1),and (n + 1) X (n + 1) ma-
trices, respectively. The even elements are of the form [§3] ,
and the odd elements of the form [ %5 ] - The Cartan subalge-
bra H is a subspace of diagonal matrices of (3.1). For a
diagonal matrix D = diag(d,,dys,..s@p 4 p 4t 2m 4 n42)s WE
define

61’ (D) =di' (i= 19--"m + 1),
) (3.2)
6,(D)=d, it1miiz1 (=l.,n+1).
Then the even roots of spl(m + 1,n + 1) are
Ay=A{e —¢ (ij=1,..m+1); 5 -6,
° A g (3.3)
(hj=1l,...n+ 1)},
and the odd roots are given by
A={+(e—8)i=1..m+1, j=1.,n+1}
(3.4)

The distinguished positive simple root system II is deter-
mined by?

|
0 1 2 m+1
01" 1 0 [ 1
-1 ' 2 -1 ' '
' 1 1 !
0 .—1 2 - . '
] -, 1 ]
! —1 '
! —1 2 '—1 _:
B i T T T N - -
T :I..J_O..J..l.
) (=1 0 2
' ' 1—1
! ' !
' [ !
0 . . .
_—-1 ] ] ]
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II={e, — €26 — €306 — €y 11€Em 41

—~ 61,6, — 8308y — 8,1 1 (3.5)
The corresponding root vectors are
e,=E;, \, f=E_,,, (=l.m+n+1). (3.6)

Then, one can check that [e;, f;] = §;h,, with

h, =E, —E,

i+ 1,i+1

(i=1,.mm+2,..m+n+1),
(3.7)

hm+l =Em+ 1,m+1 +Em+2,m+2‘
In (3.6) and (3.7), E; stands for the matrix of
spl(m + 1,n + 1) with zeros everywhere, except a 1 in the
entry (ij). From (3.6) and (3.7) the Cartan matrix and
Dynkin diagram of spl(m + 1,n + 1) can be determined.
Now, we shall extend I1. It is easy to see from (3.3)-
(3.5) that the only root ¥ by which IT is extended such that
(2.7a) is still satisfied, is
7/::5"_’_! —61. (3'8)
We call ¥ the zero root of I1°. In order to find the extended
Cartan matrix, we have to construct the root vectors corre-
sponding to ¥ and — ¥, and their (anti-) commutation rela-
tions with the spl(m + 1,n + 1) generators. One finds

eO=Em+n+2,1! ft.')zEl,m—d—n-*—Z’

leafol =ho=hi+hy+ - +h, (3.9)
_hm+2 e —hm+n+l’
and
[hoeo] =0,
[hiseo] = — 6,10 —8im s nt1€0 (3.10)

[hoaei] =4,,¢e —6i,m+n+1em+n+l

(i=1.m+4+n+1).

In fact, (3.10) determines the “zero row and column” of the
extended Cartan matrix 4. We obtain

m+n+1
o -1 ]
_ _ | r={0,m + 1}. (3.11)
-mm - - - - -
2
-1
-1 2 _
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Hence, the extended Dynkin diagram is

1 2 m m+1 m+2 ... m+n+1

(3.12)

When a single node is deleted from (3.12) (which corre-
sponds to deleting a root from II¢), the corresponding dia-
gram is again a Dynkin diagram for spl(m + 1,n + 1).
When two adjacent nodes are deleted, the remaining Dynkin
diagram is that for spl(m,n + 1) or spl(m + 1,n). When
two nonadjacent nodes are deleted, there remains the Dyn-
kin diagram of spl(k,/) @ spl(i,j) withk+i=m + 1 and
I+j=n+1. Note that i/ or j can be zero:
spl(#,0) =spl(O,r) =sl(r) =4, _,.

The most general system of simple roots of
spl(m + 1,n + 1) is determined® by two increasing se-
quences S={1<s,<s, <} and T={I<t,<t, < -}
and a sign,

Osr= % {e, — 6,6, — €35..0€;, — 01,0,
(3.13)

Let + (5, — 7;) be the last element of I15 - (77 and %’ can be
eord). Then y = + (7] — €,), and it is again uniquely de-
termined. Deleting one node from I1% ;- gives rise to a Dyn-
kin diagram for spl{m + 1,n + 1), and we find similar re-
sults as for the distinguished choice of II.

The  conclusion is the following: for
L = spl(m + 1,n + 1), the only semisimple regular subalge-
bra of rank m + n + 1 is the algebra L itself. Hence, the
maximal regular semisimple subalgebras are of rank m + n
and are of the form spl(k,/) @ spl(i,j) withk +i=m + 1
and/+j=n+1.

— 8y — €, L1y}

IV.THE ORTHOSYMPLECTIC SUPERALGEBRAS 8(m,n)

B(m,n) =osp(2Zm + 1,2n) is the subalgebra of
spl(2m + 1,2n) consisting of those x = [25] for which the
even and odd components x, (£ =0, 1) satisfy

x§B+ (—1)*Bx; =0, (4.1)
where x7 = Z',; "] is the supertranspose of x, and
o 1, o i
i, 0 0
B=|0_ _0_ 1 _ __ (4.2)
' o0 1,
=1, 0]

Consider first the situation with m > 0. The Cartan subalge-
bra is spanned by diagonal matrices D, and we put

€(D)=d;

61'(D) =d2m+i+1,2m+i+1

(i=1,..m),
(i =1,...m). (43)
One can check that the even roots are given by

Ao={+(g—€)+ (g +e€) +e (1<j<k<m);
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+ (8, —8,), + (8, + 8,), £ 28, (1<j<k<m)},

44)
and the odd roots by
Ar={1+(-6),%(g+68) 15,
(1< j<m, 1<k<n)}. (4.5)
The distinguished set of simple roots is equal to®
O =1{6, — 6,6, — 83,..0, — €1,€1 — €yererm _ 1
— €psEm ) (4.6)

The corresponding root vectors, in the same notation as in
Sec. I11, are

& =Ey viviomeiv2 —Bomintyiv2zmanyists
fi =E2m+i+2.2m+l‘+1 _E2m+n+i+1,2m+n+i+2

(i=1,.,n—1);

=K, tomsmi1 +Erminys

f;; =El,2m+n+l
e =E,

n4i hi+ 1 —Em+i+],m+i’

4.7)

—E2m+2n+1,m+19

f;|+i =Ei+l,i _Em+i,m+i+l (i=1.,m— 1);

Chim = \/i(Em,Zm +1 E2m +1,2m )s
f;.+m = \/—2_(E2m+ Lm — S2m2am 41 ).
Then, with [e;.f;] = 8;4;, one obtains

gy

hl =E2m+i+l.2m+i+l —E2m+i+2,2m+i+2

_E2m+n+i+1,2m+n+i+1

(i=1,.,n—1),

+E2m+n+i+2,2m+n+i+2
hn =E, _‘Em+1,m+1 +E2m+n+l,2m+n+l

—E

2m+2n+ 12m+2n+ 12

hn+i =E; —E,

P+ L,i41 _'Em+i,m+|‘

(4.8)

+E, ivimeivr (i=1l..,m—1),

hn+ m = 2(Em,m - EZm,2m )

These elements determine the Cartan matrix and hence also
the Dynkin diagram of B(m,n) completely.

Let us now try to extend Il by a root ¢ such that (2.7a) is
still valid. It turns out that there are two solutions: either
y= —2b,, or else y = — §,. Consider first the situation
with y = — 28,. Then

e=Erinizomizs Jo=Eami2amintas (4.9)
and

h0=E2m+n+2,2m+n+2 "Ezm+2,zm+2

= —h—hy— - —h, +h, b,
+'”+hn—+—m—l +5hn+m- (410)

Here, one finds

[ho,eO] = 280,

[Ane:] = — 6,16 (4.11)

[hiseo] = — 26,160 (i=1,.,n+m).

Therefore, the extended Cartan matrix is
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0 1 n n+m
S Y T DR 0
-2 ' 2 -1 J !
0o'l-1 2 : :
' 1 '
] 1 1
' 2 —1 1
.= -1 20 -1 , 7=1{n}. (4.12)
1 21V 0 b
- - - e e e = - = - = - o = mle = - - - m-em- e - -
. , -1, 2 -1
1 ' ) —1 2
! 1 I
: ' ' 2 -1
] 1 1
- 0, ( ' -2 1
This corresponds to the following Dynkin diagram:
O==0—O0— = —O——@——0— = —O=0 (4.13)
0 1 2 n ... n+m

The subalgebras obtained by deleting the Oth, 1st, 2nd,...,
(n+m)th node are B(m,n), A,6B(mn—1), C,
eB(mmn-—2),., C,_,eB(ml), C,®B,, C(n+1)
®B,_,, D2n)eB,_,,...Dim—1n)ed, D(mmn).
Note that these subalgebras are all of the form osp(0,2k)
@osp(2m + 1,2n —2k) or osp(2j,2n) @ osp(2m + 1

—2j,0), where osp(2r+ 1,0) =so(2r+ 1) =B, and
osp(0,2r) =sp(2r) =C,.
Next, consider the situation where y = — §,. Then
e0=\/§(E2m+l,2m+2 — By ini22mt1)s
fo= —\/E(E2m+2,2m+l+E2m+l,2m+n+2)’ (4.14)
h0= _2(h1+h2+.“+hn—hn+l—"“ )
. —hn+m-—l_£hn+m)’
and the relations (4.11) become
[ho,eo] = 260,
[Aoe:] = —25;,€;, (4.15)
[hiseo] = — b6, (i=1,...m+n).

The new extended Cartan matrix has obviously the same
(n + m) X (n + m) part as in (4.12), and hence it is deter-
mined by

0 1 n+m

—
2 :—2 0 0 T

e . rmom
0 E same as (4.16)
2! (4.12)

L0 | —

The corresponding Dynkin diagram is

0&—==0——0— —O0——@—O0— —O0=0"
0 1 2 n n+m

(4.17)
Now, the subalgebras obtained by deleting the Oth, Ist,
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2nd,...,(n + m)th node are B(m,n), B(0,1) ® B(m,n — 1),
B(0,2) ® B(m,n —2),....B(O,n)®B,, B(ln)eB, ...,
B(m — 1,n) @ A, B(m,n). Note that every subalgebra from

the previous series with ¥y = — 28, is contained in one of the
algebras of the series with ¥ = — §,. This is not remarkable,
since [e_;.,e_5]= —4e_s -

Another system of simple roots is of the form I15 - (see
Kac?), and detailed investigations show that the most gen-
eral maximal semisimple regular subalgebras of B(m,n) are
B(k,]) ® B(i,j), withk +i=m, | 4+ j=n, and D(m,n).

The Lie superalgebras B(0,n) = osp(1,2n) form a spe-
cial case of the algebras B(m,n). We treat them separately
because the distinguished choice of the simple roots for
B(0,n) is different than the analog of (4.6). The roots of
B(0,n) are, in the same notation as in (4.4),

Ag={+ (-8, % (6 +8:),+25 (I<j<k<n)},
(4.18)
A ={168 <j<m} (4.19)
The distinguished set of simple roots is given by
=18, — 6,0, — 83000 _1 — 8,6, }. (4.20)
The B(0,n) generators are
e,=E, ;2 _En+i+2,n+i+1,
fi =E 2is1—E, iy privz (= L..,n—1),
€, =‘[2-(El,2n+l +E, 1.1 (4.21)
Ja =\/§(El,n+  — By 1,1 )s
and
h; =F i1 —Eiinii2 _En+i+l,n+i+l
+E, ivanaiv2 (i=l.,n—1), (4.22)

hn = 2(En+ Ln+1

From (4.21) and (4.22), the usual Cartan matrix and Dyn-
kin diagram of B(0,n) are obtained.
Justasin (4.9) and (4.14), I can be extended in exactly

_E2n+l,2n+l)'
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two different ways, eitherbyy = — 25, orelsebyy = — 4.
Because the extension with — 28, gives rise to a series of
subalgebras which are all contained in subalgebras of the
series with — §,, we consider only the second extension.
Hence, y = — §,, and

€o = \/i(ElJ —E, >1)

f6= _\/i(El,n+2 +E2,1)’ (4.23)
|
0 1 n
- ] -
21-2 0 o
-1, 2 -1 STt Ty ° "

1—1 2 -1 '

' . '

1 1!

] ]
' -1 2 ,—1
S Rt =y

and the corresponding Dynkin diagram is given by

*oE=——=0——-=O0— —O0——0—=20 (4.26)

0 1 n

Hence, the regular subalgebras obtained from (4.26) by de-
leting one node are of the form B(0,k) @ B(0,n — k). The
regular subalgebras derived from ITU{ — 26,} are of the
form C, @ B(0,n — k), and are all contained in the former
series. However, for k=n we find the inclusion C,
CB(0,n), and this is also maximal since the series with
y = — &8, only gives the algebra B(0,n) itself as ‘““greater
than” C,. Here, any other choice of simple roots for B(0,n)
is W equivalent? to I1, and consequently the list of maximal
regular subalgebras is exhausted.

V. THE ORTHOSYMPLECTIC SUPERALGEBRAS D(m,n)
(m31) AND C(n)

The Lie superalgebra D(m,n) = osp(2m,2n) is the sub-
algebra of spl(2m,2n) consisting of those x for which

xIB+ (— 1)Bx, =0, (5.1)
with
o 1, :
B (52)
P 0 1,
'“1,, ©
As usual, we define the forms ¢; and §; by
€(D)=d; (i=1l,..m),
6,(D)=dy iom+: = 1..,n). (5:3)

The roots of D(m,n) are given by
Bo={%(g—€) + (6 +€) (I<j<k<m);

+ (8, —8,), £ (8, +8), £28; (1<j<k<m)},
(5.4)

A ={+ (5 —€) £ (5 +€), (1<j<n, 1<k<m)}.
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h°= ‘—2(h1+h2+ e +hn—1 +£hn).
The relevant (anti-) commutation relations are
[haeo] = 2e,,

[ho,ei] - - 26,-,] e,, (4.24)
[hi,e(,] = - 5“ eo (i = 1,...,").
Hence, the extended Cartan matrix is
(4.25)

» 7 ={0,n},

r
The distinguished choice for the simple root system II is
given by>*

H = {61 - 62,52 - 63,.-.,6,' - 61,61 -_ 62,...,6’"_2

— €m—1€m—1 — €ms€m_1 +En}. (5.5)
The corresponding root vectors are determined by
& =Epmiizmiivct —Eaminviviamentis
fi =E2m+i+l,2m+i—E2m+n+i.2m+n+i+l
(i=1.,n—1)
en=E, 1omi2m t+ Esmyns
fn =El,2m+n —E2m+2n,m+1; (5.6)
i =Ei1 —Epmiiviman
Jovi=Eiiyi—Epiimricr (i=1l.m—1);

€ism =Em—l,2m _Em,Zm—l’
fn+m =E2m,m——l _‘E2m—l,m'
Then [e;f;] = 8;4;, and the 4, span the Cartan subalgebra

hr =E2m+i,2m+i —E2m+i+l,2m+i+l —E2m+n+|',2m+n+i

+E2m+n+i+l,2m+n+i+l (i=1,.,n—1),
hn=Ell— m+l,m+l+E2m+n,2m+n_E2m+2n,2m+2n!
hn+i =E; —Ei+l.i+l “Em+i,m+i (5.7

+Em+i+l,m+i+l (i=1.m-—1),

hn+m =Em— Lm—1 +Em,m _E2m—l,2m—l _E2m,2m‘
The Cartan matrix for D(m,n) is obtained from (5.6) and
(5.7) and the relations [A;,¢;] = a;e;.
Let us now investigate the extension of II. We find that
there is only one solution for IT°*=TMU{y}, namely
= — 28,. Hence,

(5.8)

€0=Eym ini1om+1s ﬂ)=E2m+1,2m+n+1:
and

ho = leo fo)
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= _hl'—hz"—'“—hn +hn+l +'“+hn+m—2

F 3y ym 1+ nym) (5.9)

Then, the relevant relations to determine the extended Car-
tan matrix are

J
0 1 n
L 0 _ v
—2) " 20 -1 ' J
! '
0, -1 2 . .
| ®e. 1 1
! 2 -1 i
: -1 2'_q
e B 1 -l = o T "
et e e o e e e m .- - - S R T

[} |—1 ' 2

! ! 1—1
[} 1 1
] ] 1
] ] '
[ ) '
| 0 i '

Hence, the extended Dynkin diagram is given by
O=—>0—0— —0—@———O0—
0 1 n n+m-2

The regular subalgebras of D(m,n) obtained by deleting the
Oth, Ist,.., (n 4+ m)th node from (5.12) are D(m,n),
A,eD(m,n —1), C,o D(m,n — 2),...,.C,_, e D(m,1), C,
oD,,Cn+1)sD,,_,, D2n)eD,_,,..D(m—2n)
®A,®A,,D(m,n), D(m,n). All these subalgebras are of the
form osp(0,2k) ® osp(2m,2n — 2k) or osp(2k,2n)
® osp(2m — 2k,0). There is one regular subalgebra of rank
m + n — 1 which is not contained in a proper regular subal-
gebra of rank m + n, namely spl(#m,n). This subalgebra is
found by deleting node 0 and node n + m.

For D(m,n), however, several choices are possible for
the simple root system.> They are determined by two in-
creasing sequences S and T and a number: I1$). (i = 1or2).
Detailed investigations of the extensions of those nondistin-
guished simple root systems showed that the most general
maximal semisimple regular subalgebras are of the form
D(k,) ® D(i,j) with kK +i=m, | +j=n, or are equal to
spl(m,n). Of course, the latter notation includes all “degen-
erate” cases such as D(l,r)=C(r—1), DO,r)=C,,
D(r,0) =D,,D(2,0) =A4,84,, etc.

The Lie superalgebras C(n) = osp(2,2n — 2) form a
special case of the D(m,n) series. The roots of C(n) are
given by (there is only one € form, hence we omit the index)

Ao={1 (& —8,), % (6 +68,), 125
A ={+t(e+6),+(e=8) (1<j<n— 1)}

(5.13)
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[Ao.e0] = 2e,,

[hieo] = — 26, e (5.10)
[hO’ei] = —8,,¢;, (i=1,..m+n).
This gives rise to
n+m
----------- 0
___________ ’ T= {n}.
R
2
(5.11)
2 1 —1
-1 2 0
-1 0 2
—
n+m-1
(5.12)
n+m

]
The distinguished set of simple roots is
= {6 - ‘51,61 - 52:52 - 63;---,6;. -2 = 5;1 -1 ,2(5,, -1 }’
(5.14)

and the corresponding root vectors are determined by
es=E3—E, ;0 [i=E; ., +E;;
ei=Ei+1,i+2—En+i+l,n+i! (515)

(i=2,..,n—1),

_En+i,n+i+l
€, =En+1,2n9 J =E2n,n+l'

Then [e;, f;] = 6,4, and the A; span the Cartan subalgebra
H,

hl =E11 "E22+E33 -
h,' =E,~+1',-+1 ‘_E,'+2,i+2 _En+i,n+i +En+i+1,n+l'+1

(i=2..n-1), (5.16)

i El'+2,i+l

n+2n+2

hy, =En+ tn+1 _EZn.Zn'

From (5.15) and (5.16), the Cartan matrix of C(n) can be
constructed.

For the extension of II, it turns out that there is again
only one possibility, namely, y = — € — §,. This implies

€ =E23 —En+2,lr

f(.) = El,n—+—2 + Esz:

ho=lepSol = —h +2(hy + - + h,).

(5.17)

Joris Van der Jeugt 208



The zero row and column of the extended Cartan matrix are
determined by

[hoe0] =0,
N
0' 1 n
e SR S | . 0
-2 0 1
—1 11 2 -1
! —1 2
. -
' .o
1 2 -1
' —1 2 =2
o' -1 2)

The Dynkin diagram corresponding to a Cartan matrix of
this form is given by

0

—O0————0<===0 . (5.20)

1

It is easy to check that the regular subalgebras of C(n)
obtained from (5.20) by deleting the Oth, 1st,...,nth node
are C(n), C(n),A(1,0)®C,_,,C(3)8C,_;,...C(n—1)
® A, C(n). These are all of the form osp(0,2k) & osp(2,2n
— 2k — 2), since 0sp(0,2k) = C, and osp(2,2) = spl(2,1)
= A(1,0). There are two other nonequivalent choices for
the simple root system,? but the regular subalgebras ob-
tained by means of these alternative choices coincide with
the previous series.

VI. THE EXCEPTIONAL SERIES D(2,1;0)

For the exceptional Lie superalgebra D(2,1;a)
(@eC\{0, — 1}), we use the realization given in Ref. 8. Here
D(2,1;a) is determined by its Cartan matrix

0 1 «a
A=|—-1 2 o|, r={1}, (6.1)
-1 0 2

and the corresponding generatorse;, f;, h; (i = 1,2,3). From
now on, we use the following shorthand notation:

e =[--[[e;.e;,].€,]-e; 5] (6.2)

and similarly for /; .. 0 The roots of D(2,1;a) are expressed
in terms of linear functions® € , €,, €; (of 4, 4,0 4, = Lj),

AO = { i 26,} (l = 112)3)9
Al={:t€1j’_'62i€3}

The distinguished system of simple roots II, corresponding
to the Cartan matrix (6.1), is given by?

fyiy iy

i . (6.3)
(independent 4 signs).

I = {e, — €, — €3,2¢,,26;}. (6.4)

The only root by which II can be extended turns out to

bey = — 2¢,. The corresponding root vectors can be chosen
as follows?:
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[hiseo} = — 26,160 — 6260 (5.18)
[hoe;] = — 20,16 + 8¢, (i=1,.,n).
Hence, we find
r={0,1}. (5.19)
1
e=[1/(A+a)) fin, fo= —[1/(1+a)ley.
(6.5)
Then
hy=lep ol = — [1/(1 + a)1(2h, — h, — ah,).
(6.6)
The relevant commutation relations are given by
[Age0] = 2¢,,
[hiseo] = — (1 +a)d;, €0 (6.7)
[hoei] = — 6,6, (i=12,3).
Hence, the extended Cartan matrix is
2 -1 0 O
—1;“ —(1) ; ‘(; , r={1}. (6.8)
0 -1 0 2

To this Cartan matrix, there corresponds the following Dyn-
kin diagram:

(6.9)

3

Deleting node 1 from (6.9) gives rise to the subalgebra
A,® A4, ®A,.Deletingnode 0, 2, or 3 gives rise to the Dynkin
diagram for D(2,1;a), D(2,1;— 1 —a), and D(2,1; —a/
(1 + a)), respectively, but these are all three isomorphic.
Hence, the only nontrivial regular subalgebra of rank 3 is
A, @A, ®A,, the even subalgebra of L. The regular subalge-
bras of rank 2 are 4, ® 4, and 4(1,0). Note that 4(1,0) is
not contained in any semisimple regular subalgebra of rank
3, and so it is also maximal. It is easy to check that the other
choice for the simple root system does not give rise to any
new regular subalgebras.

VIl. THE EXCEPTIONAL LIE SUPERALGEBRA G(3)

The Lie superalgebra G(3) is a contragredient Lie su-
peralgebra, and it is determined by the following Cartan ma-
trix:
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0 1 0
A=] -1 2 -3, r={1}. (7.1
0 —1 2
The roots of G(3) are given by’
A,={e, — €., +€;+26}
Tl T IGE Gk =1,2,3),
(7.2)

where €, —€,,+¢€; are the roots of G, (satisfying
€,+ €, + € =0) and + 25 are the roots of 4, in G(3);
= G, ® 4,. The simple roots corresponding to (7.1) are

H —_ {6 + 61,62,63 - 62}- (7.3)

Then, it is easy to verify that the only root by which II can be
extended is ¥ = — 28. Using the same convention as in
(6.2), one can verify that f,,, is a root vector with root — 8.
Hence, we put

o = [ fiz32: f12321
Jo= — §[91232,31232]-
One can compute that
ho = leg, fol = — 4(hy — 2k, — 3h,).

Now, the relevant commutations relations are

(7.4)

(7.5)

[Aose0] = 2eq,
[hie0] = — 45,00
[hoe:] = — 6,16, (i=12,3).
This gives rise to the following extended Cartan matrix:
2 -1 0 0
—4 0 1 0

(7.6)

s =1{1 N .
0 —1 s _3 r={1} (1.7
0 0o -1 2
with corresponding Dynkin diagram
O€——@—>»0<===0 (7.8)

0 1 2 3

Deleting node O gives the Dynkin diagram for G(3). When
node 1 is deleted, the corresponding regular subalgebra is
A, ® G,. When node 2 is deleted, we find the Dynkin dia-
gram of 4(1,0) & A,. Finally, deleting the last node in (7.8)
corresponds to omitting the last row and column in (7.7).
The remaining matrix is one of type D_, (see proposition
2.5.6 of Ref. 3). Hence, the corresponding regular subalge-
bra is D(2,1; — 4), which is isomorphic®® to D(2,1;3). Ina
previous paper,® we have shown that D(2,1;3) contains a 14-
dimensional representation [in general, D(2,1;a) has a
(4a + 2)-dimensional irreducible representation for aeN].
So, we can check on the dimensions that G(3) DD(2,1;3):
the dimension of D(2,1;3) is 17, and 17 4 14 = 31, which is
the dimension of G(3).

For G(3), there exists another choice for the simple

roots which is not equivalent to (7.3), namely
N={e;—e, €6 +6, —6} (7.9)

Then, the corresponding Cartan matrix and Dynkin dia-
gram are given by
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A=} —1 0 -2, r=1{2,3}, (7.10)
0 -2 2
O D@ (7.11)

Actually, this situation is not being described in Ref. 3. In
this case, ¥ = €, — €, and after extending (7.9) by 7, one
arrives at the following extended Cartan matrix:
2 -1 0 0
-1 2 3 0

0 —1 0o -2l ™= {2,3}, (7.12)
0 0 -2 2
with Dynkin diagram
O——O0——@=—>9 (7.13)

0 1 2 3

When node 1 is deleted, the corresponding regular subalge-
bra is A, ® B(1,1), which actually contains the previously
found 4, ® 4(1,0). When node 2 is deleted, we find the regu-
lar subalgebra A, ® B(0,1). Finally, deleting node 3 gives
rise to the regular subalgebra 4(2,0). Up to equivalence,
(7.3) and (7.9) are the only simple root systems for G(3),
hence we find as maximal regular subalgebras: 4, & G,,
D(2,1;3),A,9 B(1,1), 4,9 B(0,1), and 4(2,0).

VIll. THE EXCEPTIONAL LIE SUPERALGEBRA F(4)

The Lie superalgebra F(4) is determined by its Cartan
matrix:
0 1 0 0
—1 2 =2 0
0 -1 2 -1’
0 0 -1 2
The roots are expressed in terms of linear functions €,, €,, €,

corresponding to B;, and 8, corresponding to 4, in F(4);
=B,e4d,

r={1} (8.1)

Ag={1(g+e€), (6 —€) t¢
(1<j<k<3); + 26}, (8.2)
A ={+6+ (tet+e+ €;) }(independent + signs).

The system of simple roots corresponding to (8.1) is?

M={6+1(—€ — € —€),6:,6 — €3,6, — €,}. (8.3)
There is a unique way by which II can be extended, namely
¥ = — 28. Using the same convention as in (6.2), we can

choose the following form for the root vectors corresponding
to — 25 and + 26, respectively:

eo =14 [ fi232 f1234],

Jo=1lerenssl. &4
After some calculations, one finds
ho=lep ol = — 1 (2hy — 3h, — 4h; — 2R,).  (8.5)
Then, the relevant commutation relations are
[hpe0] = 2e,,
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[Ai.e0] = — 36,,€0 (8.6)
[Aoe:] = — 6, (i=1,2,3,4).
Hence, the extended Cartan matrix becomes
2 -1 4] 0 0
-3 0 1 0 0
0 -1 2 -2 o], r={1},
0 0o -1 2 -1 8.7)
0 0 0o —1 2
with corresponding Dynkin diagram
O0€E——>0—=0——0 (8.8)

0 1 2 3 4

Deleting node O gives the original algebra F(4). When node
11is deleted, we find 4, & B;, which is the even subalgebra of
F(4). When node 2 is deleted, the corresponding regular
subalgebra is 4(1,0) ® A,. Deleting node 3 corresponds to
omitting row 3 and column 3 in (8.7): the remaining Cartan

TABLE 1. Maximal regular semisimple subaigebras of the basic classical
Lie superalgebras.

L L’

spl(k,]) @ spl(iyy), k+i=m,
D(m,n);

CkyeC, k+j=n;
spl(m,n);

A o4 04,

A(1,0);

A, eG,,

D(2,1,3),
A,®B(1,1),

4,8 B(0,1),

A(2,0);

F(4) A, 8B,

A(10)e A4,
D(,1;2)eA4,,

Cc(3).

I+j=mn
I+j=n

spl(m,n)
B(m,n)

C(n)
D(m,n) I+j=mn;
D2, 1)

G(3)
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matrix is one of type D_, & (2). Hence, the corresponding
regular subalgebra is D(2,1; —3) @ 4,, or D(2,1;2) @ 4,.
We have already noted that D(2,1;2) contains a ten-dimen-
sional irreducible representation [ 10}, and obviously 4, has
a two-dimensional representation [2]. So, we can check the
dimensions again: dim(D(2,1;2)e4,) =17+ 3=20,
dim([10] ® [2]) =20, and 20+ 20 =40 =dim F(4).
Finally, one can verify that deleting the last node in (8.8)
again gives rise to a Dynkin diagram of F(4). However,
F(4) has a regular subalgebra of rank 3 which is not con-
tained in any proper regular subalgebra of rank 4, namely,
C(3). This algebra is obtained by deleting node 0 and 4 in
(8.8). Also, note that any other choice for the simple root
system of F(4) does not yield any new regular subalgebras.

IX. CONCLUSION

In Table I we list all the maximal regular semisimple
subalgebras of the basic classical Lie superalgebras. Note
that isomorphisms such as C,=4, and D(2,0) =D,

= A, ® A, have to be taken into account.

As far as the Lie superalgebras spl(m,n), B(m,n),
C(n),and D(m,n) are concerned, Table I does not yield any
surprises. The results are more exciting when the exception-
al Lie superalgebras are considered, with inclusions such as
G(3)DD(2,1;3) and F(4)DD(2,1;2) e A,.
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The well-known evolution equations associated to the homogeneous Heisenberg algebras of
Kac-Moody algebras g'” (AKNS systems) are extended by differential-difference equations

that can be written in zero curvature form.

I. INTRODUCTION

It is well known that the Toda lattice and the nonlinear
Schrodinger equation are intimately related, see, e.g., Jimbo
and Miwa' and Flaschka.” In Ref. 3 we showed how in the
representation theoretic approach to soliton equations one
can associate in a natural way a hierarchy of differential-
difference equations to the homogeneous Heisenberg alge-
bra of the Kac-Moody algebra 4 (. The first and second
nontrivial members of the hierarchy are the equation for the
Todalattice and the nonlinear Schrédinger equation, respec-
tively.

In a different approach soliton equations are obtained as
conditions of commutativity of a set of covariant derivatives
D, (seefor example Newell 4 and Drinfeld and Sokolov®). In
this paper we extend these equations by introducing, apart
from the variables ¢; and associated covariant derivatives D, ,
a lattice and covariant derivatives Ds on the lattice. The
equations [ D, ,Ds | = 0 are the differential-difference equa-
tions supplementing the evolution equations of the form
[D.D,] =0.

In this setup the continuous covariant derivatives are
constructed from the positive generators of the homogen-
eous Heisenberg algebra of an affine Kac-Moody algebra
g'!. The lattice covariant derivatives are defined using ele-
ments of the centralizer of this Heisenberg algebra in the
loop group associated to g'”. At the same time the structure
of the centralizer forces the lattice introduced here to be the
coroot lattice of the underlying finite-dimensional Lie alge-
brag.

For the case of 4 {’ we once more find the connection
between the Toda lattice and the nonlinear Schrodinger
equation, but from a point of view apparently completely
different from that in Ref. 3.

ll. CONTINUOUS ZERO CURVATURE EQUATIONS

In this section we recall the construction of evolution
-equations related to the homogeneous Heisenberg algebra of
an affine Kac-Moody algebra g'". For background we refer
to the review by Drinfeld and Sokolov.’

Let g be a simple finite-dimensional Lie algebra, h a
Cartan subalgebra of g, (]) the Killing-Cartan form on g,
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and

L(g)=ei'eg, (2.1)
the loop algebra associated to g. The algebra L(g) contains a
maximal Abelian subalgebra

s=old'sh 2.2)

icZ

In the sequel we will often suppress the tensor product sym-
bol for elements of (2.1) or (2.2).

Let {#° a = 1,2,...,rank g} be an orthonormal basis of
h. Then s is generated by

h, pt=A%% ¢*=A"'h%i (2.3)
[The p; and g7 together with a central element c generate the
homogeneous Heisenberg algebra of g’ = L(g) & Cc @ Cd,
the affine Kac-Moody algebra of type k = 1 associated to g,
see Ref. 6. In the rest of this paper we will only work with

L(g), not with the full affine algebra g'. ]
On L(g) we define a bilinear form

(AX[A") =8, 10 (x]p). (2.4)
With respect to (2.4), we have an orthogonal decomposition

L(g)=s®s". (2.5)

An element 4 of h is called regular if for all roots & in h*
we have (a,4 ) #0. Fix some regular vector # = h !, extend
this to an orthonormal basis {#° a = 1,2,...,rank g} of h,
and introduce a covariant derivative

D, =3, —Ah—v(x)=3d, —R,. (2.6)

The field v (x) takes values in the orthocomplement of hin g.
We want to introduce other covariant derivatives
D, =3, — R, such that the condition [D,,D, ] =0, which
can be rewritten as
d,v=[D,,R,],
gives an evolution equation for the field v.
The construction of R,’s leading to sensible evolution
equations is well known (see, e.g., Refs. 5 and 7). One first

constructs a resolvent® R (x) of D, . This is a function with
values in L (g) such that

[D,.R]=0.

i>0.

2.7)

(2.8)
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[To be more precise the resolvent takes values in the Lie
algebra

gl(d ") =C(1 " H)eg,
with C((4 ~!)) the algebra of formal power series of the form

Z A", ¢ in C,

i=0
and n some positive number.> We will be somewhat careless
about the distinction between L(g) and g ((4 ~")).]

Then one makes a decomposition

R=R_+R,, (2.9)

where R _ contains only negative powers in A and R . only
non-negative powers. Finally one proves that one can take
for R, in (2.7) the part R, or — R_ of any resolvent R.

To construct resolvents we perform a gauge transforma-
tion on the covariant derivative D, . As is well known there
exists a unique function k(x) taking values in 8' of the form
k=A%, 4+ A "%k, + ‘-, suchthat the gauge transformed
covariant derivative

D, =e"(D,)=4, -R,, (2.10)

has a gauge potential R that takes valuesins (see, e.g., Ref.
5, Proposition 4.1). We refer to the situation after the gauge
transformation by e* as ““the diagonal gauge.” Objects in the
diagonal gauge will be distinguished by an overbar, as in
(2.10).

The resolvents of D, can be shown to be the constant
elements of s and hence the resolvents of D, are of the form

R(s) = e~ **(s), ses. (2.11)

Only resolvents of D, containing positive powers in A will
give nontrivial equations (2.7). Hence these equations are
linear combinations of

3,:_,(v) = [D,,R, (p7)]. (2.12)

A short calculation yields

R, =R_(Ah), (2.13)
and hence 3 /3x = 3@ /3t } . One can also show that

[D,;.»D,jb] =0, [D,;.,R(pl‘?)] =0, (2.14)

and that in the diagonal gauge all D s Are diagonal, with
D,=3,.—R.,(pD). (2.15)

Note that we can also concentrate on covariant derivatives
13,;_.=8,?+R_(p?), (2.16)

without changing the above results.

lli. COVARIANT DERIVATIVES ON A LATTICE

Consider an m-dimensional lattice. On the vertices we
have fields ¢/, with / in Z™, taking values in some representa-
tion space of a gauge group. Under (local) gauge transfor-
mation we have

Yoy =gy (3.1)
In the continuum covariant derivatives define infinitesimal

parallel transport. On the lattice parallel transport is defined
by specifying a collection of parallel transport operators U’
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taking values in the gauge group, with 6 a step (i.e., a path)
on thg lattice. Parallel transporting the field ¢/ by U § yields a
field ¢/ * % in the point / + &:

Pre=Uly. (3.2)
The field ¢/ is called covariantly constant if we have

Yre=usy. (3.3)
Then define the covariant derivative on the lattice by

Dy =(Us)~'Y*e—y. (3.4)
Under gauge transformations we have

Diy/-D¥ =gDi, (3.5)
if and only if under gauge transformations

Us-Us =g+ °Us(gh" (3.6)

Now suppose that the field ¢/ also depends on a continuous
parameter ¢ and that there is a covariant derivative
D! =4, — R!. If we demand that the field ¢ is covariantly
constant both in a lattice direction  and in the continous ¢
direction, we must have

Dy =0, D,¢'=0. 3.7
The compatibility condition for (3.7) is
RP°=3,(UnWH "+ URHWH™. (3.8)

IV. DIFFERENTIAL-DIFFERENCE ZERO CURVATURE
EQUATIONS

In this section we will extend the theory of Sec. II by
introducing, apart from the continuous variables ¢ {, discrete
variables / belonging to some m-dimensional lattice Z™, with
m as yet unspecified.

In every point of the lattice we have a field ' and a
covariant derivative

D':=9 —R.:=3d, — (Ah+ V). 4.1)

There exists a unique k' = 3, k4 ~/ in s'such that

é'De-*'=9,—R., Rlins. (4.2)
Resolvents R /(s) of D’ are given by
Ri(s) =e—*'se*’, s in s. 4.3)

Using the positive part of R '(p?) we define covariant deriva-
tives

D:7=a,e“R’+ @). (44)
The zero curvature conditions [ D D ﬁ;,] = 0 give evolu-
tion equations for the fundamental fields v’ of the form

a,;,u’ =F@\a.v,...). (4.5)

The theory of this section is up to now just a trivial
extension of the theory of Sec. II; we have provided all fields
with a multi-index /, but the fields v’ and v’ * ¢ are completely
unrelated. We will change this situation by introducing as in
Sec. I11 a covariant derivative D § and by imposing the com-
patibility condition

[Ds.DL] =0, (4.6)
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or, equivalently [see (3.8)]

R'}o(AR) = (B, UN(UL) '+ ULSR', (AR)(UL) .
4.7

This equation tells us how the field v'*+? is coupled to the
field v".

In order for (4.7) to be a sensible equation, we will have
to make a suitable choice for the parallel transport operators
U. We will be able to choose the U }’s such that the compa-
tibility conditions [D5 D ,7] = Q are automatically satisfied.
Then these conditions will not lead to new relations between
the fundamental fields v’ and v’ * %, in the same way as in the
continuum the conditions [D , ;"D,;] = 0donot lead to new
equations.

To find U}’s we proceed in a similar way as in Sec. IL
There we introduced a resolvent R as an element of the loop
algebra that gives a trivial evolution of the fundamental field
v [see (2.7)]. Here we define what we will call—for lack of a
better name—a lattice resolvent U as an element of the loop
group L(G), with G the simply connected Lie group whose
Lie algebra is . We demand that the lattice resolvent substi-
tuted in (4.7) gives a trivial evolution

R', (Ah) =3, U(UH '+ U'R", (Am)(UH~L

(4.8a)
[ To be more precise; the lattice resolvent will take its values
notin theloopgroup L (G) associated to L(g) (see, e.g., Ref.
9), butin the group G(C((4 ~1))) associated to the Lie alge-
bra g((4 ~')). Again we will be careless about this distinc-
tion. ]

In Sec. Il we saw that — R '_ (Ah) plays essentially the
sameroleas R ', (Ah), and therefore it is natural to require,
in addition to (4.8a),

—R'"_ (AR) =4, (UHYNUHY '—UR"_ AR)NUH L

(4.8b)
Combining (4.8a) and (4.8b) we find
R'(Ahy=U'R'(ARY(UH™. (4.9) .
In the diagonal gauge (4.9) reads
Ah=T20(TH Y, (4.10)

where U' = e*'Ule—*',

So U' must belong to the centralizer of A4. Because /4 is
regular, we may conclude that U'is an element of the (Abe-
lian) centralizer S of the whole algebra s (see Ref. 9). Com-
bining this with equations (4.8a) and (4.8b) in the diagonal
gauge and recalling that R '. (Ah) take values in s we con-
clude that U’ must be a constant element of S. All lattice
resolvents are therefore of the form

U'=e—*'Se’ S constant in S. (4.11)
Conversely it is not difficult to show that (4.11) implies both
equations (4.8a) and (4.8b).

Now suppose that we have found some lattice resolvent
U’ and that moreover U’ admits a factorization

Ul=U"_U",
with

(4.12)
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Ul =14U_ A7 "4 U_ A7 24,
U, =U S+ U A+ UL+ -
The inverses of U'_,U*  will also have the form (4.13).
The factorization (4.12) which takes place in the loop group
is the analog of the decomposition (2.9) on the level of the

loop algebra. If it exists it is unique.
Substituting (4.12) in (4.8a) we find

(4.13)

AU (U )Y '+ U R', An)(U' )~}

=3, (U'_)"'U +(U_) 'R, (AR)U"_.

(4.14)

The left-hand side of this equation contains only non-nega-
tive powers of A, while the right-hand side has A4 as the term
containing the highest power of 4. Therefore (4.14) is an
expression of the form A4, + Ah. Using this we find, see ex-
pansion (4.13),
@G U YWU' '+ U R (AR)(U' )™

=Ah+v'+ [AU'_,]. (4.15)
Since [A,U’_, ] belongs to h* we can choose U; = U', in
(4.7). We obtain

vl +8=v1+ [h,UI_l ],
and v’ *° takes value in h*.

The rest of this section will be devoted to the calculation
of the commutators [D,’,,D :1] and [D5 D t,,] , where

Dl,=3,+R" (). (4.17)

(4.16)

First of all we remark that the condition [D3,D.] =0

implies that the expression U’ R'(Ah)(U', )"

= (U )"'R!(AR)U"_ is a resolvent for D.*%, In parti-
cular we have

[DLe, (U'_)T'R'AMU'_] =0. (4.18)
Therefore we must have in the diagonal gauge
(T'_)~"AR(T') in s, (4.19)

= ! 1+8 = =
where U’ =e* U e~ %" " HereU'_ and (U’ ) 'have
expansions

T. =1+ 3 Vi~ (T)'=1+3 Wi~

i=1 i=1

(4.20)

The V,; and W;’s are related by

W1 + Vl = 0’_1 421)

Vi+ W+ Y W,V =0, i>l

k=1

Using this in (4.19) we find

hV,] in h,

(Vi1 in (4.22)

i—1
[WV.]+ S WilhVi_x] inh i>1.
k=1

Using the regularity of A we prove inductively that ¥, be-
longs to the universal enveloping algebra of h, therefore,
[A,V;] =0and (4.19) yields

(T_)"'"Am)T'_ =Ah. (4.23)
Again using the regularity of # we find that U'_ belongs to
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the centralizer S of s. Since U also does, this is even true for
T,

U, (U ) =T )'@eHTL =pi.  (424)
From this it follows that
R1+6(p?) — UI+ Rl(p?)(UI+ )—l
=(U'_ ) 'R'pHU'_. (4.25)

Using (4.25), the decomposition R'=R’_ + R', and the
factorization U'= U'_ U’_, one easily derives

RI_:-&(‘D?) _6‘7U1+ (UI+ )—1 _ UI+RI+ (p?)(UI+ )—1
—_ _leé_atg(UI_ )—lUl_

+(U_)TRLUHUL. (4.26)
Since the left-hand side of (4.26) contains only non-negative

powers of 4 and the right-hand side only negative powers,
both sides must be equal to zero, which is equivalent to

[D5D] = [Dg,ﬁjf] =0. (4.27)

V. PRODUCTS OF FACTORIZING LATTICE
RESOLVENTS

With (4.11) we have constructed all lattice resolvents.
However, it is not at all clear that these admit a factorization
of the form (4.12). In this section we show that if two lattice
resolvents U'(S,) and U'(S,) factorize their product

U'(S,S,) =UNS)U'(S,) =US,)U'(S,), (5.1)
also does and that there are simple relations between all fac-
tors.

Let 8, , be the steps on the lattice associated to parallel
transport operators U', (S,,). Since in the diagonal gauge
U', (S,,) belongs to S, and S is Abelian we have

8, =T' ($)8,TU" (87, (5.2)
and therefore
U't%(s) = UL (S,)UNS)HUY, (S,)~ L (5.3)

Performing the factorization of both lattice resolvents in
(5.3) we obtain

U S)U' T (Ss)HUY (Sy)

=UI+ (SZ)UI__ (SI)UI+ S, (54)
e*éz
u,(sy)
14’82 R . [-l- 5'4 8,_
{ 145,
U,(S9) U,(5)
4 £+5
4
u(Sp

FIG. 1. The commutativity of lattice covariant derivatives.
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Next consider the resolvent (5.1). Using (5.4) and the equa-
tion obtained by interchanging 1 and 2, we see that (5.1)
admits a factorization with

U' (8,8,)=U" (S)U' (s
=UL (5)U'*%(S,),

5.5
UI+ (5:87) = UIIGZ(Sl)UI+ (S2) ()

=U'F(S,)U', (S)).
Note that with (5.5) we have proven the commutativity of
covariant lattice derivatives (see Fig. 1). This means that the
imposition of conditions [D,,| Ds, 1= 0 does not lead to
new equations; they are automatically satisfied.

VL. STRUCTURE OF S AND OF THE LATTICE

In the previous section we found that the product of two
factorizing lattice resolvents again factorizes. If we can write
any element S of S as the product of some S,’s with factoriz-
ing lattice resolvent we have proven that any U'(S) factor-
izes.

The group S can—according to Kac and Peterson’—be
described as follows. Let o be an element of the coroot lattice
Q" of g and B an arbitrary element of h. Then S is the collec-
tion of loops A(a, B) (1) in the loopgroup L(G) of the form

h(a, B)Y(A) = exp(iga + 27i B), (6.1)

First consider the subgroup of loops B = h(0,8).The lattice
resolvent associated to B certainly factorizes, since 8 is A
independent:

A =exp ip.

Ul(B)=e* Be*' = (U'(B)B~)(B). (6.2)
Consider tAhe tra;nsformation (4.7) induced by
U', (B) = B. Since B is constant we have

RI+*=pRIB, (6.3)
or, in terms of the field v,

v =BB L, 6.4)

This is a trivial linear transformation on the components of
the field v". Therefore we will discard these transformations
by quotienting the group S by {#(0,8) }. The resulting group

T = {exp ida|a in @'}, (6.5)

is a discrete group called the translation group.® It is isomor-
phic to the coroot lattice and generated by the elements cor-
responding to a set of simple coroots ; in Q™

T, = expiga;. (6.6)
The lattice introduced in Sec. IV will therefore be taken to be
the coroot lattice Q" of g.

Next we should show that the lattice resolvents U /(T)
factorize. We have not yet proved this in full generality. In
the next section we will discuss the case of 4 {".

VII. LATTICE EQUATION ASSOCIATED TO A{"

We now concentrate on the case g = 4, = sl(2,C). The
covariant derivative (2.5) is taken to be

%((1) _O 1)_(3 f)l)'
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The first terms of the diagonalizing element & ' of (2.10) are

0 ¢ 0 J.9q
ki= ( —1 ( x ') -2 - .
o e AT 72)
The element T, corresponding to the single simple coroot a,
is
A 0
T1=(O /'L“)' (7.3)
The lattice resolvent associated to T, is
10 0 ¢
oty =(; of+ () 8)
T=ly S\ o
1 '
—q7  d.q ) _
This lattice resolvent admits a factorization with
A—d,.Ing q’)
v, (1) = ( ¥ . 7.5
+ (T —1/q 0 (7.5)

The differential-difference equation (4.16) obtained from
(7.5) reads

ql+6= _ (ql)2r1+qla’2‘ ln(ql),

o i (1.6)
= q.
Substituting ¢’ = * we find
aiul=eu1+a_u1_euz_u1-—5, (1.7)

the equation for the Toda lattice.”

The first nontrivial evolution equation (2.12) associat-
ed to the covariant derivative (7.1) is a system of coupled
nonlinear Schrédinger equations, see Ref. 4.

Note that U, will become singular if we let ¢’ become
zero in (7.5). One can take two points of view on this prob-
lem.

First, one can consider g',” to be elements of a differen-
tial algebra (generated by ¢',”, and a derivation d, ). Then
U', will belong to the field of fractions of this algebra. In
this purely algebraic interpretation ¢’ cannot become zero
and there will be no problem.

On the other hand, if one is interested in solutions to
soliton equations one is forced to interpret ¢'(x) as an honest
function. The conclusion then is that as soon as ¢’ (or / if one
considers the lattice resolvent associated to 7" ,~), becomes
zero, the buildup of the lattice stops and the lattice will be of
finite extent.

This can also be understood in terms of 7 functions. A =
function for the AKNS hierarchy has components 7,/ in Z
(see, e.g., Ref. 3) and is related to the fields ¢',” by

g=r"r A= Y

In general, most of the components will be zero and hence
only a finite number of fields ¢,/ will make sense. For in-
stance, the vacuum solution has a 7 function with 7% = 1,
7 =0, i#0, corresponding to ¢° = 0, 7° = 0 and the other
¢',F undefined.
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VIil. REMARKS

(1) It would be interesting to investigate whether the
Hamiltonian structures and conservation laws® of the equa-
tions (2.12) can be extended to cover the lattice equations
introduced in this paper. Also other aspects of soliton equa-
tions, such as the dressing method, Miura transformations,
two-dimensional Toda field equations, etc. deserve further
study in the light of the results obtained above.

(2) The equations described in this paper are related to
the homogeneous Heisenberg algebra of g”. Recently Kac
and Peterson® have classified all conjugacy classes of Heisen-
berg algebras of any affine Kac-Moody algebra g(4). In a
forthcoming paper'® we will use this result to associate a
hierarchy of zero curvature equations to any such conjugacy
class, containing in general also lattice equations. In the case
of the principal Heisenberg algebra one obtains the equa-
tions of Drinfeld and Sokolov,'! without any lattice equa-
tions, because of the special structure of the centralizer of
this Heisenberg algebra.

(3) Kac and Peterson® also show that one can associate
to any conjugacy class of Heisenberg subalgebras a vertex
realization of the basic representation L(A,) of g(4). Each
realization will, we expect, lead to a realization of the defin-
ing equations of the group orbit through the vacuumvector
in L(A,), i.e., it will lead to a new hierarchy of soliton equa-
tions (Jimbo and Miwa'? and Kac®). This is presently under
investigation.

(4) It has become increasingly clear that there are many
similarities between the zero curvature construction of soli-
ton equations and the representation theoretic approach.
The major difference seems to be the absence of the central
extension of L(g) in the zero curvature construction. The
precise connection remains to be clarified. For attempts in
this direction see Refs. 4 and 13.
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A complete group classification is given of both the wave equation ¢*(x)u,, — u,, = 0 (I) and
its equivalent system v, = u,, ¢*(x)v, = u, (II) when the wave speed c(x) sconst. Equations
(I) and (II) admit either a two- or four-parameter group. For the exceptional case,

¢(x) = (4Ax + B)?, equation (I) admits an infinite group. Equations (I) and (II) do not
always admit the same group for a given c¢(x): The group for (I) can have more parameters or
fewer parameters than that for (II); moreover, the groups can be different with the same
number of parameters. Separately for (I) and (II), all possible c(x) that admit a four-
parameter group are found explicitly. The corresponding invariant (similarity) solutions are
considered. Some of these wave speeds have realistic physical properties: c(x) varies
monotonically from one positive constant to another positive constant as x goes from — «

to + .

I. INTRODUCTION

In this paper we consider invariance properties of sec-
ond-order hyperbolic partial differential equations (PDE’s)
(wave equations)

cz(x)uxx _utt=0 (1'1)
and corresponding hyperbolic systems
v, =u,, u,=c*(x)v,. (1.2)

Their invariance properties are used to construct solutions of
these PDE’s for various classes of wave speeds c(x).
An important related equation is

(1.3)

Many physical problems lead to (1.1)-(1.3). Equation
(1.1) arises in the study of small transverse vibrations of a
string with variable density, system (1.2) in the study of
transmission lines with variable capacitance or variable re-
sistance, and Eq. (1.3) in the study of small longitudinal
vibrations of a rod with variable Young’s modulus.

Equations (1.1)-(1.3) are equivalent in the following
senses [(1.4)-(1.7)]:

if {u(x,1), v(x,t)} satisfy (1.2),
then u(x,?) solves (1.1)

(*(x)v,), —v, =0.

and v(x,t) solves (1.3); (14)

if u = F(x,t) satisfies (1.1),
then (u,v) = (F,,F,) solves (1.2)

and v = F, solves (1.3);
if v = G(x,t) satisfies (1.3),
then (u,0) = (c*(x)G,,G,) solves (1.2)

and u = c*(x)G, solves (1.1).

(1.5)

(1.6)
Under the transformation

y= | A(x)dx,

Eq. (1.3) can be rewritten as an equation of the form (1.1),
namely,
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eIy, (L7

In spite of the apparent equivalence of a single PDE and
a corresponding system of PDE’s it does not necessarily fol-
low that their respective invariance groups of point transfor-
mation are the same. It could happen that the group of point
transformations leaving invariant the system is larger than
that leaving invariant the single equation; also the converse
could be true. We will show that this is indeed the case for the
single equation (1.1) and the corresponding system (1.2).
For example we show that if ¢c(x) = (4x + B)?, then (1.1)
is invariant under an infinite Lie group of point transforma-
tions, whereas the Lie group of point transformations leav-
ing invariant (1.2) has only four parameters; if

c(x) = VA + Be**, then the Lie group of (1.1) has two pa-
rameters and that of (1.2) has four parameters.

Consequently it follows that invariant (similarity) solu-
tions of a system of PDE’s lead to noninvariant solutions of a
corresponding equivalent single PDE and vice versa. In Sec.
IV of this paper we construct such noninvariant solutions
for (1.1).

It is important to note that under the hodograph trans-
formation (the interchange of dependent and independent
variables), system (1.2) is equivalent to the nonlinear sys-
tem

—v, =0.

(1.8)

Consequently if {u(x,t),v(x,)} solve (1.8) then v(x,t)
solves

2
v, =u,, u, =c"(v),.

(1.9)

and introducting the potential #(x,t), where (u,0)
= (¢,,9, ), the system (1.8) reduces to

cz(¢x )¢xx - ¢tt =0.

The rest of this paper is organized as follows.

In Sec. II the Lie group of point transformations ad-
mitted by (1.1) is derived for all possible wave speeds ¢(x).
The corresponding invariant solutions are constructed.

In Sec. III the Lie group of point transformations ad-

(cz(v)vx)x V= O:

(1.10)
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mitted by (1.2) is derived for all possible ¢(x). If ¢(x) satis-
fies the ordinary differential equation

cc'(c/c')” = + A% A #£0, (L.1D)

then (1.2) admits a larger group than (1.1). (Throughout
this paper a prime denotes differentiation of a function of a
single variable.) Invariant solutions of (1.2) and hence solu-
tions of (1.1) are constructed for c{x) satisfying (1.11).

In Sec. IV we discuss the differences between the invar-
iance properties of the single equation (1.1) and the system
(1.2). We show that in general the Lie group of point trans-
formation leaving invariant (1.2) [(1.1) ] does not necessar-
ily correspond to a Lie group of point transformations or
Lie-Béacklund transformations leaving invariant (1.1)
[(1.2)].

In Sec. V we find the equivalence classes of wave speeds
¢(x) for the wave equation (1.1).

il. THE INVARIANCE PROPERTIES OF THE WAVE
EQUATION AS A SINGLE EQUATION

Lie"? proved that a second-order linear hyperbolic PDE
with two independent variables admits a group of point
transformations containing at most four parameters if it does
not admit an infinite group. Lie did not study specifically the
wave equation (1.1).

A. Infinitesimal transformations

By using Lie’s algorithm,>> one can find the generators
of the invariance group of point transformations of (1.1). If
the point transformation

X=x+e£(x,t) + O(e),

T=t+er(xt) + O(),

U=u+ef(x,t)u + O(€),

leaves (1.1) invariant, then its infinitesimals {£,7, f} satisfy
the determining equations

2.1)

& — X, =0 (2.2a)
c(x)[r, =& 1+ (x)=0; (2.2b)
Tu — 2, — E(X) T =0; (2.2¢)
£+ P2 —£a]1=0 (2.2d)
Ju —E(x)fr =0, (2.2¢)

Solving (2.2a) for 7, and (2.2b) for r, and setting
Ty = Ty One finds that
gxx - (l/cz)gu - [H(x)glx =09

where H(x) = c¢'/c.
The solution of (2.3), (2.2¢), and (2.2d) for f leads to

(2.3)

S=1HE+ 5, s=const. (2.4)
Substituting (2.4) into (2.2e), one obtains

[QH’ + H?)E?], =0. (2.5)
From Eq. (2.5) there follow three cases.

Case ' 2H' + H?*=0

In this case

e(x) = (4x + B)?, (2.6)

where 4 and B are arbitrary constants. It is easy to show that
here an infinite group leaves invariant (1.1). In particular
for any solution £(x,t) of the corresponding equation (2.3),
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one can find {7(x,), f(x,t) } solving (2.2a)-(2.2¢),

r=[(6 ~Hoa r=2EED,
Ax

2.
1B (2.7

Case II: 2H' + H*#£0, £ #0
From (2.5) it foliows that & can be expressed in the
separable form

£(x,t) = a(x)B(1), (2.8)
where
a*(x)=[2H + H*]™! (2.9)

and B(¢) is to be determined.
Substituting (2.4) and (2.8) into (2.2d), one finds that

ﬂn (t) _ CZ(al___Ha)/

= = const = o°. 2.10
B® a (219

Note that a, o could be real or imaginary.

Case Il{a): The subcase 0 =0

Here c(x) must satisfy the differential equation

(¢’ —Ha)' =0 (2.11)
and correspondingly

B(t)=p+aqt, (2.12)

where p and ¢ are arbitrary constants.
The substitution of (2.4) and (2.8) into (2.2¢) leads to

(aH)" =0. (2.13)

Thus it is necessary and sufficient that the wave speed
c(x) satisfy Eqgs. (2.11) and (2.13). The general solution.of
these equations is

a=Bx*+Cx+D, (2.14)
aH = A + 2Bx, (2.15)

where {4, B, C, D} are arbitrary constants. Consequently
c(x)=(Bx*+Cx+ D)

Xexp((A — C)f(Bx2 + Cx +D)“dx). (2.16)
It is easy to show that

T=(C—A)(pt+—%-qt2)+q Zdx+r, (217
[

where r is another arbitrary constant.
If B =0in Eq. (2.16), then this expression reduces to
the general form

c(x) = (4x + B)S,

where {4, B, C} are arbitrary constants, C #0, 2.
If B=C=0in (2.16), then the corresponding wave
speeds are of the general form

(2.18)

c(x) = Ae?*, 2.19)
where A and B are arbitrary constants.

Case II{b): The subcase o #0

Here Eq. (2.10) leads to ¢(x) solving

(o' — Ha)' = o’a, (2.20)

where H = ¢'/c and a is given by (2.9). Equation (2.20) can
be integrated to give

(¢’ — Ha)? — (oa/c)? = const = K. 2.21)
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B(t) solves B” = o*B, i.e., B= pe” +ge~°".
Thus in this subcase the infinitesimals of (2.1) become
E=ax)[pe” +qge "1,
— Hallpe™ —gqe~"] +r,
f=1aH [pe” + ge~ "] +5,
where the group parameters {p, g, r, s} are arbitrary con-
stants. The solution of Eq. (2.9), (2.21) for the wave speed
c(x) is given in Appendix A. In Case II, if £ #0, the wave
equation (1.1) is invariant under a four-parameter Lie
group of point transformations.
CaseIIl: £ =0
From the determining equations (2.2a)-(2.2¢) it fol-
lows immediately that

r=0 (2.22)

T=const=r, f=const=s,

and hence (1.1) is invariant only under translations in ¢ and
scalings of #. In particular for any wave speed c(x) that does
not solve the system (2.9), (2.20) for any ¢ (zero or non-
zero), the wave equation (1.1) is invariant only under this
trivial two-parameter Lie group of point transformations.

Hence the following theorem has been proved.

Theorem: The wave equation (1.1), whose wave speed
¢(x) is a solution of system (2.9), (2.21) for any o (zero or
nonzero), is invariant under a four-parameter Lie group of
point transformations. The group becomes infinite if and
onlyifc(x) = (4x + B)2. All other wave speeds c(x) admit
the two-parameter group of translations in ¢ and scalings
of u.

B. Group generators and their Lie algebras in the finite
parameter cases

If (2.1) leaves invariant (1.1), the corresponding group
generator is
L=§(x, t)—— + 7(x, t)

+ flx, ,)u_‘i_ (2.23)
u

at

To the parameters {p, g, r, s} of the group there correspond
generators {L pLgsL,.,L.}. The generators form a Lie alge-
bra. The generators for all possible wave speeds c(x) follow.
Cases (i)—(iv) relate too = 0.

Case (i) c(x) = (Bx*+ Cx + D)exp((4 — C) f(Bx*
+ Cx + D)~ 'dx)

Here

=[Bx2+Cx+D]—g—
Jx

a 1 3
CeatZL 41 14+2Bx]u-2,
+1 ]c?t+2[+ x]uau
L=tB?+Cx+D]-L
ox (2.24)
2
+[i(c—,4)t2+ BrtCxtDy|o
2 c’(x) at
1 3
+ =14+ 2Bx]u-2,
2 [4 + 2Bx]u du
L,=i, Ls=ui.
at du
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The commutator table for the Lie algebra is
[L,,L,] =(C—A)L,; [L,L ]=A-C)L,;
(2.25)
[LoLl,] = — Ly |:LP’LS:| =0
q

It is easy to show that this group is isomorphic to SO(2,1)
when 4 — C #0. An interesting special case is 4 = C where

c(x) =Bx*+ Cx + D.
Case (ii): c(x) = (4x + B), C #£0,1,2
Here
=(Ax+B)—a—+A(1—C)t— iAcui
ox du
a
= (Ax + B)t —
Jx
1 (Ax+B)2—2C] a
—|A(1 —C)t2 4 T2 — 2.26
+ [ ( ) +A(1——C) % ( )
——ACtui
2 du
L,=é—, L —u_a._.
at du

The commutator table for the Lie algebra is the same as
(2.25) with (C — A) replaced by A(1 — C).

Case (iii): c(x) =Ax + B

Here

1 J
A B—-——A—
= (Ax + B) +2 E»

P
= (A — —1 A B)Y| —
(dx + Bt 6x+[A 0g (Ax + )] ar

(2.27)

1 d
—Atu —,
+ 2 du

3 3
=2 [ -u
"= “ou

The corresponding commutator table is

[LpLol =Ly [LpL] =0
[LeL,] = —Ly; [LP’LS] =0
g

Case (iv): c(x) = Ae®*

Here

a a a3
L,=4— —ABt— ——-AB —_
dx ot + “ ou’

L, —At———[ABt + — —2”"]
a A at

(2.28)
1 a
1 B9,
Ty As

L, = i » Ly=u —a—
at du
The commutator table is the same as (2.25) with4 — C
replaced by 4B.
Cases (ii)—(iv) can result as limiting cases for the con-

stants {4, B, C, D} of case (i).
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Case (v): c(x) for c£0

From (2.22)
a Jd 1 a
L =e"’[a—+a"l a — Ha) — 4+ — Hu——],
g ax ( ‘xt 2
Ly=e " @S o i@ —Ha) L
Ix ot
1 3 (2.29)
+ ~ Hu _])
2 * du
Lr = _a._ s LS =u .i
ot du
The corresponding commutator table is
[L,,.L,]=20"'KL,; [L,L,]= —oL,
(2.30)

[L,.L,] =0L,; [LP,LSJ =0.
q
Recall that X is given by (2.21).

Clearly this groupisisomorphicto SO(2,1) when K #0.
When ¢ is imaginary, appropriate linear combinations of L,
and L, will yield the corresponding real Lie algebra.

Case (iv): All other c(x)

Here the generators are only

=2, . -u9. (2.31)
ot du
C. The infinite group case: c(x)=(Ax+5)2
In this case the wave equation (1.1) becomes
(Ax + B)Y?u,, —u, =0. (2.32)

Equation (2.32) can be mapped into the wave equation

(4 #0)

Uer =0 (2.33)
by the transformation*

X=[1/(4x + B)] + 41,

T=[1/(Ax 4+ B)] — At, (2.34)

U= (4x + B) 'u.

Hence the general solution of (2.32) is

u = (4x + B)[F(X) + G(7)], (2.35)

where F and G are arbitrary twice differentiable functions of
their respective arguments.

D. Similarity solutions of the wave equation (1.1)

A similarity solution (invariant solution)>? of (1.1) isa
solution u = 8(x,t) of (1.1) satisfying the characteristic
equations

dx _ dt _ du

) T(xp) fxDu’
corresponding to an admitted group (2.1). The similarity
variable z(x,t) is the constant of integration of the first equa-
lity of (2.36).

For all of our cases, similarity solutions for r5#0 can
always be obtained from similarity solutions for » =0 by
replacing ¢ by ¢ + r. For the cases where o = 0, the class of

(2.36)
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similarity solutions for {g =1, r arbitrary, s arbitrary,
p =0} is identical to the class of similarity solutions for
{g = 1, p,r.s, arbitrary} since the commutator of L, with L,
generates L,. Next we discuss similarity solutions of (1.1)
keeping in mind the above remarks.

Case (i): Similarity solutions of (1.1) for p=¢ =0,
r =1, s arbitrary

Here (2.36) becomes

dx _dt_du (2.37)
0 1 su

The similarity variable z = x, and the similarity form for the
similarity solutions is

u=e"F(x;s8), (2.38)

where F(x;s) is a function of x and the parameter s. Substi-
tuting (2.38) into (1.1), one find that F(x;s) satisfies the
ordinary differential equation (ODE)

A(x)F,, (x;5) — s*F(x;s) =0, (2.39)
If {F,(x;s), F,(x;s)} are linearly independent solutions of
(2.39) for any s, then any linear superposition

u="73 e"[4,(s)F(x;5) + A,(s)F,(x;5)] (2.40)
solves (1.1) for arbitrary {4, (s), A4,(s) }. Note that the sum
in (2.40) can be replaced by an integral with respect to s.

Now we consider all cases for invariance of (1.1) under
a four-parameter group. The following cases (ii)—(v) corre-
spond to o = 0 in Eq. (2.10).

Case (ii): c(x) =x, C#0,1,2

The substitutions Ax + B—x, t—A4 ~!t, make the PDE

(Ax + B)*“u, —u,, =0 (2.41)
equivalent to the PDE
x*“u.. —u, =0. (2.42)

1. Similarity solutions of (2.42) for Q=r=0, p=1,
s arbitrary

Here (2.36) becomes equivalently

dx __d__du

= = . (2.43)
x (1-C)t su
The similarity variable is
z=x%"11. (2.44)
The similarity form for the solutions is
u =x'F(z;s). (2.45)

F(z;s) satisfies the ODE
[1 —(C=1)2ZP]F,_ (z;5) + (1 — C)(s + C — 1)zF, (z;5)

+s(1 —5)F(z;s) = 0. (2.46)
Linearly independent solutions of (2.46) are
F,(z;5) = F(a.8:7:$)
and (2.47)
Fy(z5)=¢('"Fl+a-7,1+B8—12—76),
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where F(a,B,7;{) is the hypergeometric function,

=3 , ﬁ=s—1’ ___i(Zs+C——2)’
1-C 1-C 2 c-1
1 1 (2.48)
=—4—(C—- 1)z
9 2+2( )

2. Similarity solutions of (2.42) for p=r=0, g=1,
8 arbitrary

In this case (2.36) is equivalent to
dx dt
o [P/ (1- 0] + (-0
du
TG+ /(C— Dl
The similarity variable is
z=(C— D)%%~ 1 x'—¢
The similarity solutions are of the form
u = x2e% " 12 z:5).
F(z;5) satisfies the ODE
4(C — 1)*[2°F,, (z;5) + 22F, (z;5) ]
+ [C(C —2) — 45z 2] F(z;5) =0. (2.52)

If [1/(C — 1)] s integer, then linearly independent solu-
tions of (2.52) are

(2.49)

(2.50)

(2.51)

F(zs) =z _ (&), (2.53)

where I, (£) is a modified Bessel function of order v,
1 sz7!

T b=c (2.54)

Case (i1i): c(x) = x

Here we consider the PDE

Ax+B)u,, —u, =0 (2.55)
equivalent to the PDE

x%u, —u, =0. (2.56)

3. Similarity solutions of (2.56) for q=r=0, p=1,
s arbitrary

The characteristic equations (2.36) are equivalently
dx _dt _du

X 0 su
The similarity variable is

z=t (2.57)
with corresponding similarity form

u =x°F(t;5). (2.58)
F(t;5) satisfies the ODE

F, (t;s) +s(1 —s)F(z;s) =0. (2.59)

The resulting superposition of similarity solutions is

u(x,t) = ZX’[A,(s)e S6=Dr 4 (s)e"VE—Dr],

(2.60)
These solutions are of the form (2.40).
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4. Similarity solutions of (2.56) for p=r=0, g=1,
s arbitrary

Now (2.36) is equivalently
d_x _at du

= = ) (2.61)
2tx 2logx  (t+ 25)u

The similarity variable is
z=1?— (log x)> (2.62)

The corresponding form of the similarity solutions is
u=x"?logx +t |'F(z;s). (2.63)

F(z;5) satisfies the ODE

1622F,_, (z;5) + 16(1 + 5)zF,(z;5) — zF(2;5) = 0.
(2.64)

If 2sinteger, linearly indepedent solutions of (2.64) are

F(zs)y =21, ,({), (2.65)
where
v=s, (=122 (2.66)

Case (iv)- c(x) = e~ *?

The substitutions x— — x/2B, t—t/24AB, make the
PDE

APy, —u, =0 (2.67)
equivalent to the PDE
e *u, —u,=0. (2.68)

5. Similarity solutions of (2.68) for q=r=0, p=1,
s arbitrary

The characteristic equations (2.36) are equivalent to
dx dt du

> =T T om (2.69)
The similarity variable is

z=te 2 (2.70)
The similarity solutions are of the form

u=e"F(zys). 2.71)

F(z;s) satisfies the ODE

(4 — 22)F, (z;5) + (45 — 1)zF, (z;5) — 45°F(z;5) = 0.
2.72)

Linearly independent solutions of (2.72) are of the hyper-
geometric form (2.47), where

a=p= —12s5, y=14i(1—-4), (2.73)
and

f=1+1}z (2.74)

6. Similarity solutions of (2.68) for p=r=0, g=1,
8 arbitrary

Now (2.36) is equivalent to
dx _  drt du

= = ) (2.75)
4 t>+4° (s—Nu
The similarity variable is
z=1%""?_ 42, (2.76)
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The corresponding similarity solutions are of the form
u =exp( — [ix + stz7'e=*2])F(z;s). 277
F(z;s5) satisfies the ODE
42°F,, (z;5) + 82F, (z;5) + (1 — 16522~ 2)F(z;s) = 0.
(2.78)

This equation has linearly independent solutions
Fi(zs) =z721y(8), Fy(zis) =z7'2Ky(£), (2.79)

where {I(¢), K(£)} are modified Bessel functions of order
0, and
=2z, (2.80)
Case (v} c(x) = (Bx* + Cx + D)exp((4 — C)f(Bx?
+ Cx + D)~ 'dx)
By appropriate scalings and translations in x and scal-
ings in ¢, the corresponding wave equation (1.1) is equiva-
lent to one of the five canonical forms (2.42), (2.68), or

[(x2 + l)2e4Aarctanx]uxx —u, ___0’ (281)
[(1—x)? (1 +x)*"]u, —u, =0,  (2.82)
[x*¢**]u,, —u, =0. (2.83)

In Eqgs. (2.81), (2.82), A is an arbitrary constant.

Case (va): c(x) = (x* + 1)g¥4nretanx

7. Similarity solutions of (2.81) for q=r=0, p=1,
s arbitrary

The characteristic equations (2.36) are

dx
1+x? B —dZtAt - (x fil-us)u ' (284)
The similarity variable is
z = te*, (2.85)
where
y = arctan x. (2.86)
The corresponding similarity form is
u =1+ x’e"F(z;s). (2.87)
F(z;5) solves the ODE
(44°2* — 1)F,(2;5) + 44(A + $)ZF, (z;5)
+ (1 +5*)F(z5) =0 (2.88)

whose general solution can be expressed in terms of hyper-
geometric functions.
In the special case A = 0, the resulting superposition of
similarity solutions is
ux) =x*+13% e?[A,()e T + Ay (s)e— 7],
(2.89)
These solutions are of the form (2.40).
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8. Similarity solutions of (2.81) for p=0, r=1/4A, q=1,
s arbitrary

The characteristic equations are

dx _ 44 dt
t(1+x?) — 44 eyt
R — (2.90)
[#(4 +x) +5s]u
The similarity variable is
z =24 %7%*" — cosh 24y, (2.91)
where
y = arctan Xx. (2.92)
The resulting similarity form is
u =1+ x%"|z + (1 + 241) |'F(z;s). (2.93)
F(z;s) satisfies the ODE :
44222 — 1)F,, (z;5) + 84 %(1 + $)zF, (z;5)
+ {1 4 [4(1 + 25) 1*}F(z;5) = 0. (2.94)

Linearly independent solutions of (2.94) are of the hyper-
geometric form (2.47), where

1 i
== m— S —— s
B 3 +

1 i
a=_+s+—,
2 24

24
(2.95)
y=1+4+s §&=1(1+2).
In the special case 4 =0, the similarity variable be-
comes

z= — 124 )~ (2.96)
Here the similarity form reduces to

u = x> + 1(¢ + arctan x)*F(z;s). 2.97)
F(z;s5) satisfies the ODE

4zF,, (z;5) + 4(s + 1)F,(z;s) + F(z;5) =0. (2.98)

Solutions of (2.98) can be expressed in terms of Bessel func-
tions:

F(zs) =27 _ (), (2.99)
where
v=s, (=z"12 (2.100)
Case (vb): c(x) = (1 —x)' T 4(1 4 x)' 4
9. Simllarity solutions of (2.82) for q=r=0, p=1,
s arbitrary
The characteristic equations are equivalent to
dx __dt _ _ du (2.101)
x2—1 —24t (x+25)u
The similarity variable is
z=1, (2.102)
where
y=(1-x)/(1+x). (2.103)
The similarity form is
u =1 — x*y°F(z;5). (2.104)
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F(z;5) satisfies the ODE
(44 %2 — 1)F,, (2;5) + 44(A4 + 25)zF, (z;5)
+ (4s* — 1)F(z;5) =0. (2.105)

Linearly independent solutions of (2.105) are of the hyper-
geometric form (2.47), where

1 [ l] 1
a=Ltla-1] gLy
A 2 2
) P (2.106)
'}’=7+;,

In the special case 4 = 0, the resulting superposition of
similarity solutions, which is of the form (2.40), is

=41 —xZZy‘[A,(s)e"“E T4 Ay (s)e~ 1],
’ (2.107)

1
= —+ Az.
'y 2+

10. Similarity solutions of (2.82) for p=0,r=1/A, g=1,
s arbitrary

Here the characteristic equations are
dx _ 44 dt _ du
OP—1)t 1—44%2—p=2  [(A+x)t+5lu’
(2.108)

The similarity variable is

z2=24%%"— 4 +y~ ), (2.109)
where

y=({1—-x)/(1+x). (2.110)
The resulting similarity solutions are of the form

u =1 —=x%12|(1 + 240)y* + z|°F(z;5). (2.111)
F(z;5) satisfies the ODE
44%(2* — 1)F,, (z;5) + 84 %(s + 1)zF,(z;5)

+ [4%(2s+ 1)> — 1]F(z;5) =0. (2.112)

Linearly independent solutions of (2.112) are of the hyper-
geometric form (2.47), where
1 1

B=s+———,

11
=3 —_— _
a=s+ o+ 2 24

y=s5s+1, {=1iz+1). (2.113)

Case (vc): c(x) = x%e'*

11. Similarity solutions of (2.83) for q=r=0, p=1,
s arbitrary
The characteristic equations are equivalent to
dx _dt__ du

= » —(x —a (2.114)
The similarity variable is
z=1te’” (2.115)
and the corresponding similarity form is
u = xe**F(z;5). (2.116)

F(z;s) solves the ODE

(2> — 1)F,_(z;5) + (25 + 1)zF, (z;5) + s*F(z;5) = 0.
(2.117)
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Linearly independent solutions of (2.117) are of the hyper-
geometric form (2.47) where

a:B:s, ‘}/=£+S, ;:5(1-}—2). (2.118)

12. Similarity solutions of (2.83) for p=r=0, q=1,
8 arbitrary

Here the characteristic equations are
dx dt du

2w e (e irme oM
The similarity variable is

z=1t%""—e" V% (2.120)
and the resulting similarity form is

u = xe"%e 22 (7). (2.121)

F(z;s) satisfies the ODE
42°F_ (z;5) + 82F, (z;5) + (1 — 165°27?)F(z;5) = 0.
(2.122)

Linearly independent solutions of (2.122) can be expressed
in terms of the modified Bessel functions:

Fy(z9) =27 '"PI(8), Fo(zs) =z7'7Ko(£),  (2.123)
where
&=2sz7 1, (2.124)

Case (iv): c(x) for o0
The corresponding characteristic equations are
dx odt du

2a(0)B()  2(a —Ha)B'(1)  [aHBW) +slu’
(2.125)

where
B(t) =pe” + ge~ ", (2.126)

and a(x), H = ¢'/c satisfy Egs. (2.9) and (2.21). The simi-

larity variable is
z= (c/a)(pe” —qe~ ). (2.127)

The corresponding form for the similarity solutions is

w P
u=yc F(zys), (2.128)
BVK + 2Jpq(K + w?)

where

w=a/c, p=s/HpgK. (2.129)
F(z;s) satisfies the ODE
(K22 — 4pga®)F,, (z;5) + 2K (1 — p)zF, (z;s)

+ {1+ p(0 — DKY}F(zs) = 0. (2.130)

Ili. THE INVARIANCE PROPERTIES OF THE SYSTEM

Clearly (1.2) is always invariant under translations in ¢
and uniform scalings of # and v.
If the point transformation

X =x+e£(x,t) + O(€%),
T=t+er(xt) + O(€),

(3.1
U=u+ e[f(x,t)u + g(x,t)v] + O(€?),
V=v+elk(x,0)v+I(x,)u] + O(€),
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leaves invariant (1.2), then {£,7, f,g,k,/} satisfy determining
equations which reduce to

k,—g. =0, (3.2a)
L —f.=0, (3.2b)
A(x)—g=0, (3.2¢)
cx)r, — £, =0, (3.2d)
A(x)k, —g, =0, (3.2¢)
A(x)l, —f, =0, 3.20)
c(x)[7, =& ]+ (x)E=0, (3.2g)
E —7,+k—f=0. (3.2h)

The consistency of Egs. (3.2b), (3.2¢), and (3.2f) leads to
g(x,t) satisfying

8:H+gH'=0, (3.3)
where H = c¢'/c. Then g(x,t) satisfies
g(x,t) = —a(r)/2H. (3.4)

Moreover if a(t) #0, then it is necessary that {c(x), a(¢)}
satisfy

ec'(c/c’) =a"(t)/a(t) =const =42 (3.5)

Ifa(t) = 0, then either ¢(x) solves (3.5) withA =0or (1.2)
is only invariant under above-mentioned scalings of ¥ and v
and translations in .

In the following subsections we will show that system
(1.2) is invariant under a four-parameter Lie group of point
transformations of the form (3.1) if and only if ¢ (x) satisfies
the ODE (3.5), namely,

ec'(c/c’)" =A% (3.6)

The general solution of (3.6) is derived in Appendix B. It
turns out that if A #0, the general solution of (3.6) does not
solve (2.9), (2.21). Note that A can be real or imaginary.
The case A = 0 will be considered in the following subsection
and the case A #0 in Sec. III B.

A.The case A=0
The general solution of
(c/c")" =0
leads to the consideration of three separate subcases.
Case (i): c(x) = (Ax + B)S, C #£0,1
The same subsitutions that reduced (2.41) to (2.42)
lead here to the equivalent system

3.7)

(3.8)

The solution of the determining equations (3.2a)—(3.2h)
leads to

§ =px + 2gxt,
T=p(1-O)t +q[(1 -C)?*+x*"2/(1 -C)] +r,
f=qgRC—1)t+s,

v, =u,, u,=x*<,.

(3.9)
&= —4ax,
k= —pC—gqt+s,
1—2C’

= —gx
where p, g, , and s are arbitrary constants.
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1. Similarity solutions of (3.8) for q=r=0, p=1,
8 arbitrary

The corresponding characteristic equations are

(3.10)

x (1—-C)t su (s—Cw
Comparing (2.43) and (3.10), one sees that the similarity
solutions for u are of the form (2.44), (2.45). The corre-
sponding solutions for v are of the form

v=x""%G(z;s). (3.11)

Substituting (2.45) and (3.11) into the system (3.8), one
finds that

G,(z;5) =5sF(z;5) + (C — 1)2F, (z;5),
(s — C)G(z;5) + (C — 1)2G, (z;5) = F, (z;5).
If one eliminates G(z;s) from (3.12), then F(z;s) solves
(2.46). Correspondingly
[1—(C—1)’22)F,(z5) + (1 — C)szF(z;5)
s—C

(3.12)

G(zys) =

(3.13)

2. Similarity solutions of (3.8) for p=r=0, q=1,
s arbitrary

First we find the global transformation (3.1) corre-
sponding to (3.9) forp =r =5 = 0,4 = 1. Then it is easy to
obtain the global transformation for arbitrary s. This global
transformation leads to the similarity form of the solutions.

The global transformation for p=r=s5=0,¢9=1, is
found by solving the characteristic differential equations

dX _ daT
2XT (1-O)T?*+X*7*/(1-0)

_ du
Q2C—1)TU-XV
av
=T xEg] =% (3.14)

where X=x, T=t, U=u, V=v,ate =0.
The first equality in (3.14) leads to

SEeY G N S—
(1-C)x°¢-!
1
=const=(1—-C)t%x¢ "' - —— =2
(1=C)x¢!
(3.15)
Next we consider the differential equations
UV _ ac—1yTU—xV: (3.16)
de
av_ _ry_xi-y (3.17)
de
One can show that
dw dv [ C
—_— 20T — —X"ZC—CTZ]V. 3.18
de? de + c—-1 ¢ )
Let V=X —¢72W. Then (3.18) reduces to
dw
=0. 3.19
e (.19
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Hence
V=X °*Fe+G), (3.20)
where F and G are constants. Equation (3.17) leads to

U=X3¥"?"[(C— 1)T(Fe+ G)—F]. (3.21)
The solution of
X _ e (3.22)
2XT
leads to

[14+z(1 —=O)XC'}"2=2(C=1)(e+ E), (3.23)

where E is a constant.
The global transformation for arbitrary s, p=r=0,
g = 1, follows:

[14+z(1 —O)X  '|V2=2(C—1)(e + E),

1
1-OT X' e ——— — —,
( (1-C)x°c-!
(3.24)

U=eX3¥"?"'[(C—1)T(Fe+G)—-F],
V=¢e“X ~€(Fe + G),

where the constants {z, E, F, G} can be expressed in terms of
{x, t, u,v} by solving (3.24) at € = 0. The explicit form of the
global transformation is easily found by solving (3.24) for
{x,1,U,v}.

The corresponding similarity solutions are found by let-
ting z play the role of the similarity variable, and letting
{E,F,G} be arbitrary functions of z and 5. Without loss of
generality one can set £ = 0. Solving the first two equations
of (3.24) for €, one then finds that the resulting similarity
form is

U= estxc_‘z_'xBC/Z—l[(C__ DH{x€~ 'z~ 1F(z;5)
+ G(z:5)} — F(z;9)],
p =Ty~ CixC 127 1R (z:s) + G(z9) ].

If one substitutes (3.25) into the system (3.8) then
F(z;5) and G(z;s) satisfy a corresponding system of coupled
first-order linear ODE’s.

Case (i) c(x) = x

Here the system (1.2) becomes

(3.25)

(3.26)

The solution of the determining equations (3.2a)—
(3.2h) leads to

E=px+2qxt, T=2qlogx+r,
Sf=qt+s, g= —gx,
k= —p—gqt+s,

v, =u,, u, =xw,.

(3.27)

-1

I= —gx

3. Similarity solutions of (3.26) for q=r=0, p=1,
8 arbitrary

The resulting similarity solutions are easily found to be
of the form

u=xF(t;5), v=x""1G(s5). (3.28)
F(1;5) is any solution of (2.59) and
G(t;5) = (s — 1) 7 'F,(t;5). (3.29)
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4. Simlilarity solutions of (3.26) for p=r=0, q=1,
s arblitrary

Here the same procedure is followed as in Case (i). The
resulting global transformation can be written as

T + log X = Ee*,
T? — (logX)? =2,

3.30)
U= e25:xl/2(e2£F+ G), (

V= e2EsX—l/2(G _ CZEF').

The resulting similarity form is
u =x'"2|t 4+ log x|*[ |t + log x|F(z;5) + G(zs)], (331)

v=x""2t +log x|*[G(z;s) — |t + log x|F(z;s) ],

where {F(z;5), G(z;5)} are to be determined by substitution
of (3.31) into (3.26).
Case (iii): c(x) = e~ *"?
Here the system (1.2) is
(3.32)
The solution of the determining equations (3.2a)-
(3.2h) leads to
E=2p+4qt, T=pt+q(t*+4e") +r,
f=—2qt+2, g= -2,
k =p + 231 I= - 2qex‘

v, =u,, u,=e v,

(3.33)

5. Similarity solutions of (3.32) for q=r=0, p=1,
8 arbitrary

The similarity variable is

—x/2

zZ=1e (334)
The form of the solutions is

u=e"F(z;5), v=e"“+VYI*G(zys). (3.35)

F(z;s) is any solution of (2.72) and
G(z;5) = (25 + 1)—1[(2 —522)FZ(Z;S) + szF(z;5) .
(3.36)

6. Similarity solutions of (3.32) for p=r=0, q=1,
s arbitrary

The resulting global transformation (3.1) can be writ-
ten as

TZe—x/Z — 4ex/2 =z,

2274 +ze—*? =€+ E,

U=e“e~¥*[F—\T(Fe + G)], (33D
V = e“e*(Fe + G).
The resulting similarity form is
u= —e¥ " Ve 3477 12 F(z;5) + UG(z) ],
p=e*""" "2 e~ F(z5) + G(z5)],  (3.38)

where {F(z;5), G(z;5)} are determined by substitution of
(3.38) into (3.32).
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B. The case A:£0

By appropriate scalings of ¢ and x, Eq. (3.6) reduces to
(see Appendix B)

¢’ = v~ 'sinh(vlogc) (3.39)
or

¢ =v 'sin(vlogc) (3.40)
for 12> 0. For A 2<0, Eq. (3.6) reduces to

¢’ =v~!cosh(vlogc). (3.41)

In Eqgs. (3.39)-(3.41), v is an arbitrary real constant. If

v =1, then ¢(x) =+1 + € solves (3.39).
In the cases {(3.39), (3.40)}, the solution of the deter-
mining equations (3.2a)—(3.2h) leads to

E=(2/c")[pe' +ge~ '],
7=2[(c/c')’ — 1][pe' —ge~ "] +r,
f=12—(c/c')]pe' +ge~ "] +5,
g= —(c/c)pe'—gqe '],

k= —(c/c') [pe'+ge~"] +s5,

= — (1/cc')[pe' —ge™"].

The similarity solutions for wave speeds c(x) satisfying
(3.39), (3.40), or (3.41) will be constructed in a future pa-
per.

(3.42)

IV. INVARIANCE PROPERTIES OF THE SINGLE
EQUATION VIS-A-VIS THE SYSTEM WHEN c(x) # const

The single equation (1.1) is invariant under a four-pa-
.rameter Lie group of point transformations, {p,q,7,s}, if and
only if ¢(x) solves Egs. (2.21) and (2.9). This corresponds
to a five-parameter family for c(x).

If

c =¥ (x,0,K) (4.1)

is a solution of {(2.21), (2.9)}, it follows from their invar-
iance properties that

¢ =kV¥(kx + k,,0,K) 4.2)

is the general solution of {(2.21), (2.9)}, where {k,, k,, k5}
are arbitrary constants.

The system (1.2) is invariant under a four-parameter
Lie group of point transformations if and only if ¢(x) solves
Eq. (3.6). This corresponds to a four-parameter family for
c(x). If

c=®(x,v) (4.3)
solves (3.39), (3.40), or (3.41) then it follows that
¢ =k, D((k,/A)x + k,,v) (4.4)

is the general solution of (3.6) where {k,, k,, v} are arbitrary
constants.

One can show that the single equation (1.1) and the
system of equations (1.2), for the same ¢(x), admit a four-
parameter Lie group of point transformation if and only if

c(x) = (4 + Bx)S, (4.5)
or the limiting case
c(x) = Ae"*, (4.6)
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where {4, B, C} are arbitrary constants. However, it could
still follow that an invariant solution of (1.2) maps into a
noninvariant solution of the wave equation (1.1) under the
mapping (1.4). In fact if ¢(x) is of the form (4.5) or (4.6),
an invariant solution of (1.2) maps into an invariant solu-
tion of (1.1), under the mapping (1.4), if and only if the
invariant solution of (1.2) has g = 0.

The group leaving invariant the single equation (1.1) is
infinite if and only if

c(x) = (4 + Bx)% (4.7)
The group leaving invariant the system (1.2) contains at
most four parameters.

Any Lie group of point transformations (3.1), leaving
invariant (1.2), can be expressed in the equivalent form

X=x, T=t,
U=u+en(xtupu,,u,)+ 0(), (4.8)
V=v+el(xtuvu,,u,)+ O0(),
where
n=fxu+gxtv—E&xDu, —r(xDu,, (4.9)

E=kxv + 1(x,0)u — 7(x,0)u, — E(x,t)c*(x)u,.
(4.10)
The symmetry (4.8) of the system (1.2) is the symmetry

X=x, T=t, U=u+e€ij+ 0(e), (4.11)
of (1.1), where
7 =nxtuD " uu,,u,), (4.12)

and D, 'is the operator inverse to the total derivative opera-
tor D, defined by

t =%+ut'%+unb%:+utx'a_i'+
If n depends explicitly on v, i.e., g#0 in (4.9), then accord-
ingly % depends explicitly on D~ 'u, and consequently the
resulting transformation is neither a Lie group of point
transformations nor more generally a Lie-Backlund trans-
formation.>S If the group parameter ¢#0 in (3.9), (3.27),
(3.33), and (3.42), then g#0. If 5 is independent of v, i.e.,
g=0in (4.9), then the symmetry (4.11) corresponds to a
Lie group of point transformations admitted by the wave
equation (1.1), and in this case the invariant (similarity)
solutions of (1.2) map into invariant solutions of (1.1) un-
der the mapping (1.4).

Conversely, let

X=x, T=1,
U=u+en(xtuu,,u,)+ O0(e),

be a Lie group of point transformations, equivalent to (2.1),
leaving invariant (1.1). Then

(4.13)

(4.14)

N =f(x,)u — &(x,t)u, — r(x,t)u,. (4.15)
The corresponding symmetry of (1.2) is
X=x, T=t, U=u+en+ 0(e),
(4.16)
V=uv+e+ 0(),
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where ¢ satisfies the compatible system of PDE’s

Dt=D.m, D.t=c *x)D,, (4.17)
and D, is the total derivative operator
a d a a
D=—+u—+u,—+tu,—+".(418
ax oy T au,+ * du, (4.18)

Although (4.17) always has a solution ¢ for any % of the
form (4.15), { cannot necessarily be expressed in terms of
{x,t,u,v} and the partial derivatives of u. If this is the case the
symmetry (4.16) is not a Lie-Backliind transformation.

V. EQUIVALENCE CLASSES OF THE SINGLE
EQUATION

A natural question arises as to whether PDE’s of the
form (1.1) or (1.2), admitting a four-parameter Lie group
of point transformations, are equivalent to each other in the
sense that there exists a point transformation mapping one
PDE into the other. Lie'"? gave a criterion applicable to the
single PDE (1.1). When Eq. (1.1) is invariant under a four-
parameter Lie group of point transformations, Lie’s crite-
rion reduces simply to the following statement.

Wave equations of the form (1.1) admitting a four-pa-
rameter group are equivalent if and only if the corresponding
wave speeds c(x) have the same value for the integration con-
stant K in Eq. (2.21).

For o = 0 and any value of K, — «© <K < «, there ex-
ists a solution ¢(x) of system {(2.9), (2.21) }. As noted pre-
viously a(x) can be imaginary. Hence the wave speed ¢(x)
for any o#0 is equivalent to some wave speed c(x) for
o=0.

For ¢ =0, the following wave speeds c(x) are equiva-
lent, modulo scalings in ¢ and x and translations in x:

(a) c(x) =x, x>+ 1, x> — 1;
(b) c(x) = ¢, x%"%

(©) c(x)=x%x>"5 (1 —x)°(1 +x)>—¢, foranyC.

VI. CONCLUSIONS

In this paper we have given the complete group classifi-
cation of the wave equation (1.1) and the corresponding
system (1.2). We have shown that for a wide class of wave
speeds ¢(x), (1.2) is invariant under a larger group than
(1.1). Consequently for such wave speeds, whose canonical
equations are (3.39), (3.40), and (3.41), there exist invar-
iant (similarity) solutions of (1.2) which are noninvariant
solutions of (1.1).

In a future paper we will discuss some interesting solu-
tions of (1.1) for wave speeds ¢ (x) solving (3.39), (3.40), or
(3.41). These include solutions for a class of wave speeds
with the following physically significant properties:

(a) c(x) is monotone on ( — o0, );

(b) lim c¢(x) =4, Ilim

X— 4+ =

= B;

(c) max|c'(x)| =C;
xeR

(d) ¢(0) =D;
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where {4,B,C,D} are arbitrary positive constants, provided
D is between 4 and B.

In another future paper we will shown how to use the
invariance properties of the system (1.2) to linearize some
nonlinear systems of PDE’s which cannot be linearized by
hodograph transformations, applying procedures outlined
in Ref. 7.

APPENDIX A: THE GENERAL SOLUTIONS OF EQS. (2.9)
and (2.21)

Here we find the general solution for ¢(x) of the system

(¢’ — Ha)? - ?a?/* =K, (A1)

a*=QH'+H*»)™}, (A2)
where H = ¢'/c, 05#0. An integration of Eq. (2.20) to Eq.
(A1) resulted from taking the commutator of L, with L, in
(2.30). Without loss of generality, o = 1, by an obvious scal-
ing of c.

First we factor (A1) as

(/! —Ha +a/c)(a’ —Ha —a/c) =K. (A3)
Now let

hix)=a' —ac'/c +a’c. (A4)
Then

a —al(c'/e) —a/c=K/h(x). (AS5)
Equations (A4) and (AS) lead to

c=h/h', a=L[(h*—-K)/h']. (A6)

Thus the problem of finding c(x) is equivalent to finding

h(x) satisfying (A2) which now becomes

(hz —K)[2h mh Ih2 — 3(h ”)2h2 + (h l)4] = (h ')4h2.

(A7)

Equation (A7) is invariant under arbitrary scalings and

translations in x. Hence® one can reduce (A7) to a first-

order ODE by choosing corresponding differential invar-

iants

u="h, v=h"/(h")2 (A8)
Then (A7) becomes the Riccati equation
dv 1 1
22—+ 12 +—==0. A9
du U w—K o (A%)

After v is solved explicitly in terms of u, v = v(u), (A8)
becomes

h"/h'=v(h)h' (A10)
Thus

logh’=Jv(h)dh+k1= —log M(h), (All)
where k, is an arbitrary constant. Then

JM(h)dh =x+k, (A12)

where k, is an arbitrary constant. After solving (A12) for
h(x), (A6) leads to

c(x) = h(x)M (h(x)). (A13)
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It should be noted that the transformation

v=2w"! dw (Al14)
du
reduces (A9) to the second-order linear ODE
d*w ( 1 1 )
du?® + w—k + u? (Al3)

Equation (A15) can be solved in terms of hypergeometric
functions.

APPENDIX B: THE GENERAL SOLUTION OF EQ. (3.6)

Here we find the general solution of Eq. (3.6) when
A #0. Without loss of generality, A = 1 or i, by an appropri-
ate scaling of c¢(x). Hence we consider

cc’'(e/c’)" = + 1. (B1)

This ODE can be fully integrated using group methods de-
scribed in Ref. 3.

Since (Bl) is invariant under scalings x* = ux,
¢* = uc, and translations in x, we choose new variables®

(B2)
which are differential invariants with respect to this two-

parameter family of symmetries. Consequently (B1) be-
comes

u=c, v=cc",

dv _2v_g_' (B3)
du u v

Equation (B3) is homogeneous in # and v. Using this fact,
one finds that the general solution of (B3) is

318 J. Math. Phys., Vol. 28, No. 2, February 1987

u ™[ (v/u)* F 1] = const = +*. (B4)

Now we choose new variables ¢ and u, invariants under
translations in x, so that (B4) becomes

du Vw1 = (B5)
de c

The general solution of (B5) is then
u=(1/2v)[(pc)” F (pc) ~*1, (B6)

where p is an arbitrary constant. After scaling ¢ and x so that
p becomes 1, (B1) reduces to

=/ [c"Fe ], (B7)
ie.,

¢’ =v 'sinh(vloge) or v~!cosh(vloge). (B8)
If v* is replaced by — v* in (B4) then (B7) reduces to

¢ =v !sin(vloge). (B9)

Equation (B8) can be integrated out if v is any rational num-
ber.
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A modified form of the anisotropic Heisenberg spin chain has been considered. By use of the
prolongation structure technique of Wahlquist and Estabrook, the elliptic Lax pair associated
with this equation has been deduced. A variant of the Reimann—Hilbert problem on the torus
is used to indicate the way to the solution of the inverse problem.

I. INTRODUCTION

In the last decade there has been a tremendous amount
of progress in the theoretical study of nonlinear phenomena.
Applicability of such methodologies to various classes of
physical situations made the research worth pursuing. One
of the most important equations occurring in the domain of
solid state physics is that of the Heisenberg spin chain.' An
interesting feature of many such integrable equations is that
many of them do possess a similar but slightly different inte-
grable form known as the modified form. The most familiar
example is that of the KAV and MKdV cases.? Also, it has
been found that it is possible to find a mapping between the
usual and the modified form of the KdV equation—a phe-
nomenon known as deformation.’ In this paper we propose
to study a modified anisotropic Heisenberg spin chain equa-
tion, which, as far as these authors’ knowledge goes, was not
previously known. We have made a prolongation analysis to
deduce the Lax pair and then study the inverse problem with
the technique of the Reimann—Hilbert problem on the torus*
because the Lax pair obtained is a doubly periodic function
of the spectral parameter. The problem that we do not touch
upon is that of the mapping between the anisotropic Heisen-
berg spin chain and our equation.

1. FORMULATION
The equation we propose to study is written as

a

5=~ [BXpa] ~ Hu@Bw), + @+ B, (1)
where p is a three-vector (p,(x)z,(x)u;5(x)) coupled by
the constraint

W)+ +pdx) =1, (2)

where a is an arbitrary constant, B = diag (b,,b,,b,), (a,b)
denotes the scalar product, and (aXb) denotes the cross
product. To deduce the inverse scattering equation, we fol-
low the methodology laid down by Wahlquist and Esta-
brook. In this approach we first convert the set of equations
(1) in the language of the differential form.

If we now introduce the new set of independent vari-
ables, i), =p, to, =q, and u,, = r, then we observe that
our given equation set is equivalent to the following differen-
tial forms on proper sectioning.

We name these differential two-forms as ; :

a, =du,\dt — qdx Adt,
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a;=dp, Adt —rdx A\dt,
a,=du,Ndx + p,dr\Ndt — pu,dgN\dt
—{ @b, 4} +1b, 43 + 45 43) + @ + b, }du, Adt

—3by py pp dpy Ndt — Yy g pydps At
as=du,Ndx + p,dpAdt —u, drA\dt

— {41 i} + 3,43 + 15 43) + @ + by }du, Adt

— by py dpy Adt — 3bs p, iy dpy Adt
ag=duNdx +u,dgNdt —p,dr\dt

—{Uby 4} + 46,43 + 353 413) + @ + by Ydu, Adt
= 3by 3 oy Ay Nt — 3by s, du, Adt

It is interesting to observe that this set of forms generates a
closed ideal; that is,

(3)

da; = Zf;, Aa;, 4)

where f;; are some functions. The basic assumption of the
prolongation theory is that we may extend the set of vari-
ables from (X,t,0,q,r\fL ,fio5143) 1O (X,0,0,q,1 pd 14251t and pi)
(for the moment / is unspecified), where these extra inde-
pendent variables (whose number is not fixed to start with)
are the prolongation variables. With this setting in mind we
proceed to search for a one-form

O, =dy, + F,dx+ G, dt, (5)
with

Fi = Fi (x,t.p.q.n i sfife3adi)

G = G (X,1.p:g b2t 3,Y:) »
such that the exterior derivative of Q,, that is, d(},, also

remains in the extended ideal comprising of (a ,{); ). Writ-
ten explicitly, this condition reads

dQ, =Y fia;+ Y (afdx + bfdt) NdQ, . (6)
On the other hand,
aF G
dQl = dx, \d dx, Adt, 7
2:ax“ u x+zax” *u D

where x,, denotes the full set of independent variables

Xu = {x,i,P,q,"#n’llznl-‘sJi} M ( 8)

So comparing Egs. (6) and (7), equating coefficients of
different two-forms such as dx A dt, dx A dp, etc., we get the
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following conditions restricting the structure of the func-
tions F and G:

aG —bF —pfi— qf,—1/;=0, (9
GP =ﬂ3F/-‘2 —-ﬂzFI‘J 4
G, =#1FF, —usF, , (10)

Gr =:u2F,u, —IulFu, ’

G,, =fi —/fa[3b1 4} + 302145 + 33 15 + @ + by ]
-if;bI”l#Z_%f‘Gblu3/u] ’ (llJ)

G,=/ —fs[ibu“% +3bp3 + 413 + + 6]

—3fibr g 2 — 3 fsba s pha (12)
Gy, =fs—fs[3b1 11 + 102483 +3b3 123 + @ + 5]

— 3 fsbspa s — 3 fabs oy 3 (13)
F,=G,=G,=0,
G, =G, =G, =0, (14)
G =—-F,, G, =—F,, etc.,

along with the condition

PG, +PF, [3b, 4} + b2 43 + b3 43 + @ + by ] + (p/2)by oy oF,, + (P/2)by pis 1, + 4G,

+qu, [%buu% +%b2ﬂ§ +ib3,u§ +a+b2] + (q/2)b2;t,,u2F,4l + (q/2)b2,“3.u2Fy, +rGu3

(15)

+rF,, [%bl.“% +%b2/‘§ + 3bs 13 +a+by] + (7/2)bs py pisF,, + (1/2)bs py pusF, + [F,G] =0,

where
aG JF
FGl|=F, ——G, —.
[F,G]=F, >, ™

It is then interesting to observe that the above equations dictate the following forms of F and G, the factors represented by
X, (p) denote the dependence on the prolongation variables y; that is still unknown,

F=o0,u,X,(0:) + 0 u:X,(y;) + 053X,

G=o; "{sp, + pila — (A72)) — (1 3 — 13 12) YK, (1) + 057 sy, + pale — (A72)) (16)
— (U3 p1x —ﬂlﬂsx)}Xz(y,') +(03—1{S,U3 +psla — (A/2)) — (pp px '—:ul.uZx)}XB(yi) -

In Eq. (16), 5, 0;, and 0~ ' (i = 1,2,3) are arbitrary con-
stants to be determined. Substitution of these forms of F and
G in (15) leads to the following: (i) if we consider the con-
stants o, and w; such that

010, =00, =0303=1, (17)
and (ii) the X; (y) thought of as operators in p satisfy

[Xi’Xj] =6.'ij1¢ ’ (18)
then the equation satisfied by y, (for example) is

a g
.ult+(——_s_ z ):ulx
2 W30,

+EL (B« + €t s =0, (19)

after we take care of the condition y, p + g + p;r =0,
which is deduced from p? + u? + u? = 1. If we now com-
pare Eq. (19) with the first component of the original non-
linear Equation (1) [the same procedure is to be followed
for the 2nd and 3rd component of (1) also], then we arrive
at

b,=—%a+s+a)1/a)2a)3,
b2= —%a +S+a)2/w1(l)3, (20)
by = —3a+ 5+ w/0w,.

Hence the consistency of the prolongation equations leads to
the nonlinear equations we started with.

1l. INTRODUCTION OF A SPECTRAL PARAMETER

A derivation of the linear problem associated with a
nonlinear equation can never be thought to be complete until
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a spectral parameter can be introduced. Here we show how
our linear problem associated with (F,G) has elliptic depen-
dence on the spectral parameter.

From Eq. (20) we obtain

1

W W03

b, —b, = (0} — @}) = 0" — 03, (21

and

12 12
b, — by =w," — ",

with

12 12
by—b, =0 —0°,

a),l = a)‘./(a)la)za)3)]/2 (l == 1,2’3) .

Equation (21) immediately suggests that the w;’s are soluble
in terms of elliptic functions:

1 __ P ol = P dnd.k) 1 _ pen(dk)
"TUsn(Ak) T YT sn(Lk) T sn(Ak)
(22)
with
b = k2,2
by — b, =k3%?, 23)

b,—by=1(1 —‘kz)Pz,
so that the x part of our Lax pair is written as
L = [Pz/snz(/l,k) ] [/ul ln(/l’k)dn(/lyk)Xl
+ p, en(,k) X, + pydn(4,k)X,] . (24)

The time part is given by G. The common parameter A oc-
curring in the elliptic functions serves as the spectral param-
eter. It is important to note that L is a doubly periodic func-
tion of A defined on a torus.
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IV. SOLUTION OF THE INVERSE PROBLEM

The usefulness of the Lax pair deduced above can be
ascertained if and only if we can effectively use them to deter-
mine the nonlinear fields g, (x) from a suitably given spec-
tral data. The main steps for the inverse problem for a doubly
periodic Lax operator has been given in detail by Rodin. Due
to the occurrence of the elliptic functions in Eq. (24), we
have

L(i + 2k) = 03LU3 N

LA +2k')=0c,Lo,,
where k and ik ' are the two periods of the elliptic functions
and Eq. (25) defines an involution. Also if we assume the
asymptotic condition

,u](x)uuZ(x) -0 » #3(x) -1
then Eq. (24) yields

¥, (o) =[ip?/sn’(4,k) 1dn(4,5) X;¥( ) ,

whose straightforward solution is seen to be

~ xip® (1)
Y() eXp[——snz(/l,k) dn(/l,k)] NE (26)

To extract the asymptotic behavior from (24) we set

. »dn(d,k)ox
H(x) = exp( —ip? —m-f——) ¥(x),

which shows that ¢ satisfies

) dn(i,k) p2
be = {lp 2 T s (Ak

(25

as Xx—- oo,

) (10, en(4,k)dn(A4,k)

+ 1,0, en(Ak) + p40, dn(/{,k))} é. 27

Now it is well known from the properties of the elliptic func-
tions that

en(A,k), dn(l,k)-1, sn(dk)—A, forsmalld.

So for Eq. (27) to be free from singularity at A = 0, we must
have the residue at A = 0 to be equal to zero, so

Hod(A=0)+ig(A=0)o;=0,

or 28)
p,o0; = —ig(A=0)0:¢"'(1=0).

So Eq. (28) is nothing but the key equation for the inverse
problem. Because, if ¢ (x) is known from some spectral con-
siderations, then y; (x) can be obtained via (28).

V. THE ANALYTIC STRUCTURE OF ¢ AND ITS USE

In the next part of our discussion the two main proper-
ties of ¢ that we will use are (i) the pole structure in the A
plane and (ii) the double periodicity. The explicit form of ¢
that we will use is constructed on the basis of these two prop-
erties and was first used in Ref. 5. It is actually an expansion
in terms of the Riemann zeta function:

N 4
s =1+ 3 3 Brri] s, 29)

a=1i=1

where
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[y =R —p,)—¢,
¢ is the Riemann zeta function, the ¢’ are constants, and the
B'’s are the matrices satisfying the conditions

— a — —
B =0,B5*0, = 0,B50; = 0,0, B{*0,0,,

(30)
B=o0,B*0, =0,0,B*0,0;,
where &, is a normalizing diagonal matrix.
It is also important to note
S _ — 5+ 2 ;i
fa(A=2k)=f7A) -7, (31)

FEVA 42K =f5 (A%, s=12.

After substitution of (29) in (24), if we demand that the
resulting expression should not have pole at 4 = u;, we ar-
rive at

m*P¢(Az) =0, (32)

showing that matrix B is degenerate and can be represented
in the form

(BT)ab = (ma)a(Ya)b . (33)

This explicit form of (B,) yields the following sets of equa-
tions:

N
m*o, + ¥ [(m*om*)fP(Ag) Y + (m*Pai03m®)
a=1

Xf¢(13) (/15 ) Y"0'3 + (m*ﬁm#a)f((f) (/13 ) Y*ao.l

+ (m*Pam**)f P (A5) Y *050,] =0. (34)

If wenowset Y' = ({) and m = (m,,m,), then (34) can be
recast as

m*Pg, + USY* + V°Y %, + W°Y %, + Z°Y 0,0, =0,

(35)
with
U= (m*Pom®)f " (A,),
Ve = (m*o,0,m®)f(A5),
1V3 f B (36)

We = (m*m*)f P (A ,
Zo= (m*om*)f P (As) .

The set of equations in (35) can be solved for Y. So the vector
X' is explicitly known in terms of the values of §-functions,
where the only arbitrariness is in the choice of m, which can
be chosen properly.

And hence we can determine the eigenfunction ¢, which
in turn determines y,; through Eq. (28).

VI. DISCUSSION

In our above analysis we have discussed the prolonga-
tion approach to a new nonlinear equation and have shown
how an elliptic Lax pair can result from such an analysis.
Lastly, a variant of the Riemann—Hilbert problem on the
torus has been used to solve explicitly the full inverse prob-
lem.
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A simple and accurate method is developed for calculating singular points from Taylor series. It
consists of finding the least-squares deviation of the Taylor coefficients from a proposed
asymptotic form. Sequences are obtained that converge quickly to the closest singularity to the
origin. Some simple mathematical examples and physically interesting eigenvalue problems are
discussed to illustrate the procedure. The branch points of the eigenvalues for the solutions of
period 27 of the Mathieu equation and those of the Stark shifts for rigid symmetric-top molecules,

which were not obtained before, are shown.

I. INTRODUCTION

It often happens that the only available approach to a
physical problem is a Taylor series. In that case one has to
obtain as much information as possible from it. For example,
when the expansion (supposed, without loss of generality, to
be about the origin) is known to have a finite radius of con-
vergence, it is of great interest to determine the number, kind
(i.e., pole, branch point, etc.), and position of the closest
singularities to the origin. The accuracy of the singular
points obtained from power series expansions depends on
the number of available Taylor coefficients (and their rapid-
ity in reaching the asymptotic behavior').

Calculation of singularities from Taylor series is of ut-
most importance in the examples below.

(a) Some quantum-mechanical eigenvalue problems. In
this case the convergence radius of the perturbation series is
determined by branch points due to level crossings in the
complex plane (see Refs. 2-6, and references therein).

(b) Critical phenomena and phase transitions. High-
and low-temperature expansions and virial series prove to be
suitable for calculation of phase transitions in spin-lattice
models”® and fluid—solid phase transitions in imperfect-gas
continuum models,>!? respectively.

Most of the methods used in finding singular points by
means of Taylor series apply when the singularity nearest to
the origin is real. However, the convergence radius of the
power series is frequently determined by, at least, a pair of
complex conjugate branch points, as in the case of some criti-
cal phenomena”'? and quantum theory problems.®

The aim of the present paper is to develop a new way of
obtaining, from the Taylor series, the parameters (critical
parameters from now on) characterizing the closest singular
point (real or complex) to the origin. The method is devel-
oped in Sec. II and its connection to other techniques is dis-
cussed in Sec. III. The procedure is checked in Sec. IV by
means of some simple mathematical examples and applied to
the bounded delta atom in Sec. V. The branch points of the
characteristic values of the Mathieu equation of period 27

*)To whom all correspondence should be addressed.
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and of the Stark shifts for a rigid symmetric-top molecule are
discussed in Sec. VI. Conclusions are found in Sec. VII.

Il. THE METHOD

Let f(2) be a function of the complex variablez = x + iy
that has singular points at z,, 2,,..., 2, = x; + iy;, numbered
in such a way that |z,|<|2,| <+ . Owing to this, the Taylor
series about the origin

f=73 f,7 (1)
n=0

will converge in |z| €|z, |. It is further supposed that f(x) is
real, which means that the coefficients f, are real and each
singular point z, is either real or a complex conjugate of an-
other one. It will be shown below how to obtain the closest
singularity to the origin from the expansion (1).

For the sake of simplicity, we first discuss the algebraic
singularities and then extend the method to other cases. If z;
isabranch point of order k — 1 orapole (k = 1), f(z) canbe
expanded, in a neighborhood of z;, as'*

fa= 3 Fgq, 2)

where m is a positive or negative integer and g¢;
= (z—z;)"%. To illustrate the procedure let us suppose
that z, = z¥. Upon neglecting terms of order larger than m
we have f(z)~F, + F\q7', which, on the same level of ap-
proximation, can be rewritten as

f(2)=Fy + A q7q7, (3)
where A=F,/(z,—2,)° a=m/k, and q7q}
= (2% — 2x,z + x? + y} ) The singular points z, and z, are
characterized by the critical parameters (CP) (x,, y,), @,
and 4, called the critical position, exponent, and amplitude,
respectively.

On the other hand, the coefficients Y, of the Taylor
expansion about the origin for the generating function (GF)

Y(z) = B(2* — 2uz + r*)°®, 4)
obey the three-term recursion relationship
(n=2b—-1)Y,_, +2u(b—n)Y, + (n+ )Y, .,

=0, &)
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where Y, = Br**and Y, =0if n <0.

The present technique, called the generating function
method (GFM) from now on, rests upon the supposition
that the Taylor coefficients £, tend to obey Eq. (5) as # tends
to infinity provided u = x,, 7 = x} + y?, and b = a. There-
fore, if Y, is replaced by f,, in Eq. (5) forn = N,N + 1, and
N + 2 and the resulting set of equations is solved for u, 72,
and b, we obtain three sequences, namely u,, 7%, and by,
that converge towards x,, x3 + 3, and a, respectively, as N
tends to infinity. The recursion relationship (5) also applies
when f(z) has a pair of complex conjugate branch points
with the same irrational exponent a. This is due to the fact
that, though the argument leading to Eq. (3) does not hold
in this case, f(z) is expected to behave approximately as
const + A4 (z — z,)°(z — z¥)? in the neighborhood of either
z, or z, = z¥ and the generating function (4) proves to be
suitable.

Though we are at present unable to prove rigorously
that our sequences converge towards the actual CP, exten-
sive numerical investigation covering a very large number of
mathematical examples and physical problems suggests that
the GFM is always successful provided an appropriate GF is
chosen. This is confirmed in later sections. For example, in
the particular case just discussed (i.e., z, =z}) the se-
quences converge quickly if z, is far enough from the conver-
gence circle.

Since the exact a value is known beforehand for all the
problems studied in this paper we restrict ourselves to this
simpler case. A straightforward algebraic manipulation of
Eq. (5) with ¥, = f, and b =a leads to

uy =A(Wy/Uy)/A(Vy/Uy), (6a)
ri =AWy/Vy)/A(Uy/Vy), (6b)

where Uy =2(a—N), V= N+ 1)0y, Wy
=(2a+1—N)/Qn, Qv =fy/fu-1, and APy =Py,
—P,.

If A is real we can calculate it as follows: Letu, , 7 2, and
b, the approximate limits of the u, 7 %, and b sequences, re-
spectively, computed somehow. Then we can use the recur-
sion relationship (5), to obtain Yy (b,, u,, ri, B=1).
Therefore, since Y, (B) = BY (B = 1), it is assumed that
the sequence

By =fy/Yy(bpur,ri,B=1) N
must converge towards A4 as NV increases. When A4 is not real,
the B sequence is found to be strongly oscillatory, as shown
later on in Sec. IV.

The CP sequences can be obtained another way. The
recursion relationship (5) enables one to calculate
Y, (u,r %,b,B) quickly for large enough » values. Then the
values of the adjustable CP u, r %, b, and B can be selected so
that the smallest square deviation

N
SM,N= Z (f‘n_Yn)z’ N>M+2, (8)
n=M

is obtained. This leads to sequences that are believed to con-
verge towards the actual CP as M and N tend to infinity (the
B sequence converges provided A is real). This form of the
GFM can be viewed as a generalization of the asymptotic
least-squares method recently developed to obtain the real
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singular points of the compressibility factor of imperfect-gas
continuum models from the virial series.’* Though this cal-
culation scheme leads to greatly revealing two-entry ta-
bles," in this paper we mostly use the much simpler one
discussed above that is accurate enough for our purposes.
However, we want to emphasize the very striking fact that
when A is not real the critical exponent and position se-
quences obtained from the least-squares version of the GFM
are convergent in spite of the fact that the minimum equa-
tions depend on the divergent B sequence.

The GFM applies to cases other than those discussed
above provided the GF is chosen accordingly. For example,
if z, is real and |z,| > |z,] the simplest GF is

Y(z) = B(1 — z/u)®, 9
whose Taylor coefficients obey
(n+1)Y,, ,=(n—->57Y,/u (10)

After replacing Y, by f, we obtain the equations of the well-
known ratio method (Chap. 4 in Ref. 7):

uy ' =A(NQy), (11a)
by = — 1 — N(N + 1)uyAQ,. (11b)

These sequences prove to be convergent if the conditions
above are fulfilled.

When z, lies close to the convergence circle the ratio
method converges too slowly (interfering singularities). In
such a case, assuming for the sake of simplicity that z, is real,
we try a GF of the form

Y(z) = B(1 —z/u)?(1 — z/v)?, (12)

or
Y(z) =B(1 —z/u)® + B'(1 —z/v)*". (13)

They may be useful, for example, in studying phase transi-
tions in antiferromagnetic spin-lattice models’ or when there
are confluent singularities.*® The specific heat and magnetic
susceptibility of two-dimensional loose-packed spin-lattice
Ising models exhibit logarithmic singular points.” These
problems can be treated by means of appropriate logarithmic
GF’s.

If the form of the singularity closest to the origin is
known beforehand, the appropriate GF is easily built. Oth-
erwise, we try different ones till we obtain quickly conver-
gent CP sequences. Since the examples discussed in this pa-
per exhibit a pair of complex conjugate branch points of
order 1 (k = 2) closest to the origin, then Eqs. (6) and (7)
with @ = b, = } can be used.

ill. RELATION WITH BERNOULLI'S ITERATION
ALGORITHM

Let z,, z,,..., z, (numbered as before) be the roots of the
algebraic equation g(z) = 0, where

8(z) =80+ 8z + -+ g,7" (14)

If g, #0 the function f(z) = 1/g(z), which has a pole at each
z;, can be expanded in Taylor series about the origin. The
coefficients f; can be obtained from

_ﬂ) = l/ go, ( 1 Sa)
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fo=—8"'3 &fu_is n>0. (15b)
i=0 :
Therefore, the method developed in Sec. II can be used to
calculate the zero of g(z) nearest to the origin (and also the
other ones after the appropriate polynomial factorization).
Though there are better ways of doing this in the mathemat-
ical literature, we discuss the GFM here in order to show
that it reduces to Bernoulli’s algorithm.'®
First of all it must be noticed that, due to the way Eq.
(14) is written, present roots are exactly the inverse of those
in Ref. 16. Let us consider three different cases (cf. Ref. 16).
(a) z, is real and |z,| < |z;|, /> 1. The GF (10) with
b= —1leadsto '

zl=1imﬁ_,/j}.

1— oo

(16)

(b) z, =z¢ and |z,| < |z;|, j> 2. It follows from Eq. (6)
with b = — 1 that

X =,~l_i.m (fio1 f: —f;—zf;+l)/{2(f? —f;‘—lf;'+1)}’
(17a)

X +yi = lim (fioi —fifis )/ fi—fioi fis)

(17b)

(c) z; = z,arereal and |z,| < |z;|, j> 2. Since (4) is the
appropriate GF with 7 =u and b = — 1, we can use Eq.
(17a) to obtain z,.

Other exceptional cases, in which several roots have the
same minimum absolute value, can be treated in a similar
way.

This procedure is also suitable for obtaining the roots of
infinite series. For example, Aguilera-Navarro and Agui-
lera-Navarro'” derived Egs. (15) and (16) from Padé ap-
proximants. However, these authors were not able to explain
why the algorithm always yields the closest zero to the ori-
gin.'” A very simple proof is given in Ref. 16.

We are at present unable to prove rigorously that there
is an appropriate GF for each problem leading to convergent
CP sequences. However, it is our aim to give satisfactory
enough evidence that this is so. To begin with, notice that in
certain cases the GFM reduces to two well-known conver-
gent algorithms such as that of Bernoulli’® and the ratio
method (Chap. 4 in Ref. 6). Besides, it will be shown in the
next sections that the GFM applies successfully to a number
of examples.

IV. SIMPLE MATHEMATICAL EXAMPLES

In order to verify the statements in Sec. IT we will dis-
cuss some simple mathematical examples, which are nontri-
vial in the sense that Y(z) #/(z) even when the adjustable
CP equal the actual ones.

Let us consider an implicit equation of the form
G(z,f(z)) =0 so that f(z) and z(f) are analytic at
z=0 and f=F,=f(z,), respectively. Therefore, if
(3*%2/3f*)(f=F,) =0and (8% 'z/9f**+ ") (f=F,) #0
then z, is abranch point of f(z) of order k — 1 (order kin the
notation of Ref. 6 and references therein). Some particular
cases are considered below.
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If
G(Z,f) =z+22"',fef+ 1; (18)

thenk =2,z, = — (1 + 3'/2%/)/2 (for the sake of simplicity
we use z; to represent both z, and z, = z¥), f(z,)= —1,
and (3%f/9g*)(z =z,) = 1, g =z + 2%. Therefore,

D)= — 14222 +z+ 13, (19)

for z close enough to z,. This shows plainly that a =1,
x,= —4 |y| =3"%/2,and 4 =2""2,

To obtain the coefficients of the Taylor series for f(z)
about the origin we notice that f{z) obeys

(2 —z+2f+2f)f —f(1 +22) =0, (20)

where f* = df /dz. The expansion of Eq. (20) in powers of z
leads to the recursion relationship

n—1

f;.=‘_1 {(”—3)f;.—1+ z.].fj‘(f;l—j +f;.—j—1)]’
1—n j=0
(21)

where f, = 0, and f; = 1/¢, which enables one to compute all
the Taylor coefficients quickly and accurately.

On using Eqgs. (6) and (7), with b, = a, we obtain the
CP sequences in Table I. Their limits can be estimated from
1/N extrapolations. Since the B sequence converges in a
stepwise manner we must select the corresponding member
of each step before extrapolating. Thus we obtain x,

= —0.500000 +3X1075 |y,| =0.866 025 + 2Xx 1075,
and 4 = 1.414 21 + 4X 1077 that closely agree with the ac-
tual CP. As happens when using other techniques the criti-
cal-amplitude sequence is always the most slowly conver-
gent one.

The GFM is very promising in calculating complex sin-
gularities from power series because the most widely used
algorithms, namely, the Padé approximants and their var-
iants, such as the N point fits, do not appear to be so easy to
handle.”!* Besides, the GFM is expected to be more accurate
since it takes into account explicity the form of the singular-
ity.

The next example is

G(z,f)=z+2—(f*+2)e’, (22)

for which k=2, z,=2%%""{sin(1+n/4)—2}

+isin(1 —7/4)), f(z,) = —1+i, and 4 =i(e/2p,)"?
Xexp( Fi/2). The Taylor coefficients can be evaluated as
in the previous case and the CP sequences are shown in Table
II. As expected the B sequence is strongly oscillating and
does not converge. The CP estimates, x;, = — 0.983 37 + 2
X 1072 and |y,| = 0.221 58 4 1075, are in close agreement
with the exact values.

TABLE I. CP sequences for the example in Eq. (18).

N —uy ry (ry —ud)Hi? By
495 0.499997 15 0.999997 16 0.866 023 767 1.410 877
496 0.49999718 099999718 0.866 023 773 1.418 781
497 0.49999718 099999720 0.866 023 791 1.408 023
498 0.49999719 099999719  0.866 023 787 1.410 897
499 0.499 997 21 0.99999721  0.866 023 793 1.418 754
500 0.49999722 0.99999723  0.866 023 811 1.408 060
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TABLE II. CP sequences for the example in Eq. (22).

N — Uy 147 (’fv—“%v)”z By
495 0983346754 1.008 005854 0.221 596 39 —0.195032
496 0.983346749 1.008 005833 0.221 596 32 0.469 296
497 0983346760 1.008 005828  0.221 596 25 1.414 442
498 0.983346785 1.008005839 0.221 59619 3.068 908
499 0.983346821 1.008005862 0.221 596 14 7.377 252
500 0.983346860 1.008005892 0.221596 10 84.007 040

V. THE BOUNDED DELTA-POTENTIAL ATOM

Bounded quantum-mechanical models prove to be use-
ful in simulating some physical phenomena'® (and refer-
ences therein). The Kato—Rellich theorem?? assures us that
in such cases the perturbation expansion'® has a non-null
radius of convergence. Although there is no rigorous proof
about the singularities determining it, it appears reasonable
to think that they are branch points of order 1. To verify this
assumption in this section we apply the GFM to a very sim-
ple one-dimensional example. More complex problems will
be treated elsewhere in a forthcoming paper.

Let us consider a one-dimensional delta-potential hy-
drogenlike atom (atomic units are used throughout)

— 1" (x) — Z8(x)p(x) = Ep(x), (23)
within a box with impenetrable walls at x = + b, ie,
¥( + b) = 0. The odd-parity solutions of Eq. (23) are those
of the particle in a box (and we, therefore, completely ne-

glect them) whereas the energy eigenvalues for the even-
parity states are easily shown to be the roots of!%2°

z=vcoty, 24)

where z = Zb and v = b(2E) /2.
By reasoning as in the previous section we conclude that

v(z) has an infinite number of branch points of order 1 at
Z = z,, 2,,... given by the roots of

v =} sin 2v, (25)
and that
2
%f(v=wo) -3 (26a)
2
%f(v=w,-)= ~2, j>0, (26b)

where w; = v(z;). The branch point at z, = 1 (w, = 0) can
be neglected because it is due merely to a change of sign in
the energy. The remaining ones are singularities in £(z) and
can be obtained as accurately as required from Eq. (25).
To obtain the energy perturbation series we first notice
that f(z) = v?(z) obeys the following differential equation:

(f+Z2—2)f' +2f=0. 27

Therefore, the coeflicients of the Taylor series about the ori-
gin for f(z) can be obtained from

fos1=(n+ 1)“fo"[(n—2)f,. + (n—=1f,_,
n—1

> (j+1>1;+,ﬁ,_j], (28)
i=o
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TABLE II1. Branch points in the energy eigenvalues of the bounded delta-
potential atom. Exact values are given within the parentheses.

J Xy i 4

1 1.89527 3.71945
(1.895 282) (3.719 436)

2 2.180 19 6.932 99
(2.180 2181) (6.932967)

3 2.360 51 10.107 34
(2.360 58) (10.107 30)

4 2.492 84 13.268 11
(2.492 953) (13.268 063)

where fo = (2j + 1)*>7%/4 and j=0,1,... is the quantum
number. The perturbation series for the lowest eigenvalue
(j=0) converges for all z values because of what was said
above, while the radius of convergence of the jth state (/> 1)
is given by |z;|.

On using Egs. (6) (without extrapolation) with
N = 500 we obtain the results in Table III, which closely
agree with the roots of Eq. (25) (between parentheses). This
suggests that the GFM may be useful in dealing with the
many other bounded quantum-mechanical models for
which a very large number of energy perturbation correc-
tions can be calculated easily.'®

VI. PERIODIC EIGENVALUE PROBLEMS

In this section we will study two simple but nontrivial
(in the sense that they are not exactly solvable) periodic
eigenvalue equations of great physical importance. They are
very useful for our purposes because the Kato-Rellich
theorem?®* assures us that in both cases the perturbation se-
ries have non-null convergence radii. The first one is the
Mathieu equation?!

Y (@) + (@ — 29 cos 20)¥(0) = 0. (29)

Following standard notation we will use @ and 8 to label the
characteristic values for even- and odd-parity solutions, re-
spectively, and even and odd subscripts to designate solu-
tions of period 7 and 27, respectively.

The characteristic values for the solutions of period 7
are known to have an infinite number of conjugate branch
points of order 1 on the imaginary axis in the complex ¢
plane. It is found that a,; , (B4_,), and a,;_, (B,),
Jj=1.2,..., have a common real value at g7 ( ¢ f ). These sin-
gularities can be calculated easily from continued fractions
expansions®! or through a determinantal recurrence rela-
tion.2?

On the other hand, no systematic study of the singulari-
ties of the characteristic values for the solutions of period 27
has been carried out as far as we know (see note added in
proof). However, there is no doubt that no real singular
point exists.”' Since ay; , , (9) =B, 1 ( — ) (see Ref. 21)
we only consider the even-parity solutions. Diagonalization
of the matrix of the linear operator H(q) =d?%/
dB? — 2q cos 6 in the basis set of eigenfunctions of H(0) for
complex g values shows that @, and a, have a common com-
plex value at (¢g=2z, g, =z, etc.) x,=1.9313926,
[y1] = 3.237 6385 (see Ref. 23). Unfortunately, this brute-
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force procedure is extremely cumbersome, lengthy, and re-
stricted to eigenvalue problems. A better approach is re-
quired.

The Taylor series about the origin for the characteristic

values of Eq. (29) are easily calculated by standard pertur-
bation theory®! (see the Appendix). According to our com-
putational facilities we have been able to calculate a5, | for
s (perturbation order) < 40. It is found that 2’ /a$’ - — 1
as s— oo, which is in agreement with the fact that a, and a,4
are the branches of the same branch point. Actually, Eqs.
(6) show that the same critical position is obtained when
using either & or a$™ for large enough N values. On the
other hand, it is expected that 4(a,) = — A (a,) because of
the two signs of the square root (branch point of order 1).

The GFM sequences obtained from Egs. (6) are shown
in Table IV. Since they converge in a stepwise manner, ap-
propriate subsequences must be carefully chosen before ex-
trapolating. On doing this we obtain x, =1.93140

+ 5% 1073 and |p,| = 3.237 65 + 5% 10~>, which closely
agree with the exact result.

The A value coming from Eq. (7) is not accurate enough
because the B, sequence converges rather slowly. To im-
prove it we calculate the u, r%, b, and B values leading to the
minimum of S,y [Eq. (8)]. Only the B,, 5 sequences are
considered because the other ones lead to nearly the same
results shown above. From the two-entry (M,N) table in
Table V we can estimate A(a;)= —A(a,)

= 1.100 4 0.003.

When j = 2,4,..,, i}, /a3, ; does not approach — 1
as s increases, suggesting that the singular points for these
states must be different from the previous ones. In fact, the
CP sequences obtained from the GF (4) (with b variable)
are not found to be convergent. This may be due to the occur-
rence of interferent singularities; i.e., other singular points
close to the convergence circle. It is not unreasonable to as-
sume that there could be two pairs of conjugate branch
points of equal order and with nearly the same absolute val-
ue. If this were true an appropriate GF would be

Y(z) = B(Cy + Ciz + C,22 + Cy2* + 2*)°, (30)

whose Taylor coefficients obey
(n+1)CY,, , +(n—-0b0)CY, +(n—2b—-1CY,_,

+(n-3-2)CGY,_ ,+(n—4b-3)Y,_,=0.
(31)

Upon replacing ¥, by a@’ in Eq. (31) with
n=N,N+ LN + 2,N + 3 we are led to a set of linear equa-
tions from which we can obtain the coefficients C; as func-
tions of 5. Although the sequences C,y (b) are oscillating,
they are found to be convergent. We have tried several b
values but the smoothest sequences appear to be those for
b = 1. Their limits, estimated from first 35 perturbation cor-
rections, are Co, = (1.80 4+ 0.02) X 104, C,

= — (1.480 + 0.002) X 10°, C, = (1.380 + 0.004) X 10,
and C; = — 12.55 4 0.03. It is worth noticing that the coef-
ficients of 2> and z* in Eq. (30) are much smaller than the
other ones, showing that the polynomial in parentheses does
not differ too much from a quadratic one near the origin. The
third- and fourth-degree terms take into account the effect of
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TABLE IV. CP sequences for the solutions of period 27 of the Mathien
equation.

N uy (ry —ud)\? —B,

31 1.931 539 65 3.237932 16 1.127 5851
32 1.931 51126 3.237 89923 1.029 6439
33 1.931 51962 3.237 87409 1.092 8564
34 1.931 509 40 3.237876 34 1.124 5137
35 1.931 487 88 3.237 85345 1.018 6699
36 1.931 493 60 3.237 833 36 1.091 3069
37 1.931 487 51 3.237 83498 1.121 7909
38 1.931 470 81 3.237818 71 1.004 3702
39 1.931474 70 3.237 802 40 1.089 8195

the interferent singularities.

The closest singular points to the origin of &, obtained
as the roots of the polynomial in Eq. (30), are approximately
given by z,,=-—33854£10725 i and =z,

= 9.660 + 7.000 i, where |2, , |~11.246 and |z, , | ~11.930.
It is clear that the interferent singularities, namely z; and z,,
are quite close to the convergence region. Other b values lead
to more strongly oscillating sequences but the singularity
positions are not substantially altered. We cannot therefore
be sure of the actual critical exponent value.

When replacing Y, by %" in Eq. (31), nonconvergent
sequences C,y are found, which suggests that the singularity
pattern may be more complex. We will not go on discussing
the characteristic values of the Mathieu function because it is
not the aim of the present paper. However, since the subject
is of great theoretical and practical interest, a more detailed
description will be published elsewhere in a forthcoming pa-
per, which will render the basis for a rigorous mathematical
investigation.

Another physically interesting problem is the Stark ef-
fect in a polar rigid symmetric-top molecule. The stationary
Schrédinger equation in appropriate units can be reduced
t024
{ —sin™!? Gisin 0—d—+ (M?+K?sin"26

do dé

— 2KM cos 6sin~2 6 — q cos ]¢K,MJ

(32)

where 0 is the angle between the dipole moment and the
electric field, Ex ,, ; and g are proportional to the energy and

= EK,M, J'/’K,M, Js

TABLE V. (M,N) table for the critical amplitude of the lowest eigenvalues
of the Mathieu equation.

N-M 3 4 5 6
N

24 1.099 214 1.089 958 1.103 390 1.101 085
25 1.129 822 1.107 666 1.099 050 1.113 317
26 1.063 091 1.106 629 1.099 113 1.088 068
27 1.097 271 1.088 452 1.102 008 1.099 147
28 1.126 868 1.106 112 1.098 659 1.112 094
29 1.060 146 1.107 426 1.097 904 1.087 485
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field intensity, respectively, and J = 0,1,2,..., |K | =0,1,...,J,
and |M | =0,1,....J (see Ref. 24).

The singularities of E ,,;(q) and those of the charac-
teristic values of a,; and B,; of Eq. (29) are similar and some
of them recently have been calculated accurately.’>*’ [ No-
tice that when K = 0, Eq. (32) becomes that corresponding
to a linear rotator.] Numerical evidence suggests that, for
each M value, Eqaq a4 25— 2 a0d Eg g a0) 4 25— 157 = 1,2,...,
have a common real value for a purely imaginary g value
(say g;).

On the other hand, no result has been reported regard-
ing the singular points of Ex ,,;(g) when K 30 but it is not
unreasonable to think that they can resemble those for the
characteristic values a,;, ; and B,;,, of Eq. (29). This
proves to be the case as shown below.

A very large number of perturbation coefficients for this
problem was reported by Réeggen some years ago.*® Unfor-
tunately, they are not accurate enough for our purposes and
we have had to recalculate them by means of the equations in
the Appendix. The required matrix elements can be found,
for example, in Ref. 24. Due to our rather limited computa-
tional facilities we were not able to handle more than 25
perturbation coefficients.

Results for some states with positive K and M values are
shown in Table VI. The singular points for other eigenvalues
can also be obtained from Table VI just remembering that

Exns (@) =Eyx, (@) =E__x;(q)=E_g _ps(q)

=E gmi(—q)=Eg _r,;(—9)
(see Ref. 24). Present numerical investigation is accurate
enough to enable us to suggest the following properties for

the eigenvalues of Eq. (32).
(a) For each pair of K and M values, the eigenvalues

TABLE VI. Singular points of the eigenvalues Ex 3, », and Eg 5/ 4o, 1>
where K, M = 1,2,3 and 4.

(K) M’ J) — X Z; A
(LLD) 2.784 4 0.002 5.341 +0.001 —0.39 +0.01
(1,1,2) 2.783 4+ 0.001 5.3407 + 0.0003 0.390 1 0.006
(1,2,2) 3.659 £ 0.005 10.347 4 0.003 —0.34 4+0.02
(1,2,3) 3.660 + 0.003 10.347 +0.003 0.34 +0.02
2,2,2) 7.019 4-0.001 10.115 4 0.005 —0.36 +0.03
(2,2,3) 7.022 4 0.003 10.112 4 0.002 0.36 4 0.03
(1,3,3) 451 +0.01 16.80 +0.01 —0.28 +0.02
(1,3,4) 451 1+0.01 16.80 +0.01 0.28 +40.02
(2,3,3) 8.80 4 0.02 16.58 4 0.01 —0.29 +0.02
(2,3,4) 8.81 4 0.01 16.59 10.01 0.29 40.02
(3,3,3) 12.58 +0.01 16.14 40.01 —0.31 +0.02
(3,3,4) 12.60 + 0.05 16.15 1+0.05 0.30 +0.02
(1,44) 5.32 +£0.01 24.66 4 0.02 —025 +0.01
(1,4,5) 5.29 +0.02 2464 10.02 0.25 +0.02
(2,44) 10.50 4 0.02 2443 10.02 —025 +0.02
(2,4,5) 10.5 +0.1 2446 +0.03 0.25 +0.02
(3,44) 15.19 +0.03 2396 +0.05 —0.25 +0.02
(3,4,5) 150 +0.2 24.1 +0.2 0.25 +0.02
(4,4,4) 19.40 4 0.01 2340 +0.01 —0.28 +0.02
(4,4,5) 19.45 +0.05 2340 +0.07 0.27 +0.03
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with J=|M | and J = |M | + 1 have a common value at a
branch point of order 1. For larger J values the singularity
pattern is more complex as in the case of the characteristic
values @,; . ; and B,; , | of the Mathieu equation whenj> 1.

(b) WhenJ = |M |and J = |M | + 1 the critical ampli-
tude is real and appears to be K independent. Its absolute
value decreases as M increases.

(c) The convergence radius of the perturbation series
increases slowly with X and strongly with M.

A systematic study of the singular points of the eigenval-
ues of Eq. (32), using a larger number of Taylor coefficients
and improved GF ’s will be published elsewhere in a forth-
coming paper.

VII. CONCLUSIONS

The GFM seems to be very promising in obtaining the
closest singular points to the origin from Taylor series. Any
sort of singularities can be dealt with provided the behavior
of the function in its neighborhood is approximately known.
Since the GFM takes into account the form and number of
singular points nearest to the origin explicitly, it proves to be
preferable to other techniques. The more we know about the
singularities the more accurate the GF that can be used and
the larger the convergence rate of the CP sequences.

The singularity pattern for the eigenvalue problems in
Sec. V1 is quite interesting since it is very different from those
discussed previously (cf. Sec. V and Refs. 21, 22, and 25). A
more detailed numerical investigation and a rigorous math-
ematical study would be of great value due to the physical
importance of both models.

During the last years there has been a great deal of inter-
est in perturbation expansions for some bounded systems'®
(and references therein). Upper bounds to their conver-
gence radii have been estimated®’ that can, in principle, be
checked very easily by means of the GFM.

The GFM also can be useful in studying critical phe-
nomena in spin-lattice models.”® In this case some real sin-
gular points of the thermodynamic functions are found to be
related to phase transitions and sometimes complex singu-
larities occur that interfere with their calculation.’

Note added in proof: After the present article was sent to
press we came across the papers by Blanch and Clemm?® and
Hunter and Guerrieri,”® where the branch points of the
eigenvalues for all the solutions of the Mathieu equation are
fully discussed.

APPENDIX

For the sake of completeness we will develop here a
standard large-order nondegenerate perturbation theory
that is necessary to deal with the problems in Sec. VI. To this
end let us consider the eigenvalue equation

H|¢$,) =E,|¢,), (A1)

where H=H,+ AV is a Hermitian operator for all
0<A4 < « and the eigensolutions of H, are known; i.e.,

Hyli) = E@). (A2)
It is supposed that E (”#E  if i#j and that {|/)} is a
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complete set of orthonormal vectors.
On expanding |¢, ) as

l¢n>=C0n|0)+Cln|1>+.”’ (A3)
it is found that Eq. (A1) becomes
A3 V,C, = (E, —EP)C,, (A4)
i=0

where V;, = (j|V|i). If C,, is arbitrarily chosen equal to
unity, reflecting the fact that |¢,)(41 =0) =|n), and E,
and C,, are expanded in powers of 4,

E,= S EPA, C,=3 c@ar, (A5)
s=0 s=0
we obtain
cp=EY-EM|$ vcw?
p—1
-3 Ef,P“’C},f’], j#n, (A6a)
s=0
EP =73 v, Cn. (A6b)
i=0

When ¥V, =0 for |i —j|>1, Eqs. (A6) and the starting

ij
point C §> = §,, enable one to obtain a very large number of
perturbation corrections exactly. For the two examples in

Sec. VI, I=2.
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The Jacobi functions sn(x/m) have been approximated by a quotient of polynomials of first to
fourth degrees. The method used here is an extension to nonlinear differential equations of one
previously published for first- and second-order linear differential equations. That method uses
power series and asymptotic expansions simultaneously. The accuracy here obtained is very
good (the absolute error is lower than 10™® for m <0.8) except for values of the parameter m
near 1. They are much better for several orders of magnitude than those based on the Padé
method for the same number of parameters to be determined.

{. INTRODUCTION

A method to obtain fractional approximations that uses
power series and asymptotic expansions simultaneously has
been published recently.'~ One of the main differences with
other methods is that this method requires the use of a suit-
able variable® instead of any independent variable as custom-
arily used. The method has been applied to functions defined
by linear differential equations.'~

In this paper we consider the Jacobi functions of the first
kind, sn(x/m), which are defined by a first-order differen-
tial equation of second degree. In the case of nonlinear differ-
ential equations the choice of a suitable independent variable
becomes more crucial, and our analysis shows that the vari-
able is unique and is obtained from a differential equation
derived from the original one. Once the suitable variable is
defined, the approximations attain very good accuracy.
With only a fourth-degree polynomial we can obtain an ap-
proximation of greater accuracy than the usual table of Ja-
cobi functions for any value of the parameter m, provided m
is not very close to 1 (m <0.92).* We have compared our
approximations with those obtained by the Padé method®
and our accuracy is much better for the same order of ap-
proximation.

We have arranged the material of this paper in the fol-
lowing way. In Sec. I, we detail how the suitable variable is
obtained. The procedure leads to an auxiliary differential
equation of the Riccati type, whose solution gives the ade-
quate independent variable. Fractional approximations in
this variable are calculated in Sec. II1. Each coefficient of the
approximation is determined as a function of the module m
and a quarter of period K(m) of the Jacobi functions. The
accuracy of the approximations from first to fourth degree is
computed in Sec. IV. The degree of the polynomial denomi-
nator is always one degree higher than that of the numerator.
At least six exact digits are obtained for the fourth-degree
approximation for m < 0.92. This shows that the approxima-
tions give the accuracy of the usual Jacobi tables* and the
computations require only a desk calculator. The graphs in
this section will help to choose the adequate approximation,
for the accuracy needed.

The last section of this paper is devoted to the conclu-
sions and the discussion of the main results.
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Il. SUITABLE VARIABLE FOR ELLIPTIC FUNCTIONS

The differential equation for elliptic functions of the
first kind is

2
(d_y) =1—1+my*+m?*, (1)
dx

wherey = sn(x/m) and m = k 2is the characteristic param-
eter of the elliptic function. The function y has a period 4K,
where X is a function of m.

Suppose we approximate y by the quotient of polynomi-
als of degrees n and /, respectively, then

y=P,(x)/Q,(x), (2)
ﬂ____Pan _ZQIPn . (3)
dx Qi

By substituting into (1) and rationalizing, we obtain
(P,Q,—QiP,)Y=Q1— (1+m)P.Q}+mP;. (4)

Here the degree of each of the terms are, respectively,
2(n+1—1),41,2(] + n), 4n. Since in our method we want
to compare the highest powers, we should have the higher
degree in at least two terms. We should analyze the possibili-
ties /sn; however, since the results are the same in the three
cases, we will analyze in detail only the case /> n. In this case
the largest degree on the right-hand side is 4/ and the differ-
ence of the degrees on both sides of the equation is
2(l — n) + 2. Since ! — n is larger than zero, the least differ-
ence will be 4.

In order to equalize the degrees of both sides we have to
change the variables, thus arranging that the degree of the
left-hand side of the Eq. (4) increases by four units when we
arrive to the fractional approximation. By denoting the new
variable by ¢, we should have

t=1x), y(x)=u(t). (5)
From our previous considerations dt /dx should be a
second-order polynomial in ¢

%=,u2(t+a)2+52, (6)

where u, a, and B are coefficients to be determined. In this
way, ¢ is obtained from a Riccati equation with constant
coefficients. The solution will be trigonometric or a hyperbo-
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lic function. Since we want to keep the periodicity of the
elliptic function, we consider only the trigonometric solu-
tion, that is, we take u real. One of the adequate solutions to
our problem will be

t+a=(B/u)tan[Bu(x+c)]. (7

In order to apply our method to fractional approxima-
tions we should use the interval (0, « ) for the new indepen-
dent variable, this the interval (0, 2K) for x is mapped to the
interval (0, oo ) for ¢, and the same assumption for the inter-
val (2K, 4K). Thus, we have that a and ¢ must be zero, and

T 4K T

Bu , t= - Btan(4Kx) (8)

We shall see later [Eq. (25)] that if we choose 8 =1,
the approximation exactly reproduces the Jacobi functions
sn(x/m) for the parameter m = 0, that is, sin(x). With this
selection we have defined the suitable variable as

t=(1/p) tan(ux), p=u/4K. 9
Using this change of variable, Eq. (1) becomes

2
(1+MﬂﬁG%)=l—(L+mw?+mw. (10)

lil. FRACTIONAL APPROXIMATIONS

polynomials ?’,, (t)/ @, (). The boundary conditions in our
case are that y(x) is zero for x = 0 and x = 2K, which means
that u(?) is zero for 1 =0 and ¢t = . From the first condi-
tion the independent term of P (1) is zero. From the second
condition the degree of Q, (¢) must be higher than the degree
of P ().

The structure of the polynomial P (¢) and the symme-
try of sn(x/m) suggest an additional change of variable,
which simplifies the calculation of the approximations

t=2%,
v(z) =u(t)/t.
Equation (10) is now transformed to

(11)
(12)

(1+p%) (v+22:v) =1— (1 4+m)zv’* + mz¥*. (13)

Now we replace v(z) by a fractional approximation
v(z) =P, (2)/Q;(2) . (14)

Equating now for the degree of the highest power in
both sides of Eq. (13) we obtain 2 + 2(n + 1) = 4/, that is,
l=n+41.

The recursion relation for the coefficients of the power
series for v, i.e.,

0

v(z) = ¥ a2, (15)
Once Eq. (10) has been obtained we can proceed to k=0
obtain a direct approximation of u, writing it as a quotientof ~ Will be
J
k—1
2(1 + 2k)aga, = — 2 [1+m+2u>(14+20)2k—1—-2)]a,a,_,_, — 2 (1+20(1 42k -2)a,a, _
i=1
+ ZO [m( zoa,a,._,>( z asak_2_,-_s) —ut (1420 (2k—2i — 3)a,-ak_2_,~] y n»2, (16)
i= r= s5=0

and for n = 0,1
6apa; = — (1 4+ m)a; — 2u’a;
According to Jacobi’s power series, a, must be 1.
In Table I the first four coefficients of the power series
are given, these will be needed for the best approximation
analyzed in this paper.
The asymptotic expansion is obtained by inserting

ay=1, 17

v(z) =-— Z b,z (18)

Z k=0

TABLE 1. First four coefficients of the power series as a function of m and
H.

a,=1
ay= —}(1+m+24%)

=—1 m2+# 1+m) 4 — #
= (+)+10+5
SN S 1 74 LES.0%
@ 5020( +m 36 14
n 7. 9% 4(1_+.'£)_ T 28
30 3 45 TR Yol
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in Eq. (13). However, this is more easily obtained from the
preceding power series by noting that a transformation of the
type

s=1/u'z, w(s)=v(z)/u’s (19)
leaves Eq. (13) invariant. Therefore

bk = (l/ﬂz)(ak//l«4k) . (20)

The approximation will be

2" -1
b(z) = __ﬁ_ , (21)
1+ 3192

where n = 1,2,3,.....

Here the p’s and ¢’s will be obtained from the equality of
the coefficients

Zor(Z a2 )1+ 5 07).

j=1

S (50 S +2)
23)

We have to obtain 2n + 2 equations. Our analysis shows
that the highest accuracy is obtained when we choose equal
number of coefficients in Eq. (22) and Eq. (23) (n + 1 coef-

(22)
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ficients from each equation). In this case the results are giv-
en in Table II for the first four values of 7.

It is important to point out that for m = 0 the approxi-
mation reduces to

v(z) =1/(142/2). (24)

This result has been verified for all of the orders » here
analyzed. When Eq. (24) is expressed in terms of the origi-
nal variable x, it becomes

p(x) = 2 tan(:c/Z)

1 4+ tan®(x/2)

This corresponds to the exact value of sn(x/m) for
m = 0. Thus the approximation becomes the exact function.
This is a consequence of our choice of 8 =1 [see Eq. (8)].

IV. RESULTS

We have analyzed the approximations for values of »n
from 14 and for any value of the module m. For a given n
the best results are obtained when we take the same numbers
of terms from the asymptotic expansion as from the power
series. The values of this p’s and ¢’s for three cases are given
in Table II as a function of the coefficients a’s given in
Table I.

The largest error always happens for x = K(m). An ex-
ample of this is shown in Fig. 1 form = 0.75 (n = 2, 3). We

=sin(x) . (25)

TABLE II. Fractional parameters for first- to fourth-degree approxima-
tions as a function of u and the power series coefficients.

-2
10 1

n=1
Po=1 ai=4
n=2
Po=1 =4 —a
p=u g =p
n=3
Po=1 q=p—a
l=#4+“xﬂz+af—az @ =t ﬂ4“‘12]
u+a #+a
p=p g5 =
n=4
Po=1
o= — b +apt 42y’ —a +a,
' pttap’+a,—di
_ z[ —p6+aw‘+2a%u2—a?+a3]
Pl #rap’+a,—adl
py=p°
0= —u*+au’ +a;~aa,
! prap’t+a,—a
_ —pftapt+ (ay—a@)u’ 4+ —aa,
o wtap’+a,—a
q =;¢“[ "/“6"'“%/‘2"‘“3—”1“2]
’ B tapt+a,—a
gy =u’
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FIG. 1. Semilog plot of absolute error AY = y — § for second- and third-
degree approximations for m = 0.75 as a function of x/K in the interval
(0, 2).

have shown only a half-period, because of the symmetry of
the function. The errors near x =0 and x = 2K are very
small. The maximum absolute errors are 0.72X10~2 and
0.17X 10~* for n = 2, 3, respectively, which correspond to
relative errors of 0.33% and 0.0008%, respectively.

The maximum error, as a function of the module m, is
shown in Fig. 2 (forn = 1, 2) and Fig. 3 (for n = 3, 4). The
maximum error increases with m, and the approximation is
very poor near m = 1. The main problem for m = 1 is that
the solution is tanh(x), which is not periodic. For m = 1,
u# =0 and b, =  and the approximation is not well de-
fined.

The accuracy increases quickly with ». For instance, if
n =2 the maximum error is less than 10~* for m <0.3.
Meanwhile, for m <0.3 and n = 3 the maximum error is
smaller than 10~% For n = 4 the accuracy is better than
108 for m <0.8.

Our nth-order approximation can be compared with the
nth-order main diagonal Padé approximation M, for sn(x/
m) given in Table 10.1, p. 91 of Ref. 5. Since Padé approxi-
mations are not periodic we compare the maximum errors in
the first quarter of period, that is, for x in the interval (0,
K (m)), and in particular for values m = 0.4 and m = 0.6.

Considering m = 0.4 our approximations give at least
three, six, and ten exact digits for n = 2, 3, and 4, respective-
ly, compared with two, four, and five exact digits for the
Padés M,, M, and M,. Considering m = 0.6, the maximum
error for n = 2 is about the same (0.0019 in our case com-
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FIG. 2. Semilog plot of maximum absolute error AY,,,,, for first- and sec-
ond-degree approximations as a function of the parameter m.

pared with 0.0013). For n =3 and 4 we get six and nine
exact digits, respectively, compared with three and five exact
digits in the Padé case. Therefore the accuracy of our ap-
proximations is much better than in the Padé case, and in
addition we also obtain the characteristic periodic behavior
of the Jacobi function.

V. CONCLUSION

We have shown how the recent methods of fractional
approximations can be extended to some nonlinear differen-
tial equations by using a suitable change of variable. The
adequate change of variable is determined by an auxiliary
differential equation derived from the original one. For Ja-
cobi functions the suitable variable is tan(ux)/x and the
auxiliary differential equation is of the Riccati type. The Ja-
cobi function sn(x/m) has been approximated by a quotient
of polynomials of degrees 1 to 4. The accuracy is in general
very good for any value of the module m not too close to
unity (m <0.92). For m = O the approximation reproduces
the exact Jacobi function (sn(x/0) = sin(x)). Form = 1 the
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AY max
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FIG. 3. Semilog plot of maximum absolute error AY,,,, for third- and
fourth-degree approximations as a function of the parameter m.

Jacobi function loses its periodicity and the suitable variable
will be different. The accuracy in the fourth-degree case is at
least of six digits exacts for any value of x if m < 0.92. In most
of the cases the accuracy of our approximation is much bet-
ter in several orders of magnitude than those using the Padé
method.

ACKNOWLEDGMENT

We thank Professor Antonio L. Guerrero for his useful
assistance in the computation involved in this work.

'P. Martin and A. Guerrero, J. Math. Phys. 26, 705 (1985).

2E. Chalbaud and P. Martin, J. Math. Phys. 25, 1268 (1984).

3P. Martin and A. L. Guerrero, Scientia XLVII, 123 (1982); Proc. Int.
Conf. Plasma Phys. 1, 325 (1982).

“M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions
(Dover, New York, 1972).

5Y. L. Luke, The Special Functions and Their Approximations (Academic,
New York, 1969), Vol. I, pp. 90-91.

K. Visentin and P. Martin 333



Quadratures for self-dual GL(2,C) Yang-Mills fields

S. Chakravarty

Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

E. T. Newman

Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 and Institute for
Theoretical Physics, University of California, Santa Barbara, California 93106

(Received 31 July 1986; accepted for publication 24 September 1986)

It is the purpose of this paper to show that the GL(2,C) Yang-Mills equations can be solved in
terms of integrals over the characteristic initial data. The method is based on showing that
enough gauge freedom exists in the choice of characteristic initial data so that the data can
always be put into either upper or lower triangular form. With triangular form data the
Sparling equation (a linear first-order equation equivalent to the self-dual Yang—Mills

equations) can be solved by explicit quadratures.

I. INTRODUCTION

The self-dual (or anti-self-dual) Yang-Mills equations
have for a variety of reasons!> been extensively studied over
the past several years. Of the many solution generating tech-
niques, two methods seem to stand out; namely (1) the use
of the Sparling equation, a first-order linear matrix-valued
differential equation, equivalent to the self-dual Yang-Mills
equations and (2) the use of twistor theory via the solution
of a Riemann-Hilbert problem. Recently® it was shown that
the solution of the Sparling equation was identical to the
solution of the Riemann—Hilbert (RH) problem.

It is the purpose of this work to show that (at least) in
the case of GL(2,C), the Sparling equation (or the RH prob-
lem) can be solved explicitly in terms of quadratures over
the characteristic data. (It has been pointed out to us by L.
Mason and M. Hickman that our method probably does not
allow solutions for arbitrary initial data, although our solu-
tions probably do form a dense set and an arbitrary solution
may be approximated by one of our solutions.) The method
presented here is applicable only to globally regular fields. It,
however, can be generalized to local fields.

In Sec. Il we give a brief discussion of the Sparling equa-
tion and its connection with the twistor formulation of the
RH problem. We also show how to obtain the self-dual
Yang-Mills connection and field from the solution to the
Sparling equation. Section III deals with the solution of the
Sparling equation for the cases when the characteristic data
(which “drives” the Sparling equation) is in either upper or
lower triangular form for 2 X 2 matrices. In Sec. IV we dis-
cuss the “gauge” transformations on the Sparling equation
and its solutions which leave the Yang—Mills connection in-
variant and further show how to exploit this gauge freedom
to triangularize any 2 X 2 matrix-valued characteristic data.
This then implies that any arbitrary, (2X2), characteristic
data can be transformed to equivalent triangular data—
whose associated Sparling equation was discussed in Sec.
II. The triangularization procedure requires that the trans-
formation be regular and certain ratios of components satis-
fy the Riccati equation. The remainder of the section is de-
voted to showing the existence of appropriate solutions to
the Riccati equation with the correct singularity structure so
that the required regularity conditions on the transforma-
tion are satisfied.
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Finally in Sec. IV we illustrate our triangularization
method to a special class of data that is nilpotent and trace-
free. The importance of this class lies in the fact that it illus-
trates why the single instanton solutions are so easily found.

11. DISCUSSION OF SPARLING’S EQUATION

A. Derivation and meaning

Consider a GL(2,C) bundle ¥ X M with the connection
¥, (x*) over Minkowski space M. Let C, be the future null
cone of a point x* eM. Let ¢ andZ label the null generators of
the null cone at future null infinity, i.e., # *. A null geodesic
on C, is labeled by the same complex generators § and §
obtained by its intersection with .# and is denoted by
I.(£E). Let s be a normalized affine parameter along
1.(&E) so that 1=38/9s =1 (£,£)3/3x® is tangent to
I, (§,Z‘). Then one can define the GL(n,C) matrix-valued
function G(x*,£,£) to be the linear map that propagates in a
parallel manner an arbitrary vector in the fiber over x° to
S+ along L (£,0),

G(x°¢,E) = Oexp (f Ya dx“)
1(5,8)

=0 exp(f ¥al° ds).
IX

Now consider an infinitesimal loop formed by two
neighboring null geodesics /, (£,£) and /, (§ + d§,&) with
common origin x°, and a connecting vector M* d¢ at £ +.
This loop lies in an anti-self-dual two-blade. Parallel trans-
port of a self-dual Yang-Mills field F,,, , around this loop will
then give the identity. This follows from the fact that the
projection of a self-dual field on an anti-self-dual blade van-
ishes. Expressed in terms of G, one obtains
I=G " Y&EEG(E +dEE) I +A4dE /(1 +EE)), (2.2)
whereI + A4 d¢ /(1 + £€) is the infinitesimal parallel propa-
gator along the connecting vector on £+, A=y, M"
=y, dx°/d¢ is the asymptotic component (along the con-
necting vector) of the connection form. Hence 4, which is
defined on £, is a function of three-variables, i.e.,
A=A4(u,t,f). We are interested in the restriction of 4 to the
intersection of C,, with # + which is givenby u = u(x?,£,5)

=x°I, ((,£). We thus have Ay (x%(,8)=A4(x°,.$.5). By

(2.1)
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expanding Eq. (2.2) one obtains (1 + £8)AG /3¢ + GAg
= (0; defining (1 + {£)IG /3 = 8G, we finally obtain

6G= “GAR, (203)
which is Sparling’s equation for self-dual fields.

B. Connection of Sparling’s equation to twistor theory
and the RH problem

The material in this section is not essential to the re-
mainder of this work and can hence be omitted. It is never-
theless closely related. Since the details have been given else-
where we only sketch the ideas here.

The (dual) twistor approach’ to self-dual Yang-Mills
theory begins with an arbitrary matrix-valued function of
the three variables

wo = (x° —x%) + (x' + x»){,

wy = (x' —ix?) + x°+xE, &,
ie.,

a(Z,wew,),
which for fixed x* is to be holomophic in £ on an annular
region in the neighborhood of the equator on the Riemann
sphere () or extended complex plane ({). The idea then is
to find two matrix-valued functions Gy, (x%,§) and G (x°,5)
which are both holomorphic in the annular region and also,

respectively, in the northern and southern hemispheres of
the Riemann sphere, such that in the annular region

GNGS_1 =a(§;wo:w1), (2.5)
with (wy,w,) given by (2.4). This defines a classical RH
“splitting” problem. From the knowledge of Gy or G5 one
can construct the self-dual Yang-Mills field.

The above RH problem is related to the Sparling equa-
tion in the following manner.

The twistor function a({,wgw,) can be constructed
from Ay in the following way:

with P denoting path order integration.

If we now solve the Sparling equation (2.3) with the
condition that G(x,£,$) be an analytic function in both £ and
£ in the neighborhood of £ =¢, then the RH problem is
solved by

Gy (x°8) = G(x*08), Gs(x%f) = G(x%0,8). (2.7)

Solving the Sparling equation with the regularity condi-
tions is thus equivalent to “splitting” the twistor function
a($,we.w,) and thus solving the RH problem.

(2.4)

(2.6)

C. The connection and fieid from G

From the regular solutions of the Sparling equation,
G(x*L.E), it is easy to construct the connection one-form
¥4 (x) and hence the field F,, (x).

One has immediately from (2.1) that

1°V, GG~ =%, (x).
[It follows from the identity
3 (°V,GG ') =0,

(2.8)
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obtained from the Sparling equation, that the ¥, in (2.8) is
independent of (£,5).] By applying 8 to (2.8) (again using
the Sparling equation) we obtain
m°VY,GG ' = m, (x). 2.9)
[We are using the null tetrad defined by /¢ m®=3l°,
m® = 81° n® =1°+ 381° with
Io= A2+ 010 + 666 + 8, iC -6 — 1+ 88),
so that /'n = — m-m = 1, other products vanishing. ]
Equations (2.8) and (2.9) imply that

¥.(x) =V,GG ~' +jl, — hm,, (2.10)

withjand 4 determined applying 3 to (2.10) and multiply-
ing by m® and /°, respectively. This yields

h=18(V,GG™Y), j=m"3(V,GG~")=8h. (2.11)
The connection is thus
Y.(x) =V,GG ™' + 8hl, — hm,. (2.12)

Note that if G is a regular solution to the Sparling equa-
tion, thensois G’ = g(x)G for g a nonsingular matrix func-
tion of x°. This generates an ordinary gauge transformation
ony,ie.,

Y(x)=gyg ' +dgg™. (2.13)

The Yang-Mills field is then obtained from (2.12) in
the usual way

F=dy—yAy. (2.14)
lll. SPARLING’S EQUATION AND TRIANGULAR DATA

Before we discuss the integration of the Sparling equa-
tion with upper triangular data, we first investigate the Abe-
lian version of the same equation, namely

dF=A,, F= —loggG, (3.1)
with 4, the restriction of 4 (u,,£), the scalar null data for a
Maxwell field, to the intersection of C, with % *.

The general regular solution to (3.1) is

Foo By = f K(EED ) Ax e 5)dS, +£ (6,
s2

(3.2)
with
ds, =dn A dij/(1 + %)%
and the kernel
s o1 1EOm(A) 1 14t
K( 28,7, )=— = == —
S = DL 4 E—7
(3.3)
One thus has in the Abelian case the simple result
G(x.68) =g(x)exp( - JKAR dS,,). 3.4)

With the gauge freedom g(x) can be made into 1.
Unfortunately it is not easy to generalize (3.4) to the
non-Abelian case where G and 4, are matrix valued. How-

.ever in the case of 4z being 2 X 2, upper triangular, a gener-

alization does exist as we now show. (Though we are only
concerned here with 22 matrices, this generalization
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seems to work for larger upper triangular matrices. )
The Sparling equation written explicitly becomes

6(611 GIZ) - (Gll GIZ)(AII AIZ)
G21 GZZ GZl G22 0 A22 ’

or
3G, = — G4y, 3.5)
8G, = — G411, (3.6)
3Gy, = — Gpdy — Gdi, 3.7
8Gp= — Gpdyp— Gudra (3.8)

Equations (3.5) and (3.6) are the same as the Abelian case
just discussed and integrate to

Gy, =gu(x)exp(——fKA“dS,,), (3.9)

G21 =g21(x)exp( _JKAII dS,,,). (3.10)
Equations (3.7) and (3.8) are the inhomogeneous versions
of the same equation with the inhomogeneous terms given by
(3.9) and (3.10). Their solutions are

Glzzé(glz(x) —fKG“GllAlz dS,,), (3.11)

G22=(°?(g22(x) —J-Ké‘lelAu ds,,), (3.12)
with

é:exp(_fKAzz ds,,), (3.13)

a solution to the homogeneous equation.

By a gauge transformation, i.e., multiplication of G on
the left by a matrix-valued function of x*, (3.9)—-(3.12) can
be put into the following simple form:

= _ {Gu Glz)
G(x,8.5) —( 0 G, (3.14)
with
G, = exp( — fKAu dS,,),
G22 = exp( -_ fKAzz dS,]), (3.15)

Gy, = —Gn|KG ' Gy, ds,.

Using (2.10) and (2.14) it is a simple task to express the
connection and field in terms of the G'’s.

The above solution generating technique (for upper
triangular 4 , ) applies if the elements of 4 are spin weight
1 functions. However, in a more general situation the diag-
onal elements of 4, i.e., 4;, and A,, can be spin weight 1
functions, and the off-diagonal element 4,, can be a

— 25 + 1 spin weighted function for s>0. Equations (3.5)-
(3.8) canstill be solved, producing a regular G. We have also
studied this situation and plan to communicate the details in
a future paper.

IV. GAUGE FREEDOM IN THE CHOICE OF DATA
In this section we would like to show that there exist
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equivalence classes of data, where all data in the same class
yields the same connection and Yang-Mills field. Further-
more, we will show that in each equivalence class there will
be (at least) one choice of data that is in upper triangular
form. We will thus have shown that all 2 X 2 self-dual Yang-
Mills fields can be obtained from upper triangular data and
they can be explicitly given by the method of the previous
section.

The basic idea is to begin with the Sparling equation and
a solution G and look for transformations

G- Gg =G ',
so that the new G’ yields, via (2.10), the same connection
and field as did G. [ Note that here the g is different than in
(2.13) and is multiplied on the right.] We then find a new
Sparling equation for G’ with a new 4 '; a transform of 4.
Finally to complete the argument we seek a specialization of
the g so that 4 ' is upper triangular.

We claim that G’s related by

G'=Gg, (4.1)
for a regular g of the form

g=g(msp), (4.2)
with

I=x1,, m=xm, =23l (4.3)

yield the identical connection. We now sketch the proof.
From (4.1) we have

v.G'G~'=V,GG '+ GV, gg'G~!
=V.GG™' +G(gil, +&.m.)8'G ),
(44)
where we have used (4.2) and (4.3). Substituting (4.4) into
v =V,G'G'~ '+ m’§(V,G'G' "N,
—1%3V,(G'G'""m,, (4.5)

the primed version of (2.12), we find that all terms involving
g cancel, leaving

Ve ="
as claimed.

Since both Gand G ' satisfy Sparling equations for data 4
and A4, respectively, i.e.,

8G= —G4, 3G ' =G'4’,

one immediately calculates the relationship between the 4 ’s,
ie., '

(4.6)

4.7)

We can now ask for the equation on the g so that for an
arbitrary 2 X2 A4, wehave 4 ' in upper triangular form. Equa-
tion (4.7) becomes

(in 812)(A noA4 12>
2 822\ 0 A3
— (:‘:11 AlZ)(ill 312) _ a(ZH ng)
21 A2/ \82 8z 2 &)

The two relevant components of (4.8) are

A =g 'dg—g '3

(4.8)
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gud 1 =A1811 + 412821 — 3811
8214 1y = A28 + A28 — 08215

which, when Aj, is eliminated, yields after some manipula-
tion, the differential equation

(4.9)

A + A A%+ A —4,, =0, (4.10)
where
A=g/81, A=A4,,—A4,. (4.11)

Equation (4.10) is our required condition on the g for the
triangularization of 4. Note that aside from the condition
that the components of g be regular functions and |g|#0
there are no other restrictions on the g.

The main problem now is to show that (4.10) has solu-
tions A such that (a) g,; and g,, are appropriately regular or
similarly that A have an appropriate singularity structure
and (b) thatg,, and g,, (or A) be functions only of /,m,{,£.
(The space-time points x* enter into g only via its depend-
ence in / and m.)

We have tacitly assumed here that g,, and g,, are holo-
morphic, spin weight 0 functions. In the course of further
study, it has been discovered (with L. Mason) that, in gen-
eral, the g,, and g,, can be spin weight s functions for 50,
Their ratio (1), however, still remains a spin weight O func-
tion with appropriate singularity structure. The upper trian-
gularization in this case leads to the type of data described in
the last paragraph of Sec. III.

Before showing that (a) and (b) can be satisfied we first
discuss the meaning of the term regularity that we have been
using. By assumption the characteristic data 4 (u,£,&) was to
be an analytic function of u,¢,Z in the region  in the neigh-
borhood of the real line and (£,£) in the thickened S 2 defined
by £ near £. We refer to this latter region as CS'2. When 4 is
restricted to C, NI+, dg (x*,,E) is holomorphic in the
neighborhood of real x* and CS2. We demand that after
transformation, 4 -4 ' =g~ 'dg — g~ '3g, 4 ' (I,m,£,£) also
be holomorphic in the same region which implies that g have
the same holomorphic behavior. Since a holomorphic func-
tion can have zeros of only finite order we have immediately
the condition on A that in our holomorphic region A should
have singularities no worse than finite order poles. This is
what was meant by “appropriate singularity structure” for
A.

Returning to the questions (a) and (b), we first note
that there is an alternate way to write the independent vari-
ables / and m using the explicit form of /, and m,, namely

I=1Lx" =120+ O H[x° — x) + (x' + ix?)E)
+ &1 —ix?) + (X +x*)E1D,

or
I = (wy + {w,)/22P, (4.12)
with
wo = (x° — x*) + (x' + ix})E,
w, = (x' —ix?) + (x° + x*)&, (4.13)
P=1(1+¢D),
and
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m=m,x° =8l = (w, — Ew,y)/2\2P. (4.14)

The transformation, (4.12) and (4.14), from (/,m) to
(wo,w;) has the advantage of explicitly displaying all the £
dependence when we consider functions of ,,m,¢,{ becoming
functions of wy,w,,¢,¢. [Note that (wg,w,,£) is a dual twis-
tor.]

In this spirit Eq. (4.10) becomes

A

Z tal?+bA+c=0, 4.15

9 + +b4 +c (4.15)
with the holomorphic coefficients

a = a(wewy,5,E) = A1,/ (1 + £8),

b= b(wew,&E) = A/(1 + £8), (4.16)

¢ = c(wowptE) = — Ay /(1 + £8).

Equation (4.15) is the Riccati equation for A as a function of
¢ with external parameters &,w,, and w,. From the theory of
solutions to the Riccati equation’ we see that if at some point
& = &, one is given the initial holomorphic data

A’O =4 (§0!§’w0’w1 )
there exists a unique holomorphic solution in the neighbor-
hood of &, A = A(£,E,we,w,). Using (4.12) and (4.14) we
see that A is a function of only (,m,£,&) as required by condi-
tion (b).

To show that condition (a) is satisfied, i.e., that the ap-
propriate singularity structure exists, we use a powerful
theorem’ concerning the fixed and movable singularities of
solutions to the Riccati equation. The fixed singularities,
which arise only at the singular points of the coefficients
a,b,c in the Ricatti equation, are essential singularities or
branch points while the movable singularities, arising from
the choice of initial data, are only finite poles. Furthermore,’
the solutions are holomorphic in the external parameters
(§Wow;).

The first point to be noted is that the fixed singularities
are of no concern to us since in our region of concern (real x*
and CS'?), the coefficients are all holomorphic. We thus can
start with A = A, at {;; then by analytic extension first in £
and then in Z‘ (near £) for fixed x* (and perhaps repeating
this process of extension in ¢ and then ), we have A holo-
morphic everywhere on CS? except at a finite number of
points where there are just finite poles. If we adapt our ( §,Z‘ )
coordinate system so that there is no pole in A at the north
pole (or at ) of (§,§‘ ) we can write A as the ratio of two
functions which are both regular, with zeros on CS %, i.e., we
can write

A =g/
thus satisfying condition (a).

V. A SIMPLE EXAMPLE

We describe here a simple but important example of this
triangularization process. The Yang-Mills field associated
with this example is the single instanton field. Consider 2 X 2
data of the form

A=Ay /17,
with

(5.1)
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A2 =0, trd,=0, (5.2)

84,=0. (5.3)

From (5.2) A, has the form

Ay = (‘; _B a), @+ y8=0. (5.4)
Substituting (5.1) and (5.4) into (4.10) we have

= —(B/IHA +a/B)), (5.5)

which, since 8a = 88 = 0, can be integrated immediately as
A= —(a+mh/B, (5.6)
ie.,

gu=08 8g,=—(a+ml. (5.7)

Note that g,, and g,, are spin weight s = 1 functions and are
of the type mentioned in Sec. IV.

VI. DISCUSSION

We have shown here now all global, on M, GL(2,C)
self-dual Yang-Mills fields can be obtained in terms of ex-
plicit integrals over the characteristic data. Similar methods
can be used to obtain local fields.
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With these results comes a series of related questions
and problems that are being pursued. An immediate ques-
tion is, can this triangularization process be generalized to
higher dimensional groups, e.g., GL(3,C). Another class of
problems is how to give triangular data with specific symme-
tries so that the Yang-Mills solutions reduce to the known
special cases,” e.g., axial-symmetric, stationary Einstein
equations, sine—~Gordon equations, etc.
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Comment on a paper by Z-Z. Zhong [J. Math. Phys. 26, 404 (1985)]

K. Demys

Mathematics & Morphology Research Center, Editorial and Research Offices, 1052 Santa Fe Avenue,

Albany, California 94706

(Received 6 June 1986; accepted for publication 15 October 1986)

The paper of Zhong [J. Math. Phys. 26, 404 (1985) ], though very interesting, did contain
errors of both scientific and historical fact that should be corrected for the record.

I. SCIENTIFIC ERROR

In the paper by Zhong,' p. 404, Sec. II, first paragraph,
lines 5-7 are in error, since z~! always exists, even for
numbers in H of zero norm. Thus the numbers
z7'=[k(1 4 €)] ! always exist, where k is real or complex,
and €2 = 1, €# + 1, even though they all have zero norms.
But a distinction, easily verifiable, must be made here
between z~' and 1/z since we are now dealing with zero
divisors. Thus 2z '= (1 +¢€)/4k whereas 1/z=1/
k(1 + €), a class of numbers which, despite their closed rep-
resentations, are divisors of infinity and have infinite norms.
Also, which the author of the article in question also failed to
observe, [k(1 + €)1°=1(1 + €), which is of course idem-
potent; as it should, z°2" = z". Also, z~ 'z = 2%, and indeed

[(1+e)/4k][k(1 £ €)] =4(1 % ¢€).

But note well that, since 2°#1, z(1/z) #£z(z~"); but z(1/
z) = 1. Already in papers from 1977-1980 Musés®> had
pointed out these facts (see Sec. II).

Although the existence of z~! does not affect Zhong’s
results per se and immediately, the fact that his lines on p.
404, above noted, are in error may well mislead others trying
to extend his results, and this comment is thus offered in
addition to instrinsic interest. It is worthwhile noting that
these numbers lead to an important timesaving tool: the
“countercomplex” form of de Moivre’s theorem for complex
numbers; namely

339 J. Math. Phys. 28 (2), February 1987
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€% = (cosh @ + e sinh 8)* = cosh k@ + € sinh k6,

where @ may be real, complex, or countercomplex (i.e., in
the form a + be, where g and b are real). Also,

€* = cosh® wk + € sinh® yrk — 4i(1 — €)sin k.

Thus Je= +4(1+€—i+€i), where € =ie and
hence (€/)?> = — 1. All the Pauli and Dirac spinors are sus-
ceptible of countercomplex hypernumber representation, of-
ten more convenient than matrices.

Il. HISTORICAL ERROR

Again see p. 404, lines 3-5. It was not Kunstatter, Mof-
fat, and Malzan® who first applied these numbers in physics.
Before them Musés® was the first to point out these hyper-
numbers’ physical usefulness in 1980 and considerably ear-
lier in an invited lecture, in 1970.
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Multiplicative stochastic processes involving the time derivative of a Markov
process

Henk F. Arnoldus and Thomas F. George
Departments of Physics and Astronomy and Chemistry, 239 Fronczak Hall, State University of New York
at Buffalo, Buffalo, New York 14260

(Received 2 May 1986; accepted for publication 1 October 1986)

The characteristic functional of the derivative ¢ () of a Markov process ¢(¢) and the related
multiplicative process o (1), which obeys the stochastic differential equation

io(t) ={A4 + ¢(t)B)o(t), have been studied. Exact equations for the marginal characteristic
functional and the marginal average of o(¢) are derived. The first equation is applied to obtain

a set of equations for the marginal moments of #() in terms of the prescribed properties of
&(1). It is illustrated by an example how these equations can be solved, and it is shown in
general that @(z) is delta correlated, with a smooth background. The equation of motion for
the marginal average of o(¢) is solved for various cases, and it is shown how closed-form
analytical expressions for the average (o (¢)) can be obtained.

I. INTRODUCTION

The equation of motion for the density operator of an
atom in a finite-bandwidth laser field or the equation for the
regression of the atomic dipole correlations assumes the gen-
eral form'?

1% 4+ 4B,
dt

where 4 and B are linear operators in Liouville space, which
act on the Liouville vector o (). Here ¢(¢) represents the
laser phase, which is considered to be a real-valued stochas-
tic process. The fluctuating phase broadens the laser line, but
the atom responds to the instantaneous frequency shift #(¢),
which is the time derivative of the laser phase.’ The process
gz'S(t) is again a stochastic process, and via Eq. (1.1) the state
of the atom or the correlation functions o (f) become sto-
chastic quantities. The issue in quantum optics is then to
solve the multiplicative stochastic differential equation
(1.1) for the average (o (#)). The first solution was obtained
by Fox,* who assumed the process ¢ (¢) to be Gaussian white
noise, which corresponds to a diffusive Gaussian phase ¢(¢)
(the Wiener-Lévy process). This result was generalized to a
Gaussian process éi(t) with a finite correlation time and an
exponentially decaying correlation function®”’ (the Orn-
stein-Uhlenbeck process), and to a process ¢(z), which is
again diffusive, but not Gaussian®® (the independent-incre-
ment process). Furthermore, Eq. (1.1) can be solved for
{o(1)) if we have é&(t) as a Markov random-jump pro-
cess, ! which models a multimode laser.'*'>

In these examples the solvability of the problem relies on
the Gaussian property of ¢(¢), or hinges on the prescribed
stochastics of ¢ (¢). This implies that the process ¢ () is actu-
ally considered to be the driving process. For a single-mode
laser in general, however, the phase fluctuations ¢(¢) are
specified rather than the derivative éS(t) of this process. A
prime example would be the atomic response to phase-
locked radiation,'® as it is generated for instance by some
ring lasers.'” In this paper we shall develop a general method
to solve Eq. (1.1) for the case that ¢(z) is a given Markov

(L.L1)

340 J. Math. Phys. 28 (2), February 1987

0022-2488/87/020340-07$02.50

process. The formal theory will be exemplified by a specific
choice for ¢(¢), which models phase-locked radiation. Fur-
thermore, we shall study the time derivative of ¢(¢) itself
and extract the stochastics of #(¢) from the properties of

().

Il. THE STOCHASTICS OF ¢(?)

Let us define the phase ¢ () as a homogeneous Markov
process.'® Then its stochastics is fixed by the probability dis-
tribution P(¢,t) and the conditional probability distribution
P_(¢,|¢,) (r>0), which has the significance of the prob-
ability density for the occurrence of ¢(t+ 7) =4, if
&(t) = ¢,. For ahomogeneous process this is independent of
t by definition. The higher-order statistics is now determined
by the Markov property.'® From the obvious relation

fd¢’ P,_, ($|¢)P(¢' 1) = P(d,t), t>t,,

it follows that it is sufficient to prescribe the probability dis-
tribution P(¢,t) for a single time point ¢, only. The time
evolution towards ¢> ¢, can then be found from Eq. (2.1)

and P,_, (414").
The conditional probability distribution obeys the Mas-
ter equation’®

9 p (4ild) = fd¢z{W(¢3|¢2)

or
—a($;)6(¢; — ¢2)}Pf (6,18)),
2.2)

with W(¢'|#) >0 as the transition rate of the process from ¢
to ¢’ and

a(g) = f dsW(S'|p)

which is the loss rate of ¢, independent of the final value ¢'.
The initial condition for Eq. (2.2) reads

Po(¢s)¢) =6(ds — 1), (2.4)
so a given W(¢'|¢) determines P, (¢4;|@,) for every 730.

(2.1)

(2.3)
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Hence the stochastics of a homogeneous Markov process
#(t) is fixed as soon as P(¢,,) and W(¢'|$) are prescribed.
These functions will from now on be assumed to be given.

lIl. THE CHARACTERISTIC FUNCTIONAL

A convenient way to represent the stochastic properties
of a stochastic process is by means of its characteristic func-
tional.>? Since we are concerned with the process #(7), we
define

Z[k]l= <exp(—if dsg’&(s)k(s)», t>t,, (3.1)

which is a functional of the test function k(¢). Here the angle
brackets denote an average over the stochastic process ¢ ()
or (1), whatever is prescribed. A general method to evalu-
ate Z, [ k | for the case where ¢ (¢) is a homogeneous Markov
process has been given by van Kampen.?!

Knowledge of the characteristic functional Z, [k ] de-
termines completely the stochastics of ¢(¢), which can be
seen as follows. Choose k(s) as the sequence of § functions

k)= — 3 86— 1)k, >0, (3.2)
I=1
and take t = o in (3.1). Then we find
Z_ (k] = {explik,d(t,) + - + ik, $(£))), (3.3)

which is the moment-generating function of #(¢). If we write
z, (k,st,;.3k1,t)), then we can obtain the moments of
¥(t)=¢(2) according to

('/'(tn)" '¢(t1))

wn 0 a
=(—D" 3 ﬁ;
XZy (Kpsbyseoskist) | k= = k=0 5 (3.4)
and the probability distributions by
P, (hustisthts)
- (211”" fdk,, e-dk,
Xe K= m Kby (ko tsesknty) (3.5)

where we have introduced F’,, in order to distinguish from
the probability distributions for ¢(#) itself.

IV. THE MARGINAL AVERAGE
A. General

The exponential in Eq. (3.1) isa fuqctional of both k(¢)
and ¢(1), so it depends on the values of #(¢) in the complete
interval [z,,7]. After the average has been taken it will be
only a functional of k(). The general attempt to evaluate
averages of a functional is to derive an equation for the aver-
age. For subsequently solving this equation for functionals
which involve Markov processes, this scheme is most conve-
niently carried out by an intermediate introduction of
Burshtein’s marginal averages.?? Since in our problem the
stochastics of ¢(¢) is assumed to be given, the appropriate
marginal characteristic functional, which is related to
Z,[k ], should be defined as
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0. 1gok 1 = (861 — doexp( - zf &5 k)

4.1
for t>1t,. The initial value is then
Q:o [¢o:k ] = <6(¢(to) - ¢o)> = P(¢o’to) ’ (4.2)
and Z, [k ] follows from Q, [#,,k ] according to
Z,1k1 = [ b, 0,180k 1. 43)

For t = 1, we find with Eq. (4.2)

Z k] = f do P(Jote) = 1,

in agreement with Eq. (3.1).

In order to derive an equation for the time evolution of
Q, [0,k 1, we first increase f by a small amount Az > 0. This
gives

0., sk ] = (S60 + A0 — 49
Xexp{ — i@t + Ar) — ())k(2)}

Xexp( - z'f ds:}(s)k(s))) .

Subsequently, we expand the exponential functional of
@(s) in a series, and we take the average in (4.4) term by
term. Hereafter, we apply the Master equation (2.2) for
P, A, (¢|dy) and take the limit Az—0. This yields an equa-
tion for the marginal average, and explicitly we find

a —
2 0.1gok1 = f dBIW ($o|$) — a($)8(do — $)}

Xe~ b= KD 0 [4k]. (4.5)

The Markov process ¢(t) is characterized by P(g,t,) and
W(dy|#), which, respectively, determine the initial value
and the time evolution of Q, [#,k ]. For a specific choice of
W(é,|¢), we have to solve Eq. (4.5), after which the charac-
teristic functional Z, [k] can be obtained from Eq. (4.3).

Notice the resemblance between the result (4.5) and the
Master equation (2.2). If we multiply Eq. (2.2) by P(¢,,4,),
take 7 = t — ¢, and apply the relation (2.1), we find

%P (o) = f B ($ol$) — a($)5(do — ) IP(D) ,

(4.6)

which is the Master equation for P(¢,,¢). This equation is
identical to Eq. (4.5), including the initial condition (4.2), if
we set k(¢) =0. On the other hand, it follows from Eq. (4.1)
that Q,[dg.k] = (8(d(t) — &)y = P(dyt) if we take
k(2) = 0, so that in this case Eq. (4.5) should indeed reduce
to Eq. (4.6).

(44)

B. independent increments

In order to display the usefulness and applicability of
the marginal-functional approach, we consider an example.
Let us specify the transition rate by

W(golp) = rw(do—¢), ¥>O0,

where the function w(7) is normalized as

4.7)
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fdn w(p) =1. (4.8)
The stochastic process ¢(¢) will be defined on the real axis,
with — o0 <@ < «. The assertion (4.7) states that the prob-
ability for a transition ¢ — ¢, depends only on the phase dif-
ference ¢, — ¢, and from Eq. (2.3) we find thata(¢) = 7, so
that the total loss rate for ¢ is independent of ¢. This is a
diffusion process, and it is commonly referred to as the inde-
pendent-increment process. As an initial condition for the
probability distribution, we take

P(d,1,) =6(4) . (4.9)
Comparison of the Master equations for P, (#|¢') and

P(¢,t) then shows that the probability distribution and the
conditional probability distribution are related according to

Pt——to(¢|¢0) =P(¢ - ¢0»t) . (410)

The Master equation (4.6) for P(¢,t) can be solved by
Fourier transformation with respect to ¢. If we write

i’(p,t) = (¥?V) = JW do e¥?’P(4,1) , (4.11)

which has f’(p,to) = 1 as the initial condition, then the solu-
tion of Eq. (4.6) is immediately seen to be

Pp,ty =@ —N0—1) 5y (4.12)

in terms of the Fourier transform i (p) of w(#). Note that
W(0) = 1, as a result of the normalization (4.7). Along the
very same lines we can solve Eq. (4.55) for the Fourier trans-
form Q, [p,k]. We obtain

a, [pk]= exp( - yf ds Jm dé(1 — e"”"""“”)w(gb)) ,
(4.13)

after which the characteristic functional follows from

Z[k1=0,10k], (4.14)

which yields the familiar result.®

V. THE MARGINAL MOMENTS
A. General

If we take k(s) as the sequence of delta functions (3.2)
in the definition (4.1) of the marginal characteristic func-
tional, it assumes the form

0,10k 1 = (86 — dofesp(i 3, k)0 - 0)).

(5.1)

with¢(z) = fﬁ(t) and ©(¢) the unit-step function. Just as we
can find the moments (¥(z,) - -¥(#;)) of ¥(z) from
Z_ k], we can obtain the marginal moments
(B(@(2) — dolip(2,) - -9(2,)) from Q, [$o.k]. Obviously the
integral over ¢, of the marginal moments yields the mo-
ments. The characteristic functional Z, [k] becomes inde-
pendent of ¢ if t>¢, for all /, but @, [¢y,k] remains time
dependent. This is due to the appearance of 8(¢(t) — @)
Furthermore, the time ¢ is a dynamical variable in Eq.
(4.55), so that care should be exercised in the time ordering.
The marginal moments follow from Q, [#,,k] by differenti-
ation, according to
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(8lp(8) — dop(2,) - P(1,))O(t —1,) Ot — 1)

= —i)“ai-~-—‘9— 0, [4ok ]

5.2
k, Ok, >-2)

ky=--=k =0

Equation (4.5) for Q, [#,,k] implies an equation for the
marginal moments. First, we note that

exp{ - ’(¢0 - ¢)k(t)}Qt [¢’k ]
= {516 — drexp(i 3 bl — #1650 — 1)

+ :p(t,)e(t—t,)}» ) (5.3)

After substituting this expression in the right-hand side of
Eq. (4.5), differentiating with respect to %,,...,k,, setting
k, = -+ = k; = 0, and integrating over time, we obtain

(8(d(2) — o) (t,) - 9(1))O(t —t,) - O(t—1))
= [ 4w 4l$) — a()568,— $1)

xfdt’<6(¢(t') —H(do— )" —1,)

+¢(,)01¢ —1t,)}

o {(Go— )t — 1) + ¥ (1)O( — 1t} .
(5.4)

When we set ¢ > ¢, for all /, we have a Master-like equation
for (5(¢ (1) — o) ¥(2, ) -¥(t,)), and the lower-order mar-
ginal moments (5(¢(2) — do)(¢,, ) --¥(¢,)) with m<n
appear as inhomogeneous terms. Hence Eq. (5.4) should be
solved successively for n = 1, n = 2,... . We note that Eq.
(5.4) provides an explicit expression for (¢(¢, ) ¥(¢,)) in
terms of the lower-order marginal moments after an integra-
tion over ¢,. Indeed, from the property
fd¢o{W(¢o|¢) —a($)8(¢—¢)} =0, (5.5)
the term with (8(#(¢') — @)¥(z, ) --¥(¢;)) on the right-
hand side of Eq. (5.4) vanishes after an integration over ¢,,.

B. Lowest orders

In order to exhibit clearly the structure of the equation
for the marginal moments, we consider the cases n = 1 and
n = 2 in some more detail. After a slight rearrangement, Eq.
(5.4) for n = 1 can be written as

(8(p(2) — do(t,))
= f A6 W (Bold) — a($)8(do— $)}

x| do— 9P

+f ;d"(a(‘“") ~owan),

for ¢>¢,. This integral equation in time is equivalent to the
differential equation

(5.6)
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% (B(B(8) — do)B(2))

- f AW ($o|9) — a($)8(do— $)}

X ((#(1) — )(21)) (5.7
together with the initial condition
(8(d (1)) — dol¥(2,))
= [ 46w (l$) — 081580 — 81}
X ($o — )P($,t)) . (5.8)
The equation for the first marginal average

(8(d(2) — do)i(2,)) is identical to the Master equation
(2.2), but with a different initial value.
Integration of (5.8) over ¢, yields

W) = f d¢f ddo W(ol$) (o — $IP(B11) ,

(5.9)

which expresses explicitly the average of (¥(#,)) in the given
functions W(¢,|#) and P(4,t,). With the aid of the Master
equation, we can cast (5.9) in the form

W) =f"¢¢567”¢""=dit‘¢"'”’ (5.10)

as it should be.

The solution of Eq. (5.6) for {8{¢(t) — do)¥(t,)) pro-
vides the input for the explicit expression for the two-time
correlation function, which becomes

(W()¥(2))
- f ds f dbo{ W ($ol$) — a($)5(bo — $)}

X{(¢o - ¢)25(t2 —t))P(4,t,)
+ (g0 — #) ({8(d(2;) — SW(1,))O(2t, — 1)

+ (8@ (1)) — P (2,))0(; — 1))} . (5.11)

The appearance of §(¢, — t,) shows that the time derivative
of any Markov process is § correlated with a continuous
background.

C. Random jumps

Equation (5.11) for instance might seem awkward, but
it is really straightforward in its application. Let us illustrate
this with an example. Consider the random-jump process
&(2), defined as a stationary process with transition rate

W(d|¢') =yP($), ¥>0, (5.12)

in terms of an arbitrary probability distribution P(¢). Equa-
tion (5.12) is equivalent to the statement that the probability
for a transition ¢’ —¢ is independent of the initial value ¢’
(see Ref. 13). From Eq. (5.9) we immediately derive

(Y(t)) =0, (5.13)

which is, in view of (5.10), necessary for a stationary pro-
cess. From (2.3) we obtaina(¢) = 7, and the solution of Eq.
(5.7), with initial value (5.8), is readily found to be
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(8(é(8) — Polp(t1)) = ¥P(do) (o — be ™70~ 131,
(5.14)

Here we have introduced the moments of P(¢) as
b= [as o), (5.15)

which are parameters of the process #(¢). Solution (5.14)
can be substituted into Eq. (5.11), which gives the correla-
tion function

(Y (2))Y(8,)) = y(b, — b}H{26(t — t,) — ype 7= 1l},
(5.16)
for all #,¢,. From (5.15) it follows that
b,—b%>0, (5.17)

so that for t,#¢, the correlation (5.16) is negative. For
t, = t, the & function dominates the negative term, so that
(¥(2,)?) is positive, as it should be.

VI. THE MULTIPLICATIVE PROCESS

So far we have considered the stochastics of é&(t) itself,
and its characteristic functional. In this section we shall gen-
eralize the method, in order to solve the multiplicative equa-
tion (1.1). To this end we write the formal solution of (1.1)
for the stochastic vector o(¢) as

O'(t) =e—iA(l—fo)Texp[ _lf ds¢(s)§(s)]0’(to) s
fo

(6.1)
where T is the time-ordering operator and B(1) is defined as

B(t) = e~ pe—it-w (6.2)

In close analogy to the definition of Q, [dq.k] in Eq. (4.1),
we now introduce the marginal average of o(¢) by

S(Port) = (8(8(2) — ol (1)) . (6.3)

Then we substitute the expression (6.1) for o(¢) and replace
tby t + At, which gives a formula similar to Eq. (4.4). That
this can also be done for the time-ordered exponential is
sometimes referred to as the semigroup property of the evo-
Iution operator. Along the same lines that led to Eq. (4.5) we
now find

ig;;wo,o = AL(Bot) +i f AW (dold)
—a(P)S(dy — d)re =N (4 1),

(6.4)
or equivalently
. d ,
(15— 4+ iatg0) Jedo
=ifd¢ W(dold)e "%~ B (g,t) . (6.5)

Notice that the operator B appears in the exponential, rather
than B(¢), as could be expected by analogy with the charac-
teristic functional. For a given stochastic process ¢ (¢), e.g.,a
given W(¢|¢') and P(g,t,), we have to solve Eq. (6.4) with
the initial condition
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$(Poto) = (8(d(15) — dolo(ty)) (6.6)
after which (o (#)) follows from
(o()) = fd¢o $(dost) - (6.7)

For a given nonstochastic state o(¢,), the initial condition
reduces to

$(Posto) = P(douto)o(ty) (6.8)

which differs from (6.6) by the fact that there are no initial
correlations. This means that the process () has no mem-
ory to times smaller than ¢,, and consequently its evolution
for £>¢,is completely determined by its initial state o(£,). It
was emphasized by Arnoldus and Nienhuis'® that the com-
mon choice £(dg,t5) = P(dosty) {0 (L)) is merely an ap-
proximation which only holds for small correlation times of

é(2).
VIl. SOLUTIONS

A. Independent increments

Equation (6.5) for the marginal average of () can be
solved for the independent-increment process with the same
procedure as in Sec. IV, where we obtained the characteristic
functional. If we adopt the Fourier transform

Ept) = F dp e°?t(4,1) = (e**Va(t)) ,

where the second equality follows after application of Eq.
(6.3), then {o(?)) can be found from

(7.1)

(o)) =0, . (7.2)

With the technique of Sec. IV we can find 2 (p,t), and if we
differentiate the result with respect to time, we find

i%g‘(p,t) = — WD, (7.3)
with
Vo =y [ ana—eme-muem. a4

The operator ﬁ’(p) accounts for the phase fluctuations. If
we set p =0 in Eq. (7.3), we achieve the equation for
{o (1)), with solution

(o(1)) = e~ M- FON=0 (5(1)) (7.5)

for £>t,. We note that (o(¢)) can be expressed in terms of
{o(1,)) for this process, so that there are no initial correla-
tions for the diffusion process. The process ¢(¢) has no mem-
ory, and with the results of Sec. V it can be shown that $(t)is
indeed delta correlated. This means that {$(z, ) *¢(#,))
for all n contains only & functions, which implies the factori-
zation in (7.5).
A special case arises if we take

yw(n) =yd(n) + 46" (), A>0, (7.6)

where the primes on the § function denote differentiation
with respect to its argument. It is easy to check that this
process is the Wiener—Lévy process, or the phase-diffusion
process. If we substitute (7.6) into (4.12), we find that
P(¢,t) is Gaussian, and obviously this is the only Gaussian
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limit of the diffusion process. The operator ﬁ’(p) in (7.4)
reduces to

W(p) =Ai(p — B)?, (7.7)
and the equation for (o (#)) becomes
i% (0(1)) = (4 —iAB?)(a(t)), (7.8)

which is the result of Fox.?

B. Ornstein-Uhlenbeck process

The diffusion process has no memory and is essentially
nonstationary. The initial distribution P(¢4,t,) = 6(¢) dif-
fuses over the whole ¢ axis, — o <@ < 0. Theinclusionofa
finite memory time can stabilize this process. Let us define
the transition probability as

W(do|d) — a($)(do — &)
= 28" ($o— )
+ vd6' (¢ — ¢) , A>0, ¥>0. (7.9)

Then the Master equation (4.6) for P(¢,t) becomes the
Fokker-Planck equation'®

ad ( a? ad )

— P(d,t) ={A — — ¢ |P(¢,t), 7.10

EY (42) ¢9¢2+y3¢¢ (¢,1) ( )
which has the solution, for t— «,

P($) = 2md*) V2% ¥2" | g=A/y. (7.11)

This P(8), together with W(¢,|#) from (7.9), defines a sta-
tionary Gaussian-Markov process, the Ornstein—Uhlen-
beck process. In the limit y—0and A finite (s0 0> - ), the
process ¢(2) reduces to the Wiener-Lévy process from Sec.
VII A. From (7.11) we see that ¢(¢) is centered around
¢ = 0. The distribution is Gaussian with a variance o”
around the average ¢ = 0. The preference for ¢ =0 ex-
presses that this process can be considered as a model for
phase-locked radiation.

With the specific choice (7.9) for the transition rate, the
Master equation (6.5) assumes the form of a second-order
partial differential equation. We obtain

a
.9 , Bz) ’
(tc?t A+ iAB?)5(4,0)

. . ay d , a
17/{02(213 + a¢) 2% + (IB + 3% )¢]§(¢,t) .
(7.12)
In thelimity—-0and A = yg\z finite, we recover (the Fourier
inverse of) Eq. (7.3) with W(p) from Eq. (7.7).
In order to obtain a solution of Eq. (7.12), we start with
a Fourier transform with respect to ¢. The transformed
equation then reads

a Ea)
| —— A MBZ) N
(z F + ¢ (p,t)

(7.13)

which is still a partial differential equation. Since we are
interested in £(0,¢) = (o(?)), the obvious approach? would
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be a Taylor expansion around p = 0. This yields however a
cumbersome inhomogeneous four—term recurrence relation
for the Taylor coefficients. This can be avoided by the trans-
formation'’

Ep.n) =P)gp.) (7.14)
which defines §(p,?). The Fourier transform of the probabil-
ity distribution is explicitly

P(p) = (eP# ) = ¢= VDI (1.15)
and in particular we have f’(O) = 1. The equation for g(p,?)
becomes

P
— — A i/le)é Jt
(zat + )
3 P
= —ilp 2 _ B[ —-)] 0,
'7[” 3 ( Pt 1BP) (7.16)

and it has to be solved for
8(0,0) = {o(1)) . (7.17)

Let us define the Taylor coefficients 7, (¢) by the expan-
sion

don =35 Llr ), (7.18)
n=0 .
which can be inverted as
m, (1) = (a(t) (i)" Piaatd ‘5“""”2> . (7.19)
alp p=0

Substitution of (7.18) into (7.16) then gives the equation for
the Taylor coefficients

(i%—A +iAB? +i7n)1r,,(t)

=yB(no*m,_,(t) —m, (1)), (7.20)
which has to be solved for
mo(2) = (o (2)) . (7.21)

Equation (7.20) looks like a homogeneous three-term recur-
rence relation, but it will be shown below that the time deriv]

K(w) = vB 1o?

ative d /Jt gives rise to an inhomogeneous contribution. No-
tice that for n = 0 Eq. (7.20) reduces to a two-term relation
between 7,(¢) and 7,(¢) only.

Equation (7.20) is most easily solved in the Laplace
domain. If we introduce

o (@) =r dte“" = (1), (7.22)
then (7.20) attains the form
(w — A4 +iAB? + iyn)7(w) — yB (nd*7, _ , (@)

~ Ty (@) =im, (&) . (7.23)

Here the initial values 7, (f;), for n =0, 1, 2,..., appear as
inhomogeneous terms. The set 77, (#,) for all n represents the
initial correlations of o(¢) on t = ¢, and they connect the
time evolution of {o(z)) for t>¢, to its recent past.'* In
other words, Eq. (7.23) relates the set 7, () for ¢ > ¢, to the
initial set 7, (£,).

Equation (7.23) can be solved for an arbitrary initial set
m, (t,) by standard techniques,’® but the solution is not
transparent. In order to elucidate the structure of the solu-
tion, we assume a nonstochastic initial state o (7,). From Eq.
(7.1) we thenfind at r =1,

E(p.te) = P(p)olty) (7.24)
and from Eq. (7.14) we obtain
g(p.ty) =0o(ty) . (7.25)

Hence at t = ¢, the vector g(p,!,) is independent of p, and
therefore the expansion coefficients are simply

T, () =6,00(t,) . (7.26)
Then only the recurrence relation for n = 0 is inhomogen-

eous, and the solution of (7.23) for 7y (w) = {G(w)) isread-
ily found to be

(F(w)) ={i/lo —A4 +iAB? + K(w)]}o(t,) . (7.27)

The effect of the finite correlation time, e.g., the deviation
from the Wiener-Lévy limit, is accounted for by the opera-
tor

¥B (7.28)

@ —A+iAB* + liy + ¥B

w—A +1'/1B2+2iy+7/B3_in

which indeed vanishes for y—0, A finite. In this limit, Eq.
(7.27) is the Laplace transform of Eq. (7.8).

The explicit expression (7.27) provides the exact solu-
tion for situations where the initial state is nonstochastic and
for cases where the solution is independent of the initial
state. As an example from quantum optics, we mention that
Eq. (7.27) with o(t,) = 1,4 =0, and B = 1 represents the
laser spectral profile. Another example pertains to the long-
time behavior of the solution (o (#)). If there is any damping
in the system, which might be caused by the stochastic fluc-
tuations itself, then the solution for ¢3¢, will become inde-
pendent of the initial state. If we indicate by & the solution
{o(t)) for t— «, then G obviously obeys the equation

(4 —iAB*>—K(0))g=0. (7.29)
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¥B

b ]

|For the problem of atomic fluorescence in a strong laser
field, this is the equation for the atomic steady-state density
matrix, which determines the fluorescence yield. There, the
solution & of Eq. (7.29) is unique.

VIil. CONCLUSIONS

Solving the multiplicative stochastic process o(¢) for its
average is rarely feasible by analytical methods. This is
mainly due to the finite correlation time of the driving pro-
cess ¢(¢), which prohibits the factorization of the average of
a product into the product of the averages. Averages of a
functional of ¢(¢) might factorize if the process is delta cor-
related. For Markov processes, however, we can simulate a §
correlation by the introduction of the marginal average
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$(Dpst) = (8(¢(t) — dp)o(2)). The combination of the mul-
tiplication by 8(¢(¢) — ¢,) and the Markov property of the
probability distributions of ¢(z) then gives rise to a factori-
zationlike result for the formal expression for the average.
Along the same lines as in a factorization assumption, we can
now derive exact equations for §(¢,,?). In this paper we have
studied Eq. (1.1), where we considered the stochastics of
&(t) to be given. The equation of motion for the marginal
average turned out to be Eq. (6.4). The applicability of this
equation was illustrated by some examples.
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On the integrability of multidimensional nonlinear evolution equations
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The integrability-test scheme of Chen, Lee, and Liu [H. H. Chen, Y. C. Lee, and C. S. Liuy,

Phys. Scr. 20, 490 (1979) ] from one-space dimension to multispace dimensions is generalized.
The temporal equation of the Lax pair is still the linearized perturbed equation that defines the
symmetries. But the spectral operator in the Lax pair is no longer the linear recursion operator

for symmetries. The absence of the linear recursion operator for symmetries in higher spatial
dimensions therefore presents no direct obstacle to the Chen—Lee-Liu test scheme. The
Kadomtsev—Petviashvili equation is shown as an example.

I. INTRODUCTION

In the past two decades, the discovery of the soliton
solutions for certain nonlinear evolution equations with
physical applications has aroused great interest and atten-
tion among mathematicians and physicists.!”> The initial-
value problems of these equations #, = K(u) can be formal-
ly solved by the inverse scattering method’~*: In general, we
can associate a pair (Lax pair) of operators 4 = 4(u) and
L = L(u) to each of these equations such that these two
operators satisfy the Lax condition,?

L, =AL — LA, (1
hence, the eigenvalue problem

Lp=4¢ (2a)
has constant eigenvalues, that is, 4, = 0, if ¢ also satisfies

¢, =49 (2b)

Therefore, an important problem is to find a way to con-
struct the pair of Lax operators for a given equation, if it
possesses such a pair, to establish its integrability.

In the work of Chen, Lee, and Liu,® they pointed out a
very important fact about an integrable nonlinear evolution
equation ¥, = K(u) with one spatial dimension: The Lax-
pair operators 4 and L in (1) can be identified as the Ga-
teaux derivative K ' of K(u) (see Definition 1 in Sec. II) and
a recursion operator that maps a symmetry to another sym-
metry of the equation, respectively. In other words, the exis-
tence of the recursion operator of the symmetries of an equa-
tion with one spatial dimension is equivalent to its
integrability. In fact, for an integrable equation with one
spatial dimension, the authors together with Lee’ recently
have found a method to construct the recursion operator of
the symmetries from the knowledge of merely one symmetry
propagator (see Definition 4 in Sec. IT) of the equation. Take
the Korteweg—de Vries equation as an example,

u, =K(u) =6uu, +u,,,,

the recursion operator L of its symmetries can be construct-
ed from the symmetry propagator® with the lowest “rank”
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Ty = X (U, + OuU,)
+ 3t (Uyrnx + 100U, + 20u u,, + 30u?u,)
+du,, +8u* +2u,d u,
where 3~ ! denotes f* _ dx. The relation is that
L=33,m*3; ' +75) =092 +4u+2u, 9"

One can easily verify that L, =AL — LA, where
A=K'=6ud, + 6u, +3>. The hierarchies of the sym-
metry propagators 7, for the integrable nonlinear evolution
equations were first discovered by the authors with Lee.?-'°
However, the above scheme does not work for the integrable
equations with higher spatial dimensions. Take the Kadomt-
sev—Petviashvili equation as an example,

u =97 'u, —6uu, —u..; 3)

it can be verified that 3, 75* 3 ;' + 15 = 0, where 7, is the
symmetry propagator’® with the lowest rank for the Ka-
domtsev—Petviashvili equation. Therefore, the recursion op-
erator constructed from the above scheme is the zero opera-
tor. It is worth mentioning that no recursion operator has
been found for any integrable equation with higher spatial
dimensions. !’

In this work, we want to point out that a condition more
general than the Lax condition (1) can be used to establish
the integrability of a nonlinear evolution equation with high-
er spatial dimensions,

L =BL—1I4. 4

More precisely, given a nonlinear evolution equation with
higher spatial dimensions, #, = K(u). Let A be K’, the Ga-
teaux derivative of K. If we can find an operator L = L(u)
such that L, = BL — LA for some operator B = B(u), then
the equation is integrable, a Miura transformation'? can be
found, and the corresponding inverse scattering problem is
now given by the system

"Lo=0, ¢, =Ad. (5)
Note the absence of A¢ on the right-hand side of the first

© 1987 American Institute of Physics 347



equation of the system (5). This is the difference between
(5) and (2a), (2b). However, the gain is that we do not have
to look for the recursion operator of an equation with higher
spatial dimensions to determine its integrability. We can also
derive infinite hierarchies of the symmetries of the equation
through (5).

In Sec. II below, we shall give the definitions of the ter-
minologies which appear in this paper. Our main result is
presented in Sec. IT1. The Kadomtsev—Petviashvili equation
(3) is used as a prototype in our work. The equivalence
between our formulation (5) with (4) and the Lax formula-
tion (2a) and (2b) with (1) is also demonstrated in Sec. I1I
(Remarks 4 and 5). The derivation of the infinite hierarchies
of the symmetries of the Kadomtsev-Petviashvili equation
(3) is given in Sec. IV.

Il. DEFINITIONS OF TERMINOLOGIES

Definition 1: Given a function F(u) = F(x,....t,u,u,,...)
which depends on « and its partial derivatives and possibly
on the variables x,..., and ¢,

dF(u + ev)

de e=0
is the Gateaux derivative of F in the direction v with respect
to u.

Definition 2: Given a nonlinear evolution equation
u, = K(u), where K (u) depends on u and its partial deriva-
tives and possibly on the variables x,..., and ¢, a function
s(x,....,5,u,u,,...) is called a symmetry (generator) of the
equation if s satisfies the linearized equation of u, = K(u),

Js ,

Y K'[s],
where K '[s] is defined as in Definition 1. These symmetries
are the infinitesimal generators of one-parameter groups of
invariant transformations of the equation.

Definition 3: The Lie product of F and G, [F,G], is de-
fined by [F,G]1=F'[G] — G'[F], where F'[G] and G'[F]
are defined as in Definition 1.

Definition 4: A symmetry of an equation is called a sym-
metry propagator of the equation if the Lie product of this
symmetry with another symmetry of this equation gives a
new symmetry of this equation, where the Lie product is
defined in Definition 3.

F'lv]=

lll. THE KADOMTSEV-PETVIASHVILI EQUATION

Consider now the Kadomtsev-Petviashvili (KP) equa-

tion (3). Let K(u) =3, 'u,, — 6uu, — u,,,. We have

A=K'=9;'d2—6ud, —6u, —33. (6)
Let

L=3,—v, 3 '—v—(1/V3)id '3, )]
then

AL —LA—L,=f+g3; "'+ hd, + NL,
where
f=v, + 6uv, +v,,, —V3iv,, —V3iw,

+ 3v2 — 2V3iu, + 6p, — 6up,
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p=u,+4v, +iw, + (1/2v)iv,,
g=/ —6pxx +2V3ip, + 6up,, h=12p,
and
N= —6p—V3iv, +V3iv, '3, + 3v,, + 3v, J,.
Therefore, in order to have (4), L, = BL — LA, it fol-
lows that f=0=p =g = h. Hence, fromp =0and f= 0,
u= —tv, —10*— (1/2v3)id [ 'v, + 4, 8
where A is a constant, and v satisfies
v, — v, —V3iv, 7' v, + v — 97 v, + 640, =0.
($))]
Remark 1: Note that we can actually show that (8) im-
plies
u, + 6uu, +u,,, —3; 'u,
=M, —p*v, —V3iv, ] 'v,
+ Ve — 97 "0, + 640,),
where
M= —10, —iv— (1/2v3)id [ 'd,.
Thus (8) and (9) imply that u satisfies the KP equation (3).
Therefore, (8) is a Miura transformation and (9) is a modi-
fied KP equation.

Remark 2: The corresponding inverse scattering prob-
lem to (4) is

L=, —v, 9, ' —v—(1/V3)id ['3,)¢ =0,
¢ =Ap=(3;'9; —6ud, —6u, —33)¢.
Remark 3: Let v = 24, /4. We can get
Y + (1/VR)ighy + uyp = A9
from (8) and
Py, + 44, + 6uy, +3up—v3i(d; 'u,)¥) =0,
where P= — ¢, 4+ ¢ d,, from (9). Note that
Vo + (Wi, + up =19,
Ve + e + U, + 3u, 90 —V3i( 7 'u, )Y =0

is the pair of Lax operators found by Dryuma.'?

Remark 4: We can show by a direct computation that
é = (), , where ¢ is from (10), 3 is from (11), and ¢ is
the complex conjugate of . This justifies the equivalence
between our formulation (10) with (4) and the Lax-pair
formulation (2a) and (2b) [i.e., (11)] with (1).

Remark 5: As to the modified KP equation (9) with
A=0,

(10)

(11)

v, =K,(0) =%, +V3iv, 370, — v + 9 ',

we can show that (L,), = B,L, — LA, for some operator
B,, where L, =4, —v—(1/v3)id['d,, and 4, =K.
Thus, the corresponding inverse scattering problem is

Lip=@,—v—(1/VDid['d)u=0,
p, =4, p =B, + 3?39, +V3i(d [ 'v,)d,
+V3iv, 3;'9, -3, +3;'d%)pu. (12)
Note that the relation between (12) and the Lax-pair formu-
lation for the modified KP equation’*
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@2 —vd, — (1/V3)id, ) =pn,
N, =(—49; —°3, +V3i(d; 'v,)d,
+3v, 9, +6vdip,

can be shown to be u = exp( — v3i py)7,.. This justifies the
equivalence between our formulation (12) and the Lax-pair
formulation (13).

(13)

IV. INFINITE HIERARCHIES OF THE SYMMETRIES FOR
THE KP EQUATION

Let

v—Zk"‘u —2k, ¢= Zk"’qf",
n=1

L= ¥ k-L,

n= —1

where k = J—_ Then, from (8),

U= — — Zk"‘(u ), ——(Zk‘"v —Zk)

n=1 n=1

2‘1/31';;1( ~"371d,p, + k2
Hence,
vi=u, vy=}u, + (1/2v3)id'u,
v3=4ue + (1/2VD)iu, + 3> — 53 u,
and, in general

l n—1

ZUv,,_

-1
+—-——2‘/3 id;(v,),,

From (7) and (10), we have

(v)+

Upy1 =

for n>2.

Sk L,=d,— S k"0,

n= —1 n=1

(z k", —2k)——‘73—z¢9"c7

n=1

(5050 w)=o

n= —1

(14)
J

b, =4t™u, — (m/12)t™ ",

«%—Tlso%

where

K=K(u)=39;"u, —6uu, —u,,,
oy =¢s=(—1/43)it"(39; *u,,, —

and
(6,), =Ad,. (15)
Hence,
L_,=2, Ly,=2, —(1/«3)13-'3
L,= —(v)), ax — Uy
and in general,
= — (), 0 '~v,, fornxl.
From (14) we have
S Ldy_m=0. (16)
m= —1
Hence,
¢n+1 = “i(Lo‘ﬁn +L1¢n—1 + - +Ln¢o)
— — {20, - 156
- z (Um )xgn—m - 2 vm¢n—m)’ (17)
m=1 m=1

for n>1, where (£,,), =4¢,,.

Remark 6: Suppose that we have found ¢, for 0<I<n
and £, for 0</<n — 1. Inordertofind ¢, . ,, we have to find
&,. Tofind £,, since (£, ), = ¢,, we must use Eq. (15) for
bpr1s (Do), =Ad,, ,, to determine the function which
does not depend on x and enters into the integration of ¢,
with respect to x. This function is a polynomial in # and y in
the following work.

Remark 7: Since ¢,’s satisfy the linearized equation of
the KP equation, Eq. (15), they are symmetries of the KP
equation (cf. Definition 2 in Sec. IT).

We are now ready to derive the infinite hierarchies of
symmetries ¢, for the KP equation. The &,’s needed for
deriving ¢, , ,’s are also given for the sake of the complete-
ness of the presentation.

From (16), we have ¢,=0 and (¢,), =0, hence,
¢, =0 in order for ¢, to be a symmetry. We then choose
& =tmand &, = (m/2v3)it ™~ 'y so that ¢, is a symmetry,
where m is a non-negative integer. Hierarchies
(o7, mn=0,1,2,3,...): From (17), we have

8y = (1/2VD)i(t™u, + (m/2)t™ yu, — (m(m — /12t ™~%),
Ga= — 47K+ (2m/3)t™ " yu, + (m/3)t™ " 'xu, + (2m/3)t™ " 'u

—(m(m — 1D/18)t™ 2 + (m(m — 1)/6)t ™ ~HPu, — (m(m — 1) (m — 2)/36)t ™~ %?),

Uy, — 4uu, —2u, 9 7 'u,) — (m/16V3)it ™~ 'yK

— (m/24V3)it ™ 123 'u, + xu,) — (m(m — 1)/48V3)it ™ ~2(2pu + y'u, + xyu,,)
— (m(m —1)(m — 2)/288V3)it ™ (Y u, — xp) + (m(m — 1) (m — 2)(m — 3)/1728V3)it ™~ 4>

etc. Note that in the above derivation, &,, &3, and £, were found to be
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Sr=41t"u— (m/1D1™ " x — (m(m — 1)/24)™ =7y,

&= (1/72vV3)i(t™ 3 'u, + (m/2)t™ ~ yu — (m(m — 1)/12)t ™~ 2y — (m(m — 1) (m — 2)/72)t ™~ 3*),

and
Eo= —j@m 37K+ 2m/)t™ Y " u, + (m/3)™ " xu+ (m/t" 13
—(m(m—1)/36)t™ 2% + (m(m — 1)/6)t ™ ~*u — (m(m — 1)/6V3)it ™~ %
—(m(m—1)(m —2)/36)t ™ *xp* — (m(m — 1) (m — 2) (m — 3)/432)t ™" —*y*),
I
respectively. ACKNOWLEDGMENTS

Remark 8: 0°’s are the well-known symmetries'® which
can be derived from the conserved quantities'®!” which do
not depend explicitly on the variables x, y, and z and o} ’s are
the new symmetries®'® that depend explicitly and linearly on
the variables x, y, and ¢.

Remark 9: The general hierarchies ¢7;’s were also de-
rived in the work of Chen, Lee, and Zhu'® by a different
approach. In that work, they also derived a relation among
these infinite hierarchies of symmetries:

[o7:07] = (Im(s+ 1) — r(n + 1))/16) orti=y,
form+r>1and n + s>2.

Therefore, we need only three elements, namely, 03, 02, and
03, to generate the whole set of symmetries. Note that there
are conserved quantities'® corresponding to the o7s. Also
the o’s are symmetry propagators for m>2 or n>3.

In summary, the integrability-test scheme proposed by
Chen, Lee, and Liu,® namely, to identify the temporal equa-
tion and the spectral operator of the Lax pair as the linear-
ized perturbed equation that defines the symmetries and the
linear recursion operator of the symmetries, respectively, for
an integrable equation with one spatial dimension, can be
generalized to integrable equations with higher spatial di-
mensions. The temporal equation is still the linearized per-
turbed equation that defines the symmetries but the spectral
operator is no longer the linear recursion operator of the
symmetries and the Lax condition has to be modified in our
formulation [cf. (1), (2a), (2b), and (4) and (5)].
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The mapping into the remote future for particles on the line interacting by repulsive directed
forces is considered. Under suitable assumptions on the forces, it is proved that the mapping
(which assigns the scattering data to the initial data) is continuous on a nonempty open set in

the phase space.

I. INTRODUCTION

Let us consider the classical mechanical system of N
point masses in the space R? of d dimensions interacting by
repulsive forces. It has been shown in Refs. 1 and 2 (under
additional technical assumptions) that the asymptotic ve-
locities of particles v; = lim,_,  v; () exist for any trajec-
tory of the system. The same is true for the dynamics deter-
mined by Hamiltonians with the cone potentials (Ref. 3, see
also Sec. II).

Let X2 be the phase space of the Hamiltonian system
with n degrees of freedom with the property above, that is for
any xeX the motion along the trajectory x(¢) withx(0) =x
has the maximal number of asymptotic velocities as z— oo.
Coordinates of these velocities in some basis determine »
functions f; (x),..., f , (x) on X, which, as we pointed out in
Ref. 3, are functionally independent and Poisson commute,
{f:,f;} =0foralliand j. In other words, if the asymptotic
velocities exist for any trajectory of a Hamiltonian system
then the system is completely integrable.

The proof of this given in Ref. 3 in the case of cone
potentials assumes that the functions f ,,..., f, on X are con-
tinuously differentiable. As F. Calogero and M. Kruskal
(private communications) pointed out, the differentiability
of asymptotic velocities can not be taken for granted. In fact,
the question turns out to be quite difficult.

In this paper we investigate the case of particles on the
line, i.e., d = 1, interacting by repulsive directed forces (see
Sec. IT). Assuming that the forces of interaction are contin-
uous and decay sufficiently fast at infinity we prove that
there exists an invariant (under dynamics) nonempty open
set ¥, of initial data such that the asymptotic velocities and
the asymptotic phases (at # = 4 « ) are continuous func-
tions on Y. Naturally, the same is true for the asymptotic
velocities and phasesat t = — oo.

If the forces have finite range then we show in Theorem
1 that the scattering data are smoothon ¥, .

The main techniques of the paper are the Hamiltonians
with cone potential (cf. Refs. 3 and 4). Theorem 7 which is
the main result of the paper follows from a more general
assertion (Theorem 6) about the continuity of scattering
data for the Hamiltonian dynamics with cone potentials. We
will continue the study of regularity of the scattering data in
forthcoming publications.

The material of the paper is new if the number of inter-
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acting particles is greater than 2. For two particles the prob-
lem reduces to the motion of one particle in an external field.
Scattering in this case has been treated in detail in Ref. 5.

Il. THE SETTING. THE CASE OF FINITE RANGE
DIRECTED INTERACTIONS

Let for 1<i<j<n the functions p; be defined on
(L;,), where — oo <L;. We assume that for any / <j the
function p; is either identically zero or non-negative, con-
tinuously differentiable, and monotonically decreases from
oo to 0 when x runs form L; to infinity. We also assume that
the derivatives p;; monotonically increase from minus infin-
ity tozero. Let m,,...,m,, be the mass of particles. The Hamil-
tonian of our system of » particles with pair potentials p;; is
given by

1 . .
H=—2-(m.x? + 4+ m ) + Y py(x;—x), (D
i<j

where x; = v; are the particle velocities. We say that the
particles with Hamiltonian (1) interact via pairwise direct-
ed potentials p;. The configuration space of the system (1)
consists of n-tuples (x,,...,x, ) suchthat L; <x; — x; for all
i<j.

Let now W be a non-negative C ! function on the config-
uration space. Assume that dW /dx, <0 for all i and consider
the Hamiltonian

1 n
H=7 2 m,~vf+2p,j(xj —xi) + W(xlr--)xn) . (2)
i=1 i<j

We say that the total potential

V=73 py(x; = X)) + W(xyx,) 3)

i<j
is the sum of the internal potential 2; _; p; (x; — x;) and the
external potential . An important special case of (3) is

W(xl""’xn) = wl(xl) + st + wn (xn) ’ (4)

with w; (x) >0 and w] (x)<O0.
Wedenote by C the proper (i.e., without straight lines)
cone in R” spanned by e; —e; for i <j and by ¢;, where
€1,..,¢, is the standard basis of R" . Then the total potential ¥V
is a cone potential in the sense of Ref. 3 with respect to the
cone — C. The vector F(x) = — VV(x) is the force at
the configuration x. Denote —p;(x) by f,;(x) and
— VW(x) by G(x). Then the force at x = (x,,...,x,, ) is giv-
en by
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Fix)=Y f;(x; —x)(e; —e;) + G(x), (5)
i<y

where, if the external potential is given by (4),
G(x) =Z2,8,(x;) e; with g;(x) = — w/(x). The term f;
X (x; —x;)(e; — e;) accounts for the interaction of the ith
and the jth particles and the total force F is directed with
respect to the cone C (see Ref. 4).

Let %; be the acceleration of the ith particle. The dynam-
ics x(¢) of our many-body problem is given by the Newton
equations

(mFgpm,%,) = F(x), (6)

and we are interested in the asymptotics of x(¢) as ¢ goes to
infinity.

Under our assumptions on the pair potentials p; and the
external potential W thelimitslim, . , , v,(?) =v;( & o)
exist (cf. Ref. 3) for any trajectory {x(#)} of the dynamics
(6). Denote the vectors (v,( — «),...v,( — «)) and
(i ( + )y, ( + 0)) by v_ and v, respectively. They
are called the asymptotic velocities and the dynamics (6)
such that the asymptotic velocities exist for every trajectory
is called asymptotically free. Under certain decay assump-
tions on the potentials the asymptotics of almost all trajec-
tories {x(¢)} satisfies

x()=vyt+a, +o(l), x(1)=v(@®)=v, +o(1),
N

asf— + oo, respectively (cf. Ref. 6). The motions satisfying
(7) are called asymptotically uniform and the vectors a ,

are called the asymptotic phases. The set of pairs (a_,v_)
obtained from the asymptotics (7) is the domain of the scat-
tering transformation (see, e.g., Ref. 5) S: (a_,v_)
—(a,w.) and for this reason (e_,v_) or (a v, ) are
called the scattering data. In what follows we denote by Y the
space of positions and velocities and call ¥ the phase space
(this is a slight abuse of terminology). Let (x,v) be a point in
Y and let {x(z)} by the trajectory such that x(0) =x,
x(0) = v. Assigning to (x,v) the scattering data (a_,v,)
[resp. (a_,v_)] onthetrajectory {x(¢)} we obtain the map-
pings W [resp. W_] defined almost everywhere on Y and
wehave S=W_W -\

Since W, contain all the information about the scatter-
ing and for reasons outlined in the introduction, we are inter-
ested in the smoothness of these transformations. It suffices
to investigate W, which can be called the mapping into the
remote future.

In the rest of this section we consider the case of finite
range interactions.

Definition 1: Let potentials p;, 1<i <j<n, and W be as
above. Assume that there exists 4>0 such that all
Py (x) =0if x>A4 and W(x,,...x,) = 0ifall |x, [> 4.

In this situation we say that the n-body system with the
Hamiltonian (2) has finite range directed interactions.

Theorem 1: For a system of particles with directed finite
range interactions the mappings W, are defined every-
where. There exist nonempty open sets Y, in the phase
space such that the restrictions of W, on Y, respectively,
are differentiable at least as many times as the functions p;;
and W.

Proof: Let {x(z)} be the trajectory with the initial data
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(x,v) and letv, = (v;(0),...,v, (o)) be the asymptotic ve-
locity. If all potentials are zero then the particles are free and
there is nothing to prove. Assume that not all p;; are equal to
zero. Let / <jbe such that p; #0. Then v; ( + )<V, ().
Indeed, assuming the opposite we obtain that x ; () — x; (¢)
goes to minus infinity as 7 — oo, thus, p;(x; (2) — x; (1)) goes
to infinity with # which contradicts the conservation of ener-
gy.

Assume, for simplicity of exposition, that p,;, ; #0 for
all i, i.e., that all nearest neighbors interact. Then, by argu-
ment above, v;(w )<+ * <V, (o). Denote by Y the set of
initial data for which the strict inequalities hold. Consider
first the case when the external potential is zero. For
(x°°)eY . there exist 3¢ >0 such that 19, | (00) — 12( )
> 3€ and there exists T, > 0 such that [o7(¢) — 1{( )| <€
for ¢t> T,. Therefore v}, (1) —v{(¢) >¢€ for t>T,, thus
there exists 7> 0 such that x?_, (£) — x(#) >24 for t>T.
Since particles which are more than 4 apart are free, we have
() =12(0) and x°(¢) =x¥(T) +1¥%(w) (¢t—T) for
t>T. By standard theorems about the smooth dependence of
solutions of ordinary differential equations on initial data
(see, e.g., Ref. 7), there exists for any § > 0 a neighborhood
Q of (x°1°) in ¥ such that for any (x,v) in £ we have
[v, (T) —v)(T)| <3€/2and |x; (T) — x?(T)| <8. From the
latter inequality we obtain that x; . , (T) — x,(T) >A4if§is
small enough and the former one implies that v, , (7)
— v, (T) > /2. Therefore for any initial conditions (x,v) in
Q, the particles at time 7 are so far apart that they do not
interact and, besides, they are moving further away from
each other. Thus for any (x,v) in , x(¢) =x(T)
+ v(T) (¢t — T) for t3 T. Therefore the restriction of W, on
Q is given by

v;(0) =v,(T), a;,=x,(T)—0v, (DT, (8)

fori=1,..,n. By (8), W, |, is essentially the mapping W7”
of translation by T along the trajectories of Eq. (6). By the
smooth dependence of solutions on initial data, the map-
pings W' are differentiable as many times as the right-hand
side of (6), which proves the assertion for W |, . The argu-
ment also shows that ¥ is open. It is obviously nonempty
since for initial conditions (x,v) such that x; , ; —x; >4
and v, , —v; >0foralli, we have v( ) =v.

Let now the external potential W be different from zero.
Assume, for simplicity, that there is L> — « such that
W(x)— oo if any coordinate x; goes to L. Then the same
argument as above shows that for the asymptotic velocities
we have 0<v,( 0 )< * '<v, (). Repeating the previous
argument with obvious modifications we obtain that W, is
differentiable on the nonempty open set Y, of initial data for
which the strict inequalities O<v,(0) <" * " <V, (o)
hold. The theorem is proved.

lll. PARTICLES ON THE LINE WITH DIRECTED
INTERACTIONS. CONTINUITY OF ASYMPTOTIC
VELOCITIES

We consider a system of n particles on the line interact-
ing by pairwise directed potentials p; and assume that the
external potential is zero.

Theorem 2: Consider the n-body problem given by the
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Hamiltonian (1) where the pair potentials p; satisfy the as-
sumption of Sec. II. Let v, ( 0 ),...,1, ( o ) be the asymptotic
velocities at plus infinity which are well defined functions on
the phase space Y. Then there exists a nonempty invariant
openset Y, in Y such that v,( ),...,v, (o0 ) are continuous
onY,.

We will prove the theorem after some preparation. Re-
call that, by our assumptions, p; (x) — o when x> L from
the right. The values of L; do not matter in the proof and we
set for simplicity L; = — oo for alli <j.

First we consider the system of three particles with pair
potentials p,,, p,,, and p,; and denote by b,, b,, b, the asymp-
totic velocities. By Ref. 3, they exist for any initial data (x,v)
of the three-body problem and satisfy b,<b,<b;. We write
the Newtonian equations of motion explicitly as

mxy = —f (%, —x1) = f13(x; —x7),
mpi, =f12(x; — %) — f3(x3 — x5) (9
myis = f3(x3 — %) +f13(x3 —x) .

We denote by Y the phase space of our three-body problem

and for any 4 and B we denote by Y, 5 the part of Y consist-
ing of pairs (x,v) such that

Xy — X1,X3 — Xo>A; Uy — U0 —U,>8. (10)
Consider the system of equations

m¥, = —f (X —%,),

m¥, =f12(x, — %), (11)

maxs = f3(x; — %3) +f 1303 — x1)
which has the Newtonian form m# = F(x) where the force
Fis no longer conservative. We want to compare solutions of
(9) and (11) with the same initial date (x,v).

First of all, for any x the vector F(x) belongs to the span
of e, — e, and e,, i.e., the force F is directed in the sense of
Ref. 4. Thus, by results of Ref. 4, for any trajectory {x(¢)} of
(11) the asymptotic velocities 51, 132, 53 exist.

Comparing (11) with (9) we see that when the particles
]

are moving according to (11), the first and the second parti-
cles are pushing the third to the right with the forces
S13(x; — x,) and f,;(x5 — x,), respectively, but the third
particle does not push back. Let the initial data (x,v) belong
to Y, z with 4 and B greater than zero, so that the particles
at ¢ = 0 are located in the right order and are moving away
from each other. Denote by (x(#),v(¢)) and by (%(¢),5(¢)) the
position and velocity at time # > O for the “real motion” (9)
and, respectively, for the “fake motion” (11). Since in the
“fake motion” the second particle is not pushed back by the
third, we have D,(?)>v,(¢), therefore %,(¢)>x,(2). The
same argument applied to the first and the third particles
shows that #,(¢) >v,(¢) and %,(¢) >x,(¢). Since, in the mo-
tion (11) the first and the second particles are further to the
right than they are when moving according to (9), they push
the third particle harder, thus, 7,(z)>v;(¢) and
X%3(t)>x5(t). Therefore for the asymptotic velocities we
have

bi<b,, b,<b, by<bh,. (12)

In the preceeding argument we assume that the particles
moving by (11) do not change their initial order, i.e., the
first particle does not catch up with the second and the sec-
ond particle does not catch up with the third. This will cer-
tainly be the case if b,<v,. We will now estimate ,, b,, b,,
thus providing estimates for the asymptotic velocities b, b,,
b,.

The first two equations of (11) describe the Hamilto-
nian system of two particles with the potential of interaction
P12(x, — x,). The asymptotic velocities b, and b, can be
found from the conservation of total momentum

m, + myp, =mb, + myb, , (13)
and the conservation of energy
Im? + Jmyv) + pra(x; — x4) =im15f +%m25§ . (14)

After elementary computations we obtain from (13) and
(14)

b, = Mt + myv; _( mym, \{(Uz—vl)2+ [2(m, + my)/(mym,) 1,y (x, — x;)}'/2 (15)
! m;+m, m, + mzj m,
and
=z my + mob, mym, \{(Ug —v) 2+ [2(m; + m,)/ (mm,) 1p (%, "xl)}I/z
b,= + . (16)
m, +m, m, + mzj my
I

We could compute b, from (11), but it is too complicat-
ed and, fortunately, we can obtain an upper bound on b;in a
much simpler way. Since the velocity of the second particle
in the motion (11) is monotonically increasing approaching
the limit b, as £ 0, the position of the second particle satis-
fies X,(2) <x, + b,t and, of course, X, (¢#) <X, (1) <x, + b,t. If
we had the equality, the first and the second particles would
have been closer to the third, thus, pushing it stronger to the
right. Denote by b, the limit of x;(¢) as t— « from the equa-
tion

myx, =f23(x3—x2—l;2t) +f13(x3——x2—-l~72t) . a7
By (12) and the argument above, we have b3<53<1;3. From
now on we denote b, by b, and forget about the old b,.
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Now we calculate b, from (17). Denote x;, — x, — byt
by x. Then (17) becomes

max =f23(x) +f13(x) ’ (18)
with the initial conditions x(0) = x; — x,, x(0) =v; — 52.
Since (18) describes the motion in the field of potential
P13(x) + py3(x), the energy Jmyx” + py3(x) +pis(x) is
conserved. Thus, lim,_ _ x(z) = b, — b, satisfies

§m3(l~)3 —b)= im;(v; — b))% + pialxs — x,)

_ + P23(x; — x5) .

Solving for b, we obtain

by =b, + [(v3 — 8:)* + (2/m3) (P15 + P2s) (x5 — x,) 12
(20)

(19)
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Now we have formulas (15), (16), and (20) for b,, b,,
and b,, respectively, but they are too complicated. Fortu-
nately, by elementary computations that we leave to the
reader, we obtain from these formulas the estimates

v = [Pr2(x2 — %) )/my (v, — 1’1)<51<1’1 ,
Uz<52<vz + [Pr2(x2 — x) 1/ my (v, —vy)
and

(21)
(22)

m,y(V; — 0,) (Py3 + Pa3) (X3 — X3) _
ms[my(v, — ;) (V3 — v;) — Pra(x; —x))]
(23)

The estimates above were obtained using the “fake sys-
tem of particles” where the third particle does not push back
on the first and the second Analogously, we can consider
another fake system of particles where the first one does not
push back on the second and the third. Following the pre-
vious argument (we leave details to the reader) we obtain for
the corresponding asymptotic velocities &,, b,, b,

my (V3 — 0) (P12 +P13) (X2 — X4)

Vs<by<vs +

vy, — <51<U1 ’
my[my (v, — 1) (V3 — V) — Pa3 (X3 — X,) ]
(24)
and
Uy — Pa3(x3 — x5)/m, (v, —v2)<52. (25)
Parallel to (12) we have
b,<b,, b,<b,, b,<b,. (26)

Now we are ready to prove the following.

Lemma 1: Consider the system of three particles on the
line with masses m,, m,, m, interacting via directed poten-
tials p,,, p,3, P13 satisfying assumptions of Sec. I1. Let b,, b,,
b, be the asymptotic velocities (at + o) of the particles
corresponding to an initial data (x,v) such that x; <x, <X,,
v, <V, < U5, and

my(vy — 0,) (V3 — U3) >max( pp(x; — X1), Pa3(X3 — Xx3)) .
(27)
Then the following inequalities are satisfied:

my (V3 — 1) (Prp +P13) (X — x4)

v —_—
1 my[my(v; —v1) (V3 — V) — Pa3(X3 — Xx,) ]
<by<v; <V, — Pa3(X3 — X,) <b,<v, + P12(x; — x;)
my(v; — ;) m,(v, — ;)
<v3<b3<v3
my(Vy — 1) (P13 + P23) (X3 — X;) )
m3[my(v; — 0,) (V3 — V) — Ppra(x; — X4) ]
(28)
Besides,
bz_b1>(v2_vl)_m>o, (29)
my(v; — v;)
and
by — by> (v, — ) — P2X2 XD o (30)

m, (v, —vy)

Proof: Recall that the argument with the “fake mo-
tions,” which we used to obtain the inequalities (21)-(26),
is valid if the particles do not overtake each other. This will
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certainly be the case if b, < v, and v, < b,. By (22) and (25),
it suffices to have

vy + [Pr2(x — X)) 1/my (v — vy) <0y,
and

V1 <Vy — [P (x5 — X)) 1/my(v3 — 03)
which follow from (27). Putting the estimates (12) and
(21)-(26) together we obtain the chain of inequalities (28),
which implies (29) and (30).

In order to prove Theorem 2 we need the following.

Proposition 1: Consider the system of » particles on the
line with masses m,,...,m,, interacting via directed potentials
D; satisfying assumptions of Sec. II. Denote by b,,...,5, the
asymptotic velocities (at + oo ) of particles along the trajec-
tory starting at a point (x,v) in the phase space Y. Then for
any € > O there exist numbers 4 and B such thatif (x,v)€Y, 5
then |b; —v;| <€efori=1,..,n.

Proof: We will prove the assertion by induction on 2.
The case n = 2 is obvious and the case n = 3 follows immedi-
ately from Lemma 1. Assume that the assertion is proved up
to n — 1. Following the argument of Lemma 1 consider the
“fake motion” where the nth particle does not push back on
the other particles. Denote by b,,...,b, _, the asymptotic ve-
locities of the first n — 1 particles and by b ;, the asymptotic
velocity of the nth particle in this “fake motion.” By argu-
ment preceeding Lemma 1, we have

b,<byyby_1<b,_,.b,<b) . (31)
Assume that b, _, <v, and consider the “double fake mo-
tion” where the particles 1,...,n — 1 move as before and the
motion of the nth particle is given by

mnxn =.f1,n(xn (t) —Xp_1 — 5n— 1 t)

+ +fn—l,n(xn(t) —X,_1 _5n—lt)‘
(32)
Denote by b, the asymptotic velocity of the nth particle in
the motiqn (32). By our argument preceeding ~Lemma 1,
b,<b!<b,. Setting x(t)=x,()—x,_, —b,_,t we
transform (32) into
m"i=fl,,(x)+' : '+f,,_|,,.(x), (33)

which is the equation of motion of a particle of mass m, in
the external potential p,, (x) +* * * + p, _ .. Using the
conservation of energy for (33) and the initial conditions
which are x(0) =x, —x,,_,, X(0) =v, — 13,,_, we ob-
tain

b,=b,_y + [, —b,_ )+ (2/m, ) pry (%, —X,_,)
o P (5 —x, )]V, (34)
which immediately implies the inequality
pln(xn _xn) +- +pn—l,n(xn _xn—-l)
mn(vn _Bn—l ) '

b,<v, +

(35)

By induction hypothesis, we can find 4, and B, such
that for

Xg— XppeersXn_ 1 —Xp_2>A;1, (36)

and
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Up = VUppeesly 1 —Un_, >By, 37
we have
by<vy+€.h,_<v,_, +E. (38)
By (35)
Bn<vn +pln(xn _xn—l) +- +pn—l,n(xn _xn—l) .
mn(vn —VUp_y —6)
39
Find A4, such that
n A .. + . — 1 A
Pin(42) + Prn_1a( 2)<e‘, (40)

mnBl

and set B' =B, + €, A' = max(4,,4,). Then for (x,v)
€Y, .5 WE have

by<v,+6& - b, <v, +€. (41)

Repeating this argument with the other “fake motion”
where the first particle does not push back, we obtain the
“fake asymptotic velocities” b,,...,b,, such that

b,<b,,....b, <b, , (42)
and the numbers 4 ”,B ” such that for (x,v)€Y v gn WE have
v, — €<Byyensty (43)

Setting 4 = max(4',4"), B=max(B',B") and putting
(31), (41), (42), and (43) together we obtain the assertion
of the proposition.

Corollary 1 (of the proof): We keep notation and the as-
sumptions of Proposition 1. Then for any € >0and § >0 one
can find 4 such that the asymptotic velocities b; satisfy
|b;, — v;| <€if (x,0)€Y 5.

Proof: In view of (21) and (22), the assertion is obvious
if the number of particles is equal to 2. Assume, by induction,
that the assertion holds up to # — 1. In particular, it holds
for n — 1 particles with €, = min(¢,6/2) and 6, =34.
This means that we can find 4, such that b,<v,
+8/2hy <V +6/2 if Xy — XppeXy_ g — Xn_2
>4, and v, — VeV —V,_>8. Then v, —b,_,
>v, —v,_; —6/2>8/2 and, by (35),

bn — U,

—€<b, .

<pln(xn _xn—l) + +pn—l,n(xn —xn—l)
m,5/2 '

(44)

We can find 4'>A4, such that 2(p,(4')+‘ ‘"
+ Pu_1.n(A"))/6m, <€ insuring that the inequalities
X,y —%x;>A" and v,y —v,>8 for all i imply
b, <v, + €,...,b, <v, + €. Repeating the argument for the
other set of “fake asymptotic velocities” b, weobtain 4 ” and
the inequalities b, > v, — €,..,b, >V, — €. In view of (32)
and (42), it suffices to set A = max(4',4").
Denote by G* the group of time translations naturally
acting on Y. For (x,v)eY we simply have G’ (x,)
= (x(¢),v(2)). By basic theorems on the continuous depen-
dence of solutions on initial data (see, e.g., Ref. 7), the trans-
formations G* are homeomorphisms of Y. We call a set X in
Yinvariantif G* (X) = X forall z. Any subset X of Y defined
by asymptotic properties of trajectories {x(¢)} starting in X
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is obviously invariant. Now we are able to prove Theorem 2.
Proof of Theorem 2: Recall that, by our original nota-
tion, the asymptotic velocities at 1— + « are denoted by
v1( 0 ),..,0, (o0 ) and let ¥ be the subset of the phase space
Y defined by the conditions v,( w0 ) < - - - <v, (). Wewill
show that the functions v; (0 ) are continuous on Y, . For
any (x°v°)eY, there exists d>0 and T, > 0 such that for
t>T,wehavev?, , (t) >v2(¢) +d fori = 1,..,n — 1. It suf-
fices to find for any € > 0 a neighborhood D, of (x°,1°) such
that for any (x,v) in D, the corresponding asymptotic veloc-
ities v; (o0 ) satisfy |v; () —v;| <€. We can assume that
€ <d. Consider the open set Y, , in ¥ defined by the condi-
tions |v; —v)(T))| <€/e for all i. Then Y,  contains
G™ (x°0°) and for any (x,v) in Y, we have v, , —v;
>d /3 for all i. By Corollary 1, there is 4 > 0 such that the
inequalitiesv; . , —v; >d /3andx,  , —x; >A foralliim-
ply that [v,(«) — v;| < €. Obviously, we can find T> T,
suchthatx?, , (£) — x?(¢) >4 + 2e/3fort> T. Consider the
neighborhood D, ;- of (x°(T),1°(T)) defined by inequalities
|x; —x2(T)| <€/2, |v; —v(T)| <€/3 for i = 1,...,n. Then
for any (x,v) in D we have x; | —x; >4, v;,, —;
>d /3 for all i. Therefore for the vector of asymptotic veloc-
ities (v, (0 ),...,v, ( 0 )} corresponding to (x,v) from D, ;- we
have |v; (0 ) — v;| <€ fori=1,...,n. Thus for (x,v)eD, r

[v;(0) — ()| <€+ €/3+€=7T€e/3. (45)

Consider D, = G~ 7D, ;. Then D, is an open neighbor-
hood of (x°,1°) and for any (x,v)eD, the inequalities (45)
hold. Since € is arbitrary, we conclude that the mapping
(x,0) > v, is continuous at (x°,v°)eY . Since (x°,v°) is arbi-
trary, we proved the continuity of W, on Y . If € is small
enough, D, belongs to Y, thus Y, is open. It is nonempty,
by Proposition 1, and invariant, by definition. The theorem
is proved.

Now we treat the case of purely external potential.

Theorem 3: Consider the #n-body Hamiltonian

mu} + W(xy,eX,) s (46)

M=

H =

1
2 /&
with potential W satisfying the assumptions of Sec. II. Then
the asymptotic velocities (v,( o ),...,v, (0 )) exist for any
point (x,v) in the phase space ¥ and we denote by Y, the
subset of Y given by inequalities v; (o0 ) >0 for all 7.

Then Y in an invariant open (nonempty) set and the
mapping (x,v) —»v_, is continuouson Y.

Recall that, by our assumptions, #>0 and there is
L3 — « such that W(x,,....x,, ) = « if for at least one i,
x; — L from the right. For simplicity of exposition we assume
that L = — «o. Besides, W(x,,...,x, ) -0 when all x; — .
For any 4 and B we denote by Y, 5 the subset of Y given by
inequalities x; > 4, v; > B for all i. We need the following.

Lemma 2: For any € >0 we can find 4 such thaton ¥, ¢
the inequalities [v; (o0 ) — v;| < € are satisfied for all i.

Proof: Let 6> 0 be arbitrary and choose 4 such that
W(x,,....x,) <8 if x; >A for all i. Let (x,v)€Y,, and let
(x(2),v(2)), >0, be the corresponding trajectory. The func-
tions v, (¢) monotonically increase approaching their limits
V; (o0 ). Therefore we have v; (¢) >v; > O for all  and, by con-
servation of energy, for any 70,
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l n
7 E W+ W(xg.x,)

l n
=7 z mivi(t)2+ W(xl(t)r--?xn (t))' (47)
Denote v; (o) by u; and take the limit f— o in (47). We
obtain
—zmu——va—W(x,, WX ) <8, (48)

i=1 i=1
For any O<v<u we have (1 —v)*=
<(u —v)(u 4+ v) = u? — v*, which implies
u _v<(u2__v2)1/2.
Applying (49) to (48) we get for any {

U?)]I/Z(m.)—-l/Z

(u—v)(u—v)

(49)

2
u, —v;<[m,(uj —

Z myu? — z m,V’ ](m )12 (28/m;) V3.

j=1
(50)

Thus to satisfy the inequalities |v; (0 ) — v; | < € it suf-
fices to take & such that for any i, (26/m,)"*<g, ie., 6
<4 €min(m,,...,m, ) and find 4 such that W(x,,...,x, ) <6
if X, > 4.

Proof of Theorem 3: Let (x°0°)eY, and let €>0 be
arbitrary. It suffices to find a neighborhood D, of (x°1°)
such that D, CY, and for any (x,w) in D, we have
|v; (00} —12( 0 )| <€ foralli. Let d > 0 be such that v?( )
>d for all i and choose T, >0 such that 19(¢) >d /2 for
t>T,. Since x?(¢) — o for all / when z— « we can choose
T,> T, such that for > T, we have x{(¢) > 24 where Y, is
the set defined in Lemma 2. Define the set D, r, by inequal-
ities |x; —x? (T,)| <4, |v; —v)(T,)| <€ for all i. Then
D, . is an open neighborhood of G (v°,x°) which is con-
tained in Y, , if € is less than d /2 which can assume without
loss of generality. For any (x,v) from D, we have for all i

[v;(0) —¥(0)| = |(v;(o0) — ;) + (v, = V](T))
+ ((T,) — ()] <3€. (51)

Then D, = G~ ":D, 1. is an open neighborhood of (x°,v°)
(see the proof of Theorem 2) and for any (x,v)eD, we have,
by (51)

[v;(0) —0(0)| <3¢, i=1,.,n.

Since e is arbitrarily small, this proves the theorem.

Now we can treat the general many-body directed
Hamiltonians.

Theorem 4: Consider the n-body problem on the line
with the Hamiltonian (2) where the pair potentials p; and
the external potential W satisfy the assumptions of Sec. II.
For a point (x,v) in the phase space ¥ we denote by v( o ) the
vector of asymptotic velocities at = + oo andlet ¥, CY
be given by

O<v(0) <t(0) < " "<V, (o).

Then Y __is a nonempty open invariant set and the map-
ping (x,v) -»v( ) is continuouson Y .

Proof: By remarks in Sec. II, the potential ¥ of the »-
body problem is a cone potential and the force
F(x) = — VV(x) is directed with respect to the cone C
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spanned by vectors ¢; —¢; for i <j and e, k = 1,...,n. The
dual cone C * consists of vectors £7_ | b;e; such that

0<b<by< - #<b, . (52)

By results of Refs. 3 and 6, the mapping (x,v) »v( ) is
defined everywhere and v( 0 ) belongs to C * for any (x,v).
The set Y is defined by the condition v( & )€lnt C*. For
any 4 and B we denote by Y, ; the subset of Y given by the
inequalities

x, >4, x;—x;>A,..x, —X,_,>4;

(33)

vy>8B, v,—v;>B,..,v,—v,_,>B.

The following lemma is crucial.

Lemma 3: For any € > 0, 6 > 0 there exists A such that
(x,0)€Y, s implies |v; — v, ()| <€ foralli

The proof'is a combination of proofs of Corollary 1 and
Lemma 2 and we leave it to the reader. Assertion of the
theorem follows from the lemma the same way Theorem 2
follows from Corollary 1 or Theorem 3 follows from Lemma
2. We spare the details.

IV. CONTINUITY OF ASYMPTOTIC PHASES FOR CONE
POTENTIALS

Recall that a potential ¥on R" (which is allowed to take
value + o) is called a cone potential with respect to a
closed proper cone Cif V'is differentiable on the open set X in
R” where V(x) < « and the force F(x) = — VV(x) is con-
tained in C for any x in X. In what follows we assume that V'
is continuously differentiable on X and that Assumptions 1
and 2 of Ref. 6 are satisfied. That is, V>0,

inf V(x) =0
X

and that
V(x)- oo if {x,¢)> —

for at least one ¢ from C and that ¥ (x) —01if (x,c) — o forall
celnt C.

Let Y =X XR" be the phase space and recall that a
trajectory x(¢) defined by (x,v)€Y is called asymptotically
uniform (at ¢t = + o) if

x(t)=a+bt+o(1), (54)
as?— oo. Here @ and b are the asymptotic phase and velocity,
respectively. By Refs. 3 and 6, the mapping (x,v) - b is de-
fined everywhere, b belongs to the dual cone C*, and we
denote by Y, the subset of Y given by the condition
belnt C*.

We call Y the set of regular points in Y.

Theorem 5: (See Ref. 6.) Let the potential ¥ satisfy

J " Vietydt< oo, (55)
(¢}

for any ceInt C *. Then the mapping W : (x,v) —(a,b) is
definedon Y.

At this point we have to digress a little bit. Let f (»,¢) be
a continuous vector function on Y, X [0, « ) and let the limit
f () =lim,_ _ f(p,t) exist for any y. We say that the con-
vergence f (y,t) —»f (y) is locally uniform on ¥, if for every
Yo from Y, and any € > O there exists a neighborhood D of y,
in Y, (Y, is assumed to be open) and 7>0 such that
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| £ 1) —f ()| <€ for any yeD and ¢ > T. By a standard
theorem of analysis (see, e.g., Ref. 8), the limit function
f () is continuous if the convergence

f(y’t)t:’ f(y)

is locally uniform.

The following theorem will be applied to the many-body

problems with directed interactions.

Theorem 6: Let the assumptions be as above and let Y,
be an open invariant subset of Y such that the convergence
v(t) =v(y,t) »v(w), as t— 0, is locally uniform. Then
W : (x,0) > (a,b) is continuous on ¥,

Proof: By Theorem 5, the mapping W : (x,v) - (a,b)
= (a,v( o0 ))is well defined on Y, and, by discussion preceed-
ing the theorem, b depends continuously on (x,v). A
straightforward computation (cf. Ref. 6) gives

a=x _” do dr F(x(o)),
a>7>0

where the improper integral in (56) is the limit of

o>, ff dodrF(x(o)) as t— e .
t>1>0

Since F (x(¢)) belongs to the proper cone C, convergence of
the integral in (56) is equivalent to its absolute convergence
which is equivalent to the convergence of integrals
$S5asrs0 dodr{c* F(x(0))) forallc*eC *. We want to show
the continuity of the mapping

(x,v)—»ff dodr F(x(0))
o>1>0

(56)

on Y,. Because of the absolute convergence we can change

the order of integration in (56) and obtain

Jf dodr F(x(0))
o>1>0
=fm daF(x(a))fodf=J.w oF (x(o0))do . (57)
(4] 0 0

The improper integral §§ oF (x(o))do is the limit func-
tion f (p) = lim f (y,¢) where f (y,t) = §§ oF (x(0))doand
y = (x,0). In view of the discussion preceeding the theorem,
it should be clear what we mean by saying that the
mapping y— f§ oF (x(o))do is continuous if the integral
§& oF (x(0))do converges locally uniformly on Y,

We claim that [§ o F(x(0))do converges locally uni-
formly if and only if the scalar integral §& o(F (x(2)),v(0))
do does. Indeed, by assumption, the vector function
(»,0) ->v(o) converges to y—»v( ) = b locally uniformly
on Y, which proves the implication from the locally uniform
convergence of §& oF (x(0))do to that of f& o (F(x(0)),
v(o)) do. To do the opposite implication, choose a basis
Cp5.-C, €C Of R” and let c¥,...,c¥eC * be the dual basis. Then
for any 0>0

o(F(x())w(0)) =3 o(F(x(a))et) {c,v(a)).
Let poeY, and let by = vy( 00 ) be the corresponding asymp-
totic velocity. Since byeInt C* and since the convergence
v(t) »v( ) is locally uniform, we can choose a neighbor-
hood D of y, in Y, and T'> O such that for any yeD and t5> T

(58)
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we havev(¢)elnt C *. Since the continuity of g at y,and G7 y,
are equivalent, we can assume without loss of generality that
T = 0. Then all the factors in the right-hand side of (58) are
non-negative, which implies for any i = 1,...,n,

o(F (x(a)),c*) (o{F(x(a))v(a)) {c;;o(a))~'. (59)

Using the locally uniform convergence of v(0) to v(o)
again, we can choose the neighborhood D of y, small enough
so that for i = 1,...,n and >0 we have (c;,v(0)) >d>0.
Then the functions (y,0)—{c;,v(o))~! converge to
{c; ,v( 00 )) ! uniformly on D which implies the locally uni-
form convergence of the integral [ o(F({x(0o)),
v(0)){c;,w(o)) "'do and, by (59), the same holds for
§& o{F(x(a)), c¥)do. Since ¢* form a basis of R” we con-
clude that f§¢ oF (x(o))do converges locally uniformly.
We have

fw o{F(x(a))v(o))do
0
= Jf (F(x(a)v(0))do dr
o>1>0
= Jw dr ) (F(x(o)w(o))do
0 T

~ —fwd'r ) VV(§)=fwdT Vie().  (60)
0 x(1) 0

By (60) and the previous argument, the integral in (56)
converges locally uniformly on Y}, if and only if the integral
§& dr Vix(r)) does.

It remains to show that the convergence of §§ V(c*t)dt
for any c* from Int C* implies the local uniform conver-
gence of (& dr V(x(7)) on Y, Let y, = (x,,0,)€Y, and let
bselnt C * be the corresponding asymptotic velocity. For any
€> 0 we can find a neighborhood D of y, and T>0 such that
foryeDand 15T, ||v(t) — byl < €. Since the uniform conver-
genceof f§ V(x(7))drand §7 V (x(¢))drare equivalent, we
can assume without loss of generality that [ju(z) — byl <€
for £>0. Since b, belongs to the open cone Int C *, for € small
enough we can find b,€ Int C * such that ||b — b,|| < € implies
b — byeC *. Thus for any y = (x,v) from our neighborhood
D of y, we have x(t) — x — b,;teC * for £>0. Therefore (cf.
Ref. 6), V(x(8))<¥V(x + b,t) for all 10 and for any T>0

Jw V(x(t))dt<J-ﬂo V(x+ b,t)dt.
T

T

(61)

For any two vectors x,y in R” we writex>yif x — yeC *.
By Ref. 6, x>y implies ¥ (y) > V(x). Since the neighborhood
DCR" of x, is bounded, there exists x,€R" such that x>x,
for any x in DCR". Therefore for £>0 and any y = (x,0) in
D we have

x(t)>x + byt>x, + byt.

Since b,elnt C*, there exists #,>0 such that x, + b,,€C*.
Thus for t>¢,

x()>(x, + byt)) +b,(t — ) 2b, (2 —¢,) . (62)
In view of (61) and (62), for any T>1,
J.w V(x(t))dt(fw Vib,(t — tl))dt=ro V(b,t)dt .
T T T—1¢
(63)
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FIG. 1. Dual cones C * and C.

Letting T— «, we obtain, by (63), that the integral
§& Vix(r))dt converges uniformly on D, which proves the
theorem.

Now we prove the main result of this paper.

Theorem 7: Let

H= % Z mv; + ZP:; (x;%;) + W(X15esXn)
i=1 i<j

be the Hamiltonian of a #n-body problem with directed inter-
action where the pair potentials p,; and the external potential
W satisfy the assumptions of Sec. II. By previous results, the
vector b of asymptotic velocity (at + oo ) exists for any ini-
tial data y and satisfies 0<b,<- - -<b, if W0 and
b,< - -<b, if W=0. Denote by Y the set in ¥ where the
strict inequalities hold. Then Y is a nonempty open invar-
iant set and the mapping W_: y- (a,b) is continuous on
Y,.
Proof’ Proving the results of Sec. III we have shown that
for y = (x,v) in Y the vector function v(¢) converges to
v(o0 ) = b locally uniformly (see Proposition 1, Lemma 2,
and Lemma 3). The total potential Vis a cone potential and
we have shown in Sec. III that Y is open and nonempty.
Applying Theorem 6 with ¥, = Y, we obtain the assertion.

V.EXAMPLES AND‘DISCUSSION

It is not hard to give concrete examples of potentials
satisfying assumptions of Sec. II.

A. Example 1: Exponential potentials

Let n>2 be the number of particles and let the masses
m,,...,m, be arbitrary. Let for any 1</ <j<n the numbers
a; >0 and c;>0 be given. Assume also that we have
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numbers d, >0, 15k<N, and b, >0 for 1<i<n, 1<k<N,
where N3>1 is some integer. Then the pair potentials p; (x)
= cye” “” and the external potential

N n
W(xp.x,) = Y dy exp( - bikx,-)
k=1 i

i=1
satisfy the assumptions of Sec. II. Thus, Theorem 7 holds for
the n-body problem on the line with the Hamiltonian

N
Zn: mvi+ Y Cije—a’f(xi—xl) S 4

i=1 i<j k=1

Xexp( — i b,-,‘x,.) . (64)

i=1

a=1
2

When m, ="+ =m, =1 and the only nonzero param-
eters in the potential are¢;; , , =a,;,,; =1,i=1,..,n -1,
we get the classical Toda lattice.

It is also easy to give examples of potentials for which
the conclusions (and therefore the assumptions) of
Theorem 7 are violated. We will briefly discuss a simple ex-
ample of this type.

B. Example 2: Billiard in a wedge

Consider a closed cone C* with angle a* >0 on the
plane. Choose coordinates x,p so that the vertex of C * is the
originand one of the sides of C * is the positive x axis (see Fig.
1). The cone C * is proper if a* < 7 and we set ¥ = 0 inside
C*and V' = « outside C*. Then Vis a (degenerate) cone
potential and the mechanical system with two degrees of
freedom corresponding to the Hamiltonian

H=}(u*+v%) + V(xp) (65)

is the billiard inside C *. Let e}, ¥ be the unit vectors span-
ning the walls of C * (Fig. 1). Then the force F of the poten-
tial Vis nontrivial only on the walls of C * where it is propor-
tional to e, and e,, respectively (Fig. 1). Thus, F spans the
dual cone C which has angle 7 — a.

The billiard ball moving inside C * with velocity (u,v)
hits the walls of C * a few times where it bounces off by the
usual law of reflection until its velocity becomes a vector in
C *. Then it stops hitting the walls and goes away to infinity
inside C*.

Denote by s; the reflections in the walls of C* (s; are
linear orthogonal transformations of R?). Using the method
of reflecting the billiard table instead of reflecting the ball
(see, e.g., Ref. 9) we come to the following.

Proposition 2: Let xeC* and veR? be the initial data.
Assume that theray x + v, 2>0does not hit the vertex of C *.
Then there is a sequence sy,...,5, of reflections that depends
only on the ray {x + tv, £30} and T30 such that for £>7T,
x(t) =5, * 8;(x + tv). The sequence s,,...,5, is locally
constant when (x,v) varies and it is not defined if x 4 v hits
the vertex of C *.

The proof of this proposition is straightforward and is
left to the reader. Figure 2 illustrates it. Now we deduce from
it the mapping W ..

Corollary 2: (i) Let a#w/n. The mapping W,:
(x,v) = (a,b) is defined on all initial data y = (x,v), xeC*
suchthatx# — tvfort>0. Denoteby Y, C Y thedenseopen
set of such initial data. For every yin Y there is a sequence
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x(t) = szsl(x+tv)

¢S‘E(t:) = x + tv

FIG. 2. Billiard trajectory in a wedge.

$1,...,5; Of reflections about the walls of C* and we denote
S;° ° sy by w;(y). Then the mapping W, is given by
a=w,(y)x, b=w_ (y)v. The function w_ (y) is locally
constanton Y, and W __ does not extend by continuity from
Y, t0Y.

(ii) Let @ = #/n where n>2 is an integer. Then all the
assertions of (i) remain true except the last one. The map-
ping W uniquely extends by continuity to all of Y.

The proof consists in a careful consideration of possible
reflection patterns (see Fig. 2) and we leave it to the reader.
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The direct scattering problem for an inhomogeneous lossy medium is examined for the one-
dimensional case in which the phase velocity profile is discontinuous at the boundaries of the
medium. Scattering operators (or impulse responses) and propagation operators are defined
and equations that govern their behavior are developed. Knowledge of the scattering kernels
for one round trip in the medium implies that the scattering kernels can be determined on any
time interval. Numerical examples are presented. It is also shown that this scattering problem
is reducible to one in which there are no phase velocity mismatches. This reduction provides
considerable numerical advantage in the solution of the direct scattering problem. The inverse

problem is examined in a companion paper.

1. INTRODUCTION

This paper deals with transient wave propagation in
one-dimensional dissipative media. Various aspects of this
problem have been studied in two previous papers,"? hereaf-
ter referred to as Parts I and II. The present paper is never-
theless fairly self-contained, although the first two sections
of Part I should be consulted for an overview of the problem
and a discussion of the relevant literature. Some additional
discussion of the literature is contained in the introductory
section of Part II.

The model problem being considered here involves one-
dimensional electromagnetic wave propagation in a medium
characterized by spatially varying permittivity and conduc-
tivity profiles. The distinction between this model and that
considered in Parts I and II is that phase velocity mis-
matches at the boundaries of the scattering medium are now
allowed. Thus, the results presented here are generalizations
of those derived in Part L.

The goal of this paper is to derive equations for the scat-
tering and propagation operators for the model problem de-
scribed above and to examine certain properties which they
exhibit. These operators, as well as a concise statement of the
problem, are given in Sec. II. Integrodifferential equations
for these operators are then derived in Sec. III. These equa-
tions permit one to numerically construct scattering and
propagation operators, and this is done at the end of Sec. I1I
for a particular set of examples. In Sec. IV it is shown that
finite time traces of these operators can be extended in a
straightforward fashion to time traces over longer periods of
time. The basic idea here is that if the scattering operators
are known for one round trip in the medium, then for longer
times nothing new is occurring in terms of scattering phe-
nomena.

Throughout this paper it is assumed that the operators
under discussion have certain simplified forms. In Appendix
A, ajustification for this simplification is given. The ideas in
Appendix A then lead one to (correctly) surmise that a sec-
ond simplification of the scattering problem under consider-
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ation would reduce the present problem to that considered in
Part I. In Appendix B this further simplification is carried
out. While this simplification presents a distinct computa-
tional advantage for the direct scattering problem, it is inter-
esting that it has the opposite effect for the inverse scattering
problem. Thus, the primary purpose for the analysis in Secs.
IIT and IV lies in its usefulness in the inverse problem, which
is the subject of a companion paper,> hereafter referred to as
Part IV.

Il. STATEMENT OF THE PROBLEM

As mentioned in the Introduction, the problem consid-
ered here is a generalization of that considered in Parts I and
I1. Thus, the reader should consult Sec. II of Part I for a full
explanation of the underlying ideas introduced here. An in-
homogeneous slab occupies the region 0<z< L. The permit-
tivity € and conductivity o of the slab are functions of depth z
only. On either side of the slab there is a homogeneous, loss-
less medium. Unlike the problem considered in Parts I and
IL, it is not assumed that the permittivity is continuous
across the interfaces atz=0and z = L.

In the region z <0 an incident electromagnetic plane
wave propagates along the z axis, impinging on the slab at
time ¢ = 0. This produces an electric field E(z,¢) satisfying

E_(zt) —c 2(2)E, (z,t) — b(2)E,(z,t) =0, (2.1)
where
c72(2) = €(2)po
(2.2)

b(z) = a(2)u,

and u,, is the permeability in vacuum. The phase velocity ¢ is
assumed to be continuously differentiable within the slab
and the dissipation b is continuous within the slab.

Converting to travel time coordinates asin Eq. (2.13) of
Part I yields the transformed problem

Uy, —u, +A(x)u, + B(x)u, =0,
where

(2.3)
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Ax) = — 4 In c(z(x)), 2.4)
dx

B(x) = — Ib(z(x))c*(z(x)), (2.5)

L
I=J ¢ (2)dz,

(V]
and In denotes the natural logarithm function. The functions
A and B vanish outside of the interval [0,1]. However, the
discontinuities in c at the boundaries of the slab imply that in
the transformed problem (2.3), the spatial derivative of u at
x = 0, x = 1 is discontinuous. This discontinuity is given by
(2.6)

2.7)

Coth (07,8) = u, (07,s),

e, (1%,5) =u, (17,5),
where

co=[€(07)/€(0")]'/2 = ¢(0%)/e(07),

cr=[e(L *)/e(L )2 =c(L7)/e(L™).

It is shown in Appendix A that the effects of the discon-
tinuity in », at x = 0, Eq. (2.6), can be removed from both
the direct and inverse problem in a straightforward manner.
Therefore, it is assumed in the remainder of this and the next
paper that this discontinuity is not present. In other words,
the quantity ¢, in Eq. (2.6) is assumed to be equal to 1; i.e.,
the phase velocity will be taken to be continuous atz = 0. It
is also possible to remove the effects of the discontinuity in
Eq. (2.7). However, for reasons discussed in Appendix B
and in Part IV, the discontinuity at x = 1 is retained.

As in Parts I and II, the solution of Eq. (2.3) in the
regions exterior to the slab reduces to right and left moving
waves related to each other through scattering and propaga-
tion operators. These are given by

w, (s)=[ZT(0), ()])=pO), (s—2)
+ JSR +(0,5s —s)u', (s)ds', 5>0, (2.8)
u', (5)= [70"(0)14‘; ()]
=7(0) [u"+ (s) + LST(O,s — s, (S')ds'],

5>0, (2.9)

W, ()= [# O, ()]©
= 1'(0)_1[u'+ (s)

+J‘SW(O,s—s')u'+ (s')ds’], s>0, (2.10)
(]

u, )= [7""(O)u' ()]s)
=v(0)u', (s—2) +7(0)~!

XI V*(0s—s)u', (sds', s>0, (2.11)
0

where

1

p(0) =rexp[J B(x)dx], 7(0) =2t *(0,1)/(c, + 1),
(M

v(0)=(1—c)D)t(0,1)/2, r=(1—¢)/(1+¢)),

1
t*(0,1) = exp[ ¥ %J. [A(x) ?B(x)]dx].
0
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The form of the operators given in Egs. (2.8)—(2.11) can be
ascertained in a number of ways; see, for example, Appendix
A. Notice that when ¢, = 1 these operators reduce to those
used in Parts I and 1L

The direct scattering problem studied in this paper is
that of determining the scattering operators #* and 7+
given that A(x) and B(x) [or equivalently, €(z) and o(2)]
are known. This will be done by deriving integrodifferential
equations for the scattering kernels R * and T'in Eqgs. (2.8)
and (2.9) which relate these kernels to the permittivity and
conductivity of the medium.

The inverse problem studied in Part IV is that of deter-
mining €(z) and o(z) and the total depth of the medium, L,
using scattering data from the slab. In terms of the trans-
formed problem Eq. (2.3) this means that A(x) and B(x)
are to be constructed from finite time traces of the scattering
kernels R * and T given in Eqs. (2.8) and (2.9). In the deri-
vation in Part IV it is shown that two different sets of scatter-
ing data can be used for this purpose. One set involves only
reflection data, while the other utilizes a smaller set of reflec-
tion data in conjunction with transmission data.

The formulations of the problems given here are asym-
metric in the sense that scattering data from only one inci-
dent field are considered. This is in contrast to the problems
studied in Parts I and I, in which incident fields from both
sides of the slab are used. It is the discontinuity in € at the
interface z = L that motivates this distinction. The notation
in Eqgs. (2.8)—(2.11) also displays this asymmetry in that the
arguments of the kernels are (0,s) instead of (0,1,s) as in
Part I, Sec. IL. This reflects the fact that the right edge of the
medium will always be fixed at x = 1. Differential changes in
the operators only with respect to changes in the left edge of
the medium will be considered. Thus, scattering and propa-
gator kernels for subregions [x,1] of the original medium
will be denoted by R * (x,s), T(x,s), W(x,s), and V * (x,s).

IIl. EQUATIONS FOR THE SCATTERING AND
PROPAGATOR KERNELS

In this section, relations between the scattering proper-
ties of the medium (given by 4 and B) and the scattering and
propagator kernels are derived. The first portion of this anal-
ysis is similar to that given in Part I, Appendix C, Eqs. (C1)-
(C3). Thus, replace the independent variable x in Eq. (2.3)
with the dummy variable z [not to be confused with the
variable appearing in Eq. (2.1) ], since x is used to denote the
end point of a subregion [x,1] of the slab [0,1]. Now intro-
duce the change of basis from (u,u,)7to (u*,u™ )" via

u*(z,s) =3[u(25) Fa, 'u. (2], (3.1
where

3. 'u,(z,s5) = J' u,(z,5')ds".

Notice that u* are right and left moving waves in a homo-
geneous medium. In this new basis, Eq. (2.3) becomes

a3 (u"(zs)) _ (a(z) ,8(2)) (u+(z,S))
3z \u"(z,5) y(z) 8(2)) \u=(zs))’

where

(3.2)
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1 ad
= _ - —B _Z
a(z) 5 [4(2) ] %’

B(z) =L[A(z) + B(2)],
¥(2) = 34(2) — BD)],
5(z) = —%{A(z) +B(2)] +%.

Now consider a subregion [x,1] of the original slab
[0,1]. Incident and scattered fields for this subregion take
the form

(3.3)

u, (s—z+x), 2<x,

u* (28 =[ 5 (3.4)
u', (s—z+x), z>1,

u (zs)=u", (s+z—x), z<x. (3.5)

The scattering and propagation operators for the subregion
[x,1] are the generalizations of the operator relations in Egs.
(2.8)-(2.11) and are written as

u (x8) =p(x)u*(x,s —2(1 — x))
+fR T(xs—sHut(x,s)ds’, s>0, (3.6)
0

Ut (ls+1—x)= T(x)[u+(x,s)

+ J T(x,s — s’)u*(x,s’)ds’], §>0,
0

(3.7)
ut(x,s) =f“(x)[u+(l,s+ 1 —x)
+J-:W(x,s—S')u+(1,s' +1 —x)ds’], 5>0,
° (3.8)
U= (xs) =v(x)ut(ls—14+x) +77'(x)
xf V*(xs —s)ut (L5 + 1 —x)ds, s>0,
0
(3.9)
where 1
plx) = rexp[f B(x’)dx’],
T(x) = 2t+(x’1)/(cl + 1)9
v(x) = (1—c;)t(x,1)/2, (3.10)

r=(1—-¢)/(1+¢y),
1
1% (x1) =exp[ ;c%f [A(x") ZFB(x’)]dx'],

and

u*(xs5) =0, s<0.

The imbedding equation for the reflection kernel
R * (x,5) is derived by differentiating Eq. (3.6) with respect
to x and then using Eqs. (3.2) and (3.6) to obtain
y(x)u™ (x,5) —B(x)|p(x)u*t(x,s —2(x — 1))
+ J“R t(xs—s)ut (x,s’)ds’] +u; (x.5)
0

=p' (X)u" (x5 — 2(x — 1)) + p(x)
Xt (x,s —2(x — 1)) + 2p(x)ut (x,s —2(x — 1))
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'$
+ 9 Rt (x,s —sHut(x,s5)ds'.

ax Jo
Thekernel R * (x,s) is a piecewise continuous function in the
domain 0<x<1, s5>0 and to proceed with the derivation
the discontinuities of R * (x,s) have to be treated with some
care. Thus, assume that there are two discontinuities present

in R *(x,s) along the curves

s=d;(x), i=12,
0<d,(x) <d,y(x),

in the (x,s) plane. More general assumptions involving an
arbitrary number of discontinuities would proceed analo-
gously but the analysis below shows that two discontinuities
are sufficient.

Straightforward but lengthy calculations now show that
Eq. (3.11) implies

R} (x,s)
=2R " (x,5) — B(x)R *(x,5) — }[A(x) + B(x)]

(3.11)

O<x<l,

XfR (x5 —5)R T (x,5)ds'
0

~H{is—2(1—x)p(x)[4(x) + B(x)]

XR*(xs—2(1 —x)), s>0, s#4(1—x),
(3.12)
R*(x,0")= —1[4(x) —B(x)], O<x<l],
(3.13)
R*(1,5) =0, s>0,
where
o, 0,
H(s) = Heaviside function = [ §<
1, s>0.

The same calculation shows that the discontinuities d; (x),
[ = 1,2, satisfy

di(x)= -2, (3.14)
dy(x) =4(1 —x), (3.15)
with a jump

[R¥(x) L2 = —1p2(x) [4(x) + B(x)].
(3.16)

The jump along the characteristic curve d,(x) has to be de-
termined using standard propagation of singularities argu-
ments.* The jump is

[R* (95230 25"

1
=1 exp[f B(x’)dx’”rz[A(l) +B(1)]

1
+ A1) —B() —r| [420x) = B2(x')1ax' ).
) (3.17)

Equation (3.12) is the imbedding equation for the re-
flection kernel for the slab with a right edge discontinuity in
€. Unlike the continuous case, there is a second jump in
R " (x,s) along s = 4(1 — x). The imbedding equation now
also contains an additional term due to the presence of a hard
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back wall. Notice that for times less than one round trip, i.e.,
0<s<2(1 —x), the imbedding equation for R *(x,s) and
the corresponding one in Eq. (3.1) of Part I are identical.
Domain of dependence arguments show that the two kernels
have to be identical for 0 <5 <2(1 — x). In the absence of
the right edge discontinuity (i.e., ¢, =1), Egs. (3.12)-
(3.17) agree with the previous results in Part I for the con-
tinuous profile.

The imbedding equation for the transmission kernel is
derived in an analogous way. The starting point is the trans-
mission operator for the subregion [x,1] given by Eq. (3.7).
Differentiation with respect to x and use of Egs. (3.2) and
(3.6) gives

—ur (L1 +s5—x)

=7'(x) [u+(x,S) + fT(x; - s’)u’“(x,v’)dS']
0
+ T(x)[ —y(x)u* (x,5) —ur (x,5)
+B(x)[p(x)u+(x,s —-2(1—-x))

+ J\KR *(x,s —s)ut (x,s’)ds’]
0
a d '3 -+ ! !
+— | T(x,s —s)u*t(x,5')ds'}. (3.18)
ax Jo
Similarly, a differentiation with respect to s gives
ut(L,L14+s—x)

=1'(x)[us+ (x,5) +ifT(xs—s’)u+(xJ’)ds’].
ds Jo
(3.19)

As in the derivation of the equation for the reflection
kernel, special consideration has to be taken to the presumed
discontinuities of 7'(x,s). This time it is enough to assume
one discontinuity along a curve s = d(x).

After some lengthy calculations with Egs. (3.18) and
(3.19), the final result is

T, (x,5) = —}[A(x) +B(x)][R t(x.5)
+ JST(x,s — )R T (x,s)ds
0

+His—2(1—x))px)T(xs —2(1 —x))],

5>0, 5#2(1-—x), (3.20)
T(1,5) =0, s>0,
and
d(x) —_—2(1 —x):
where the jump is
[Tx$)]1:230 20 = —1p(x) [4(x) + B(x)].  (3.21)

The early time behavior of T is obtained by integrating Eq.
(3.20),
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1
T(x,07) = -gf [4%(x') — B*(x')]dx’

+ 1[4 + B(D). (3.22)

This imbedding equation also has an additional term not
present in the continuous case and, furthermore, the kernel
T is discontinous along the line s = 2(1 — x). These are ef-
fects due to the jump in €. Notice again, that as ¢;— 1, the
results for the transmission kernel above reduce to the re-
sults in Part .

The imbedding equation for the W kernel can be ob-
tained similarly to the derivation presented above. However,
there is another way of deriving the desired result by employ-
ing the resolvent equation of T. A combination of Egs. (3.7)
and (3.8) gives the resolvent equation for the transmission
kernel T

T(x,s) + W(x,s) + J“W(x,s — )T (xs')ds =0, s>0.
0

(3.23)

This equation is now differentiated with respect to x. The
jump discontinuity of W is the negative of that for T. Using
the imbedding equation for the transmission operator, Eq.
(3.20), and repeated usage of the resolvent equation finally
gives the result

W, (x,5) = }4[A(x) +B(x)]{R T (x,8)

+ f W(x,s —s)R *(x,5)ds'
0

+HEE—2(1 —x)pp(x)W(x,s —2(1 —x))],

s>0, s#2(1 —x), (3.24)
and the jump is
[W(x,s) 220287 =1p(x)[4(x) + B(x)], (3.25)

and
W(x,0%)

1
=%f [42(x') — B*(x")]ax’ —%r[A(U +B(D).
* (3.26)

In Part I, Appendix A, it is shown that as a function of s
the kernel W(x,s) has compact support in [0,2(1 —x)].
The jump condition in Eq. (3.25) therefore gives the value of
W(x,s) ats = 2(1 — x) ~, namely

Wx2(1—x)")= —1px)[4(x) +B(x)]. (3.27)

The final imbedding equation for a variation of the left
end point of the slab is the equation for the propagator kernel
V *. Its relation to R * and T is obtained by inserting Egs.
(3.6) and (3.7) into Eq. (3.9). This yields

R *(x,5)
—V*(xs) + f T(x,s — )V * (x,5)ds’
0

+H(s—2(1 —x))p(x)T(x,s —2(1 —x)), §>0,

(3.28)
or by solving for ¥ * (x,s) using Eq. (3.23),
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V*(xs)
=R (xs) + f Wi(x,s — s )R *(x,s')ds'
0

+HEs—-2(1 —x))p(x)W(x,s—2(1 —x)), s>0.

(3.29)

(Notice that an immediate comparison between Eqgs. (3.24)
and (3.29) gives

W, (x,s) =1[A(x) + B(xX)]V ¥ (x,s), s#2(1—x).)
(3.30)

The desired equation for ¥ * (x,s) now follows as above.
Differentiate Eq. (3.29) once with respect to x and once with
respect to s and use the imbedding equations for R * (x,5)
and W(x,s) together with repeated usage of Eq. (3.29). The
final result is

VE(xs) =2V (x5) —Bx)V*(x,s)
+3[4(x) —B(x)]W(x,s), s>0, (3.31)
V*(x,0")= —1[4(x) —B(x)], O<x<L (3.32)

The same calculation also shows the jump discontinuity in
V*(x,)ats=2(1 —x).Butitis known from Appendix A
of Part I that as a function of s the kernel ¥ * (x,s) has its
support in [0,2(1 — x) ]. Therefore, the jump discontinuity
implies that

V+x2(1—x)7)
1
= —%-exp[f B(x')dx’“A(l) —B(1)

1
—%r [42(x") —Bz(x')]dx'}. (3.33)

A series of numerical computations illustrates the new
features of the kernels derived above. The € and o profiles as
functions of the depth z are depicted in Fig. 1. Figures 2-5
show the properties of the reflection kernel R * (0,s), the
transmission kernel 7(0,s), and the propagator kernel
W (0,s) for times up to three round trips for various values of
the parameter c,.

In Fig. 2 the value of the parameter c, is y1/6. This
particular choice of ¢, corresponds to a case with vacuum on
the right-hand side of the slab. The first and second jumps
(at s =2 and s = 4) in the reflection kernel R *(0,s) are
clearly seen. Notice also the jumps in 7°(0,s) and W(0,s) at
one round trip (s = 2). In Fig. 3, ¢, = 1 and the transition in
€ to the homogeneous background is continuous. The second
jump in R *(0,s) at two round trips (s = 4) vanishes and
T(0,s) and W(0,s) are now continuous functions of time s.
In general, the amplitude of the kernels in the second round
trip is smaller in this continuous case compared to the ker-
nels in Fig. 2. This is due to the lack of the hard echo from the
back wall. The kernels for a slab backed up with a homogen-
eous medium of large relative permittivity (¢, =2) are
shown in Fig. 4. The limit value ¢, = o corresponds to a
perfectly conducting back wall at z = L. The kernels for this
limit of ¢, are shown in Fig. 5. For the case ¢, = 0, the
kernels 7(0,s) and W(0,s) have no physical meaning and
they are obtained as limits as ¢, — « . However, these kernels
have mathematical meaning in the sense that they can be
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FIG. 1. The relative permittivity and conductivity profiles in the numerical
examples.

used in the solution of the inverse problem. In fact, it is
shown in Part IV that even in the case ¢, = «, the kernels
T(0,s) and W(0,5) can be obtained uniquely from reflection
data. Notice that the reflection kernels in all the examples
presented above are identical for times less than one round
trip. Notice also that the amplitude of the reflection kernel in
the limit case ¢, = o remains large even after one and two
round trips.

IV. THE EXTENSION OF DATA

The concept of extension of data, which was developed
in Part I, is here generalized to the case with a hard back
wall. In this section the variable x is assumed to be fixed.

The important fact that both W(x,s) and ¥ * (x,5) van-
ish for times greater than one round trip in the subregion
[x,1] is the key to the extension of the scattering kernels.
The compact support of Wand V * is

W(x,s) = O, (4.1)
V*(xs) =0, (4.2)

The extension of the transmission kernel follows the
same derivation as the continuous case, since the resolvent
equation, Eq. (3.23), is the same in both cases. Thus, rewrite
Eq. (3.23) for s> 2(1 — x) and use Eq. (4.1) to obtain

5>2(1 —x),
s>2(1 —x).
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FIG. 2. The physical reflection, transmission, and propagator kernels
R +(0,s), T(0,s), and W(0,s) for three round trips in the medium. The jump
discontinuity at the back edge of the slabis ¢, = J1/6.
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2(1 — x)

Wix,s —s)T(x,5)ds' = G(x,5) = B J;—zu —x

2(1 — x) 0
s

W(x,s —s)T(x,s')ds,
T(x,s) +

2(1 —x) <s<4(1 —x),
5>4(1 —x).
(4.3)
Suppose the transmission kernel T(x,s) is known for one round trip, i.e., 0 <5 <2(1 — x). The resolvent kernel W(x,s) is
then completely known for all s > 0 by Eq. (4.1) and so is the function G(x,s) for s >2(1 — x). Equation (4.3), whichis a
Volterra equation of the second kind for T'(x,s) for s>2(1 — x), then determines the transmission kernel uniquely for
§>2(1 — x). Thus, data at a fixed x for one round trip completely determine the transmission kernel T'(x,s) for all s (at the

fixed value of x). In particular, the jump in T'(x,s) ats =2(1 —x) is

2(1 — x)
[(T(x9) 123025 = —f Wx,2(1 —x) — §)T(x,s')ds' — T(x,2(1 —x)~)
0

=Wix2(1—x)7),
which agrees with the results in Sec. IIIL

(4.4)

The extension of the reflection kernel for times beyond one round trip is also quite similar to the derivation in Part I.
However, one additional term is now present due to the jump discontinuity in € at the right edge. Straightforward calculations
with Eqs. (3.28) and (3.29) for s> 2(1 — x) and the compact support of ¥ * (x,s) in Eq. (4.2) give

2(1 — x)

R (x,5) =p()T(x,s —2(1 —x)) +

(]

5>2(1 —x).

T(x,s —5') [R *(xs5) + fR *(x,s —s")YW(x,s")ds" ]ds’,
0

4.5)

Notice that only R * data for 0 <5 <2(1 — x) enter in the integral on the right-hand side. Notice also that to be able to extend
the reflection data beyond one round trip the transmission data T(x,s) have to be known for 0 <5 <2(1 — x) so that the
resolvent kernel W (x,s) and the extension of T(x,s) can be obtained.

Another approach, more analogous to the extension of transmission data in Eq. (4.3), is to rewrite Eq. (3.29) for

§>2(1 — x) and use Eq. (4.2) to obtain

R*(x,s)+f W(x,s —s)R " (x,5')ds' = g(x,5) —p(x)W(x,s —2(1 —x)), 5>2(1—x), (4.6)
2(1 —x)
where
2(1 — x)
_ /4 —s)R T "Yds', 2(1 — 4(1 —x),
g(x,5) = L_m_x) (x,s —s )R ™ (x,5')ds (1—x)<s<4(1 —x) 47

0, s>4(1 —x).
Equation (4.6), which is a Volterra equation of the second kind, determines the reflection kernel for s > 2(1 — x). Once again
notice that transmission data for one round trip are necessary for the extention of reflection data.

The jump in R ¥ (x,5) at s = 2(1 — x) is in both cases
2(1 — x)

[R¥(x9) 123028 =p(x)T(x,0%) +
0

T(x2(1 —x) —s’)[R *(x,5")

+j Wix,s —s")R +(x,s")ds"]ds’ —R*(x,2(1—x)7)
0 “

2(1 — x)

= —p(xX)W(x,0") —f

0
The jump at s = 4(1 — x) is just the identity

[R*(x5) 18025 =px) [T(x9) 15230231,

V. SUMMARY AND CONCLUSIONS

The scattering problem treated in this paper is a general-
ization of the problem analyzed in Part I in that the permit-
tivity of the slab is no longer assumed to be continuous across
the interfaces z =0 and z = L. Thus, in this more general
problem there are phase velocity mismatches at the inter-
faces of the slab which give rise to hard echoes from the front
and back walls. :
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Wi(x,2(1 —x) —s')R *(x,8')ds' — R *(x,2(1 —x) 7).

(4.8)

(4.9)

It is shown by employing a Redheffer star product tech-
nique that the effects of the leading edge discontinuity in the
permittivity can be removed (Appendix A), and similarly
for the effects from the back edge discontinuity (Appendix
B). Thus, the direct scattering problem for the resulting con-
tinuous permittivity profile can be solved with the technique
developed in Part 1. However, in the solution of the inverse
problem (Part IV) it is not desirable to remove the back edge
discontinuity. In fact, it is shown in Part IV that by retaining
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the back wall it is possible to reduce the amount of data
required for simultaneous reconstruction of both the permit-
tivity and the conductivity. It is the importance of the back
edge discontinuity and the properties of this scattering prob-
lem that are developed in this paper.

With this idea in mind, equations for the scattering and
propagator kernels for a slab with a back edge jump discon-
tinuity are developed in Sec. II1. These kernels show several
new features in comparison with the results in Part I, the
most notable being the presence of additional jump discon-
tinuities in the kernels due to the hard reflector at the back
wall.

The equations developed in Sec. III can be used to con-
struct the scattering kernels R * (0,s) and T'(0,s) for arbi-
trarily large values of s. However, in Sec. IV it is shown that
it suffices to compute the kernels for one round trip only
(0 <s5<2). For larger values of s the scattering kernels can
be computed via extension of data, which amounts to solving
a Volterra equation of the second kind. In terms of speed and
accuracy, this is computationally superior to using the equa-
tions in Sec. III for s > 2. Similarly, the technique of Appen-
dix B is best used to compute scattering and propagator ker-
nels for one round trip only, after which extension of data is
used for larger values of s.

The model problem used in this paper is the same as that
in Refs. 5 and 6. However, the approach used in the present
series of papers is entirely different and more intuitive than
in those earlier articles. The reason this approach is more
intuitive is because the scattering and propagation operators
are built up using invariant imbedding ideas, in which the
physical scattering medium is envisioned to be one element
in a set of media whose scattering operators are easily related
to one another. The present approach is also considerably
more general than that used in Refs. 5 and 6, as it has already
been shown to be a viable technique in a variety of other
problems, such as scattering in dispersive media’ and viscoe-
lastic media® as well as analysis of noise and bandlimiting
effects in inverse problems.’
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APPENDIX A: SIMPLIFIED EXPRESSIONS FOR THE
SCATTERING OPERATORS

The form of the scattering operators #* and .7+ in
Egs. (2.8) and (2.9) and the propagation operators %+
and 7”* in Eqs. (2.10) and (2.11) are the result of a simpli-
fication introduced in Sec. II, namely, the assumption that
without loss of generality, the permittivity €(z) can be as-
sumed to be continuous at z = 0. It is now shown that (1) if
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the permittivity is continuous at z = 0, then the Egs. (2.8)-
(2.11) result, and (2) if the permittivity is not continuous at
z = 0, then suitable transformations of the physical scatter-
ing operators permit Eqs. (2.8) and (2.9) to still be used as
the starting point for the direct and inverse problems.

Turning to the first point, assume that ¢, = 1 in Eq.
(2.6). It follows from Theorem 2 of Ref. 5 (with suitable
change of notation) that Eqgs. (2.10) and (2.11) are valid for
all s> 0. With T'(0,s) defined to be the resolvent kernel of

W(0,s) [see Eq. (3.23) with x = 0], Eq. (2.9) is then valid
for all s > 0. Finally, Eq. (2.8) results upon substituting Eq.
(2.9) into Eq. (2.11).

Addressing the second point, assume that the permittiv-
ity is not continuous at z = 0, so that ¢, 1. Then the opera-
tors given in Egs. (2.8) and (2.9) are not the physical scat-
tering operators in the sense that they do not correctly relate
the physical fields, #’, ,u”, , and #’, , to each other. In order
to obtain the proper relations between these fields, star prod-
ucts of scattering operators will be used. This is done by
assuming that the scattering medium is composed of two
portions, the first consisting of the leading edge jump discon-
tinuity in € and the second consisting of the remainder of the
medium as shown in Fig. 6. The scattering operators for the
first portion are the familiar operators for medium 1 illus-
trated in Fig. 6. Denoting these operators with a subscript 1
results in

u, (s)=[R{u', ()]s)=ru', (s),

w_(s)=[Zu_()])()= —ru' (s),

W () =[TFu, ()]s =t (s),

u'_ () =[I7u_()]G)=t{u_(s),
where

rn=1_(co—1)/(¢c,+ 1),

tif =2/(co+ 1), t7 =2/(co+1).

The scattering operators for the remainder of the medium
are those given in Eqs. (2.8) and (2.9). These are not de-
noted with a subscript as they are the operators considered

. j . ﬁ

Medium 1

(A1)

Medium considered

e~profile for
in this paper

composile medium

= ‘[_ + _\/\' + 1

Medium 1 Medium 2 Medium 3

FIG. 6. Decomposition of the discontinuous permittivity profile. The con-
ductivity profile does not need to be decomposed.
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throughout this paper. The physical reflection and transmis-
sion operators can be built up using the composition of oper-
ators from these two subregions. Denote these physical oper-
ators with a subscript ¢ (for composite). Using the
Redheffer star product,? it follows that

R =R+ T RN —-R R 'T],
TrH=9 0N —-RATRH'\T},

where 1 is the identity operator.

Since the operator 1 — %~ #* isadelay Volterra oper-
ator of the type studied in Ref. 11 it can be inverted. Write
the inverse as
(N—B R ' =1+ B R+ (B[R + .
Now substitute Egs. (2.8), (2.9), and (A1) into (A2) and
(A3) to obtain the general form of the composite operators.
These are seen to be

[, ()](s)

=rl, (s)+tit]

X i (=r)" (pO) o, (s—2n)

(A2)
(A3)

n=1
+JR°+ (s —s"u', (s')ds', (A4)

(V]

[TFu, ()]
=7(0)¢ i(——rlp(O))"u"+ (s —2n)
n=0

+J.Tc(s—-s’)u"+ (s')ds']. (A5)

0

Now a relation between the kernel R * above and the
kernel R * can be derived. Rewrite Eq. (A2) by operating
with 1 — %" and use the fact that Z#* and #[ com-
mute with 7+ to obtain

(R =BV R FRN)=T [ RYT .
Expanding this using Eq. (A4) produces
R*(0s) —R . (s) —H(s—2)r,
X[p(OR*(0s—2)+ R (s—2)]
+ H(s—4)(r, p(0))°R * (05 —4) —ry (227 ) !

XJR (0S5 )RF(s—5)ds =0, 0<s<6,
0

where H(s) is the Heaviside function. This is again a Vol-
terra equation of delay type and consequently R * can be
uniquely determined from R  and conversely.

Next, a relation between T, and T is derived. Begin by
writing Eq. (A3) as

TIN—-RF [ R)Y=T T .
Expanding this using Eq. (AS) yields
T(0,5) =T.(s) +rR *(0s) + H(s—2)r, p(0)
X[T,(s—2)—rR*(0s—2)]
+ H(s — H)ri(p(0)FR * (0,5 — 4)

+ rlf T.(s)R T (05 —s')ds’, O<s<6.
0
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Thus, T canbe found from T, and R * and conversely T, can
be found from Tand R *.

APPENDIX B: AN ALTERNATE APPROACH TO THE
DIRECT PROBLEM

It was shown in Appendix A that the effect of the dis-
continuity in permittivity at z = 0 can be removed from both
the direct and inverse problem. This produced a much
simpler formulation of those problems than would have been
otherwise possible. In the same manner, it is possible to re-
move the effect of the discontinuity in permittivity atz = L.
For the inverse problem, removing this discontinuity is not
desirable. It will be shown in Part IV that the discontinuity
simplifies the implementation of the inversion algorithm and
reduces the amount of data needed as compared to the con-
tinuous case. On the other hand, removing the discontinuity
in the direct problem provides a distinct computational ad-
vantage. This point is now examined.

In Appendix A the physical scattering medium was de-
composed into two portions, the first being just the leading
edge discontinuity in € and the other being the remaining
portion of the medium. That remaining portion will not be
further subdivided into two simpler media, one consisting of
the back edge jump discontinuity in € and the other consist-
ing of the remainder of the medium. As shown in Fig. 6, the
operators for these media will be denoted with subscripts 3
and 2, respectively. The entire conductivity profile can be
incorporated into medium 2 as the discontinuities in o do not
produce hard reflections. The scattering operators for medi-
um 3 are given by

u, (5)=[Ru', ()] =rd, (5),

u', (5)=[T5tu', ()] () =257, (s),
where

r=(1—-c¢)/(1 +¢)),

t;¥ =2/(1+¢).

The scattering operators for medium 2 are the same as those
used in Parts I and II:

w,(s)=[Z;d', (-)](s)
= J:R 2 (05 — s’y (5)ds',
u_ ()= [R;u'_(-)](s)
= LSR > (05 —s)u'_ (s)ds',
u', () =[T e, ()]
=ti(0,1)[u"i (5) +£T2(o,s—s')u"i (s')ds'|.

The goal is now to express the #*, .7, and #"* oper-
ators of Sec. IT in terms of the operators given above. Consid-
er the transmission operator first. It follows from using the
star product that

T+t =T (1 —R; R+ T,
or

N—R;RNT T =T;3+T;.
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Expressing these operators in terms of their kernels results in
the identity

T,(0,5) = T(0,s) — rR ; (0,5)
- fRz' (0,5')T(0,s —s')ds', s>0. (B1)
0

It follows that if R ;- and T, are known, then T can be found
as it is the solution of a Volterra second kind equation. This
completes the process of finding T in terms of simpler ker-
nels.

It is possible to use Eq. (B1) to obtain the propagator
kernel W(0,s) in terms of kernels for the continuous medi-
um 2. To do this, use the fact that W(0,s) is the resolvent
kernel for T'(0,s) and solve Eq. (B1) for 7R ;- (0,s) to obtain
(after some simplification)

TR ; (0,5) + T>(0,5) + W(0,5)

+f W0, )T,(0,s —s')ds' =0, 5>0. (B2)
0

Finally, solve Eq. (B2) for W(0,s) using the fact that
W,(0,s) is the resolvent kernel for T,(0,s). The results in
W(0,s) = W,(0,5) — rR ; (O,5)

- fRz_(OJ')Wz(O,s—s')ds', s>0. (B3)
0

Notice that this is an explicit expression for W(0,s). This
equation can be expressed in terms of the propagator kernel
V5 (0,s), by using Eq. (3.20) in Part I. The result is

W(0,5) = W,(0,5) — rV; (0s5), (B4)

Finally, consider the reflection kernel R *. Using the
star product, it is seen that

Rt =R +T ;R\ =Ry R+ \T S,
or, since the Volterra operators (1 — %, #5;") and
Ty A5 commute,

N—RB;RNR - R )=T ;R T .

Expressing these operators in terms of their kernels results in

5>0.

R*+(05) — R (055) — fR;(o,s—s')
0

X [R*(0s) — R ;" (0s) ]ds’
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=H(s —2)p(0) [2T2(0,s —2)+rR; (0s—2)

-2
+f Tz(O,s—2—s')T2(0,s’)ds’], §>0, (BS5)
0

where H(s) is again the Heaviside function. Equation (BS5)
is a Volterra equation of the second kind for R * — R ;*. In
particular, for 0 <5 < 2 the right-hand side of Eq. (BS) van-
ishes which implies that

R +(0,S) =R 2+ (O,S),
as was mentioned in Sec. IT1. Fors > 2, thekernel R * can be

uniquely determined from Eq. (B5) provided R ;% ,R ;, and
T, are known.

O0<«s<2
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Implementability of gauge transformations and quantization of fermions

in external fields
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Quantization of fermions in an external soliton field, leading to a representation of the
canonical anticommutation relation (CAR), which is inequivalent to the representation
connected to the massive Dirac operator, is studied. Classes of gauge and axial gauge
transformations that can be unitarily implemented are determined. In the latter case
quantization conditions for gauge functions are obtained; integers entering can be interpreted

as winding numbers.

I. INTRODUCTION

Although extensive treatments of the quantization of
fermions in external fields exist in the literature,! one usually
deals with potentials that vanish at infinity. New problems
arise if one takes potentials with nontrivial asymptotics: the
simplest situation is given by a one-dimensional Dirac opera-
tor with external soliton potential. In this paper we shall
treat the second quantization of the one-particle operator

(Hy) (x) = (ap + B tanh x)¥(x) = EY(x),  (L.1)

with ¢eL 2(R) ® C? = J; a and B denote two o matrices,
which we choose to be a = — .0, and S = ¢,. Equation
(1.1) is of the special form

0 4 d
H=(AT 0), A=71;+tanhx, (1.2)
which leads to two Schrédinger operators:
2
Adty =E%, aat= L4,
dx
2 5 (1.3)
A4, =E*,, A'd= ——+1— ;
v v dx? cosh?x

AA'Y and A4 are “almost” isospectral, which means that
their spectra agree except for a zero mode of the latter. Solv-
ing (1.3) now is trivial and leads to generalized eigensolu-
tions corresponding to scattering from the left and right and
to positive ( + ) and negative ( — ) energies:

ikx l
PO (kx) = O(k) ~— — ik + tanh x
Var VEZT+1
PP kx) = y* L (kx).

In addition there exists one bound state for energy zero
with wave function

b

(1.4)

0 1
Y #.(x) ’ V2 cosh x

The spectrum consists therefore of a single point and two

(L.5)

®) Present address: Fakultiit fiir Physik, Universitiit Bielefeld, Federal Re-
public of Germany.
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continua from — « to — m and from m to «, which are
twofold degenerate.

Let us remark that the potential treated here is the low-
est soliton solution of the modified Korteweg—de Vries equa-
tion. We take it for simplicity reasons, although certain re-
sults apply to a more general class of potentials. Any
potential with nontrivial asymptotics

Iim V(x)= +m,

X~ t o
has exactly one zero energy bound state; in addition we
should remark that a suitable defined charge quantum num-
ber assigns charge — } to the ground state representation
which we shall study below.? Recently we have shown? that
this representation of the canonical anticommutation rela-
tions (CAR) is inequivalent to the representation connected
to the Dirac operator with constant mass. This indicates that
the calculation of a ground state charge has to be done care-
fully and a regularization procedure has to be used. A possi-
ble approach uses the resolvent regularization for an index
which may be evaluated using scattering theory.*

Here we shall start with the representation of the CAR
connected to the one-particle Hamiltonian H of Eq. (1.1)
and study the question of unitary implementability of gauge
transformations. Let &/ denote the C *-algebra generated by
operators a( f ) and a'(g), where a( f) depends antilinear
on f and a’(g) linear on g, and fand g belong to #; assume
that the operators obey the CAR

{a(f).a"(@)}=(rg), {a(f)a(@}=0, fge¥,
(1.6)
where (-,-) denotes the scalar product in 5%,
Since the spectrum of H splits into a positive energy
part, a negative energy part, and a zero energy part, we may
split our Hilbert space into

¥ =P . HoPHoP ¥, (1.7)

where P, and P, denote projection operators onto the ap-
propriate spectral parts of H. Note that due to the special
structure of H, there exists an antiunitary operator C satisfy-
ing C2 = 1 such that

CH= —HC, CP_=P_C, CP,=PC, (1.8)

which means charge conjugation. For the chosen representa-
tion, C is given explicitly by
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(C¢)(X) = —0'3¢‘(x), ¢€% (1.9)

(C will be used later on in order to define a conjugation
in 7).

In the following we shall study a quasifree state over the
algebra ./ determined with the help of the projection opera-
tor P:

ws(a(f;t).”a(fl)af(gl). : 'aT(gm ))=06,m det(f,-,P+gj).
(1.10)

Choosing P, on the rhs amounts to the intuitive idea of
filling the negative Dirac sea and will lead to a lower bound-
ed second quantized Hamiltonian. There are actually two
pure states we may treat. Replacing P, in (1.10) by
P_ + P, means filing the zero mode, too. This leads to a
state w;

wsla( f,): "a(fl)af(gl)'“a‘r(gm))
=08, det(f,,(P, + P,)g;). (1.11)

Both states o, and w; are pure states.” With the help of the
Gel’fand, Naimark, Segal (GNS) construction we associate
to w, as well as to w; cyclic representations

(¥, 0,,Q,) and (¥,,00,.0,)
of & such that

w,(x) =(Q, I, (x)Q,),

w5 (x) = (Q,,I, (x)Q,), Vxed.

Later on it will be convenient to denote I1,, (a(f)) for
JeP 7, feP 7, or feP_J¥ differently [see (2.4)]:

I, (@"(P. f))=B'(f),

I, @"(P, /))=C(f), W, (a"(P_f))=D(f).

(1.13)

With the help of the charge conjugation we shall construct
the physical Hilbert space in Sec. IIL.

In order to study gauge transformations we start with a
group G and a unitary representation of operators { ¥, ,@cG}
acting on 5. To any V, there exists a unique *-automor-
phism 7, of & such that r, reduces to ¥, on the operators
a(f):

T Aa())=a(V, f), Vfe¥. (1.14)

Examples of automorphism are the time translation au-
tomorphism

(1.12)

r{a(f)) =a(e™f), teR, (1.15)
and the charge conjugation automorphism
7.(a(f)) =a'(Cf). (1.16)

Our main interest concerns gauge, axial gauge, and
chiral transformations of the type

IO (x) + i0,05(x)
b

Tg(a(f)) =a(V9f)’
0,0.eC *(R),

V9=e

0',0.eC$ (R), (1.17)
where we made restrictions on © and O, to simplify the
proofs. We will require that the automorphism is unitarily
implementable; in Sec. IIT we shall see that this leads to the
quantization condition on O5:
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lim O4(x) =mm,

X — o

lim O(x) =nm,

X + o

where the integer n — m can be interpreted as a winding
number.® No restriction is implied on ©, which reflects the
fact that global gauge transformations leave H invariant for
any O while ©5 = nr7 is required for invariance of axial
gauge transformations.

Consequences of this result, an elaboration of the cur-
rent algebra connected to our problem as well as a discussion
of the projective representation obtained from the second
quantized form of Vg with an appropriate Schwinger term
will be published separately.

Let us finally make remarks on the literature. The gen-
eral discussion of quasifree states over the CAR-algebra has
been done by Araki and Wyss,” Powers and Stérmer,® and
Lundberg.® The representation of the CAR related to the
massless as well as massive Dirac operator has been studied
extensively.>*!° Various other states have been studied by
the Streater group.'' More recently the current algebra for
fermion currents in one plus one dimensions'? as well as the
boson-fermion correspondence'® and the connection of
these problems to infinite-dimensional groups has been stud-
ied.™

Il. CONSTRUCTION OF THE REPRESENTATION
(”w,’nw,’ﬂm.)

We start from the splitting of our Hilbert space &#° into
P . F eoP K oP_2, follow Ref. 15, and define first the
“physical” Hilbert space /#” by

K=K, e 0, (2.1)
where 77, and 7, are copies of ##°, =P 5% and 7,

p
= P, 7. We define projection operators ¢ ,,% , and Z,
projecting onto 7,5, and #°,, respectively, and denote

by I,, I, and I, the identification maps

1, %, -2, I:20,-3, 1,3 ,-5,.
(2.2)

From the above information we conclude that there is a
bijection y from 7 — #” such that

y=LP, +IP +ICP_,

! =Ip_‘9’p +I P +CIJ 7,

where C denotes the charge conjugation operator (1.8).
With the help of these operators we may identify

b'(yP.f)=B'(f),

(2.3)

I, (@' (/) =1¢(yP. ) =C(f),
d(vP_f)=D(f),
_(1’ ) _(f) 2.4)
bY(yP.f)=B'(f),

I, (@' )= (vP. f) =CT(f),

d(yP_f)=D(f),
for all fe5#. The ground state vectors are now determined
by

B(HHQ,, =C(NQ, =D)L, =0,
B()Q,, =C(/)Q, =D()Q, =0,

and identified with the cyclic vectors of the representations

(2.5)

H. Grosse and G. Karner 372



(#x,,1,,,Q,) and (#,,11,,Q,). The relation between
both ground state vectors is trivially given by

ctnNe, =9,, CH(NA, =0, (2.6)
The fermion field operator can now be decomposed as

Y(f)=B(f)+C(f)+D'(f), 2.7

and acts on the representation space #~, which is the closure
of the linear hull of vectors of the form

Il B'/)D'@g)Q,,

Li=1

and (2.8)

k,l
II BY(h,)DT(k)HCH(HQ,;

=1
thus #” can be identified with 77, .

In order to discuss the representation of the time evolu-
tion automorphism we first define the Hamiltonian operator
H, acting in % by starting from H [Eq. (1.1)] and map-
ping the negative part of the spectrum of H onto the postive
half-line. More precisely H is defined by

iHt, ,—

ye'tlty=1 = ¢, (2.9)
Thus

iHt, ,—1

re™y
=LP ™I ' P, +IPI P,
+I,CP_é*CI['?,
=™ =expit{l,P HI;'?,+1,P HI ['Z7},
(2.10)

where obviously H, >0 is positive definite and the contribu-
tion from the zero mode drops out.

From the above we get for the second quantized opera-
tors

dr(H,)Q, =0, T(e™)= (2.11)

A similar procedure works obviously for the representation
(#,,10,,90,).

iHt eidl‘ (Hy) t'

lll. UNITARY IMPLEMENTABILITY OF GAUGE
TRANSFORMATIONS

We shall consider gauge transformations and axial
gauge transformations of the general type

c(x) s(x))

—s(x) e(x)/’  (3.1)
c(x) =€©™ cos O5(x), s(x) = e©™ sin O5(x).
Starting from a state w, defined in Eq. (1.10) by the

projection P, one goes over, with the help of the transfor-

mation (3.1), to anew state defined by Ve PV o !. We shall

require that this transformation can be implemented unitari-

ly in the Hilbert space 7, so that there exists I' (Vg ) with
I, (@(Ve ) =TV, (@a( T (Vg) ™' (3.2)
The two states lead to equivalent representations iff
Xo =VoP , Vg'— P, B, 3.3)

where & ,(5) denotes the class of Hilbert—Schmidt opera-

Ve (x) —_ eie(x) + i0,05(x) _ (
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tors over &#°. Note that X obeys a cocycle condition
and a Hilbert-Schmidt operator valued cohomology can be
associated with the above problem.'!

In order to figure out conditions on ©(x) and O;(x)

such that (3.3) is fulfilled it is convenient to replace this
condition by the equivalent ones

P, VoP_€#,% and P_VoP, e#,(#); (3.5)
the equiv;llcnce can be easily seen from the identities
"Pi - VP;t V—IHHS

=Tr(VPV~'P, +P_ VP, v—h,
|Py VP |lus =Tr P, VP V-P, (3.6)

which holds for any orthogonal projection P_ (with
P, =1— P_) and unitary V.

In order to check (3.5), an explicit representation of the
projection operators is useful; from (1.4) we get inmediate-

ly
1 1 +1I ) B (0 0)
P+_—2—(j;II* 1—n) ==\ =) (3.7)
where IT and II, have the kernel representation
I(x,y) = ﬂeik(x—y) ( — ik + tanh y)
- 27 VETF1 a8

IL (xy) = ¢, (x)8, ().
A simple calculation yields the matrix elements of
4P VoP_=M:

M”=C1—S1, M12=C2+52—S'"S—H‘C'HS,
M21 = = C3 —S3+ Hs's+ HS'C'H*,

3.9

My,=C,+S,—II*sII, 3.9)
—I,-ssIMT—I,-c —cII, + I 11,
where C; and S, are given by

Ci=c—Il'ccl*, C,=1I-c—c1],
Cy=cIl*-MN*¢, C,=c—MN*cIl,

(3.10)
Si='s+s1I* S,=s4+11's11,
S;=s+II*s1I* S,+sI1+II*s.

Since a matrix operator is Hilbert—Schmidt iff all matrix
elements have this property, we require that M, ,-1-6552(5’ )
for i,j=12, with # =L?*(Rdx). It turns out that
C,e#,(J¢) without putting any restrictions onto c(x), but
S.€% ,(#°) iff s(x) fulfills special boundary conditions.
This we formulate as the following theorem.

Theorem: The gauge transformation ¥V, with
© = (0(x),05(x)), ©,85cC =, and ©',0;eC ¢ is unitarily
implementable in the representation (57,11, ,Q, )iff
lim,_, __ O©s5(x)=mr and lim,_ __ ©Os(x) =nr with
n,meZ.

Proof: We remark first that I1; is a one-dimensional pro-
jection operator; all terms of M, where II, enters have,
therefore, finite Hilbert-Schmidt (HS) norm and are irrele-
vant. .
Next we remark that finiteness of ||C, || ;s implies finite-
ness of ||C;||ys for i = 2,3,4; this is seen by writing out the
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Hilbert-Schmidt norms, using cyclicity of the trace, the
properties that II1IT* = 1 and IT*I1 = 1 — II; and observing
that terms involving I, are finite.

It is therefore enough to require that ||S)||zs < « and
IC:llas < o0

(i) From (3.8) we first obtain the kernel of S, in coordi-
nate space:

S;(X,y) =f

dk e*x—»

- 27 BT
+ (ik + tanh x)s(x)}, (3.11)
which transformed to momentum space may be split into

two parts

510 = U, (0:0) + W, (00),
U,(pg) =5(p — )k, (pg),
W.(0.9) =1.(p — DK, (p),

where §' denotes the Fourier transform of s’ (x) and ;, the
Fourier transform of tanh x's(x). The kernels x, and «,, are
explicitly given by

{( — ik + tanh y)s(»)

(3.12)

1
K.,(p,q)=( | —— | ) ,
v+l g +1/P—4g
] i (3.13)
Kw(p,q)=( + )
VpP+1 g +1

Note that we have done a partial integration in the first con-
tribution to S; «,, (p,q) is defined by continuity at p = ¢q. We

next need an estimate on the kernel; since p/\p? + 1 is
monotonous in p we get

e, (2. *<[1/(¢° + D] + [1/(* + D]. (3.14)

Since §' is eS(R) we observe that the HS norm of U, is
finite, we get [S(R) being the Schwartz space]

nuhsf @f dgls' (p — P

(3.15)

X( 2 1 +— 1 ) <®
g+1 p+1
As for the second contribution from W, (p,q), we first
note that
1 2 1 1
P+1 <l )< (p2+ TF 7+ 1
from which we deduce the bounds

- <] d 0
f fﬁlf dglt,(p —

qmm«;{ @f dalt,(p —

), (3.16)

(3.17)

1 1
X(p2+1 + q2+1)'
From (3.17) we find that the necessary and sufficient condi-
tion for W,e % () is given by 1(p)eL 2(R,dp) or equiv-
alently #(x)eL %(R,dx). Therefore sin> ©5(x) has to be inte-
grable for large |x| or, since ©;eC § (R) we get

+ oo
f dx sin? O5(x) < w0 & lim O5=nr

C X 00
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and (3.18)

lim ©O5(x) = mm,

X— —

(ii) Using (3.8) again, we may first write the kernel of
C, in coordinate space,

Ci(xp) =c(x)8(x —y) —f dzf

nmeZ.

dk eik(x —2z)

2r JkT+1

X ( — ik + tanh z)c(2)

® gl e~ z-»
Xf —— ——— (il 4+ tanh 2),
—w 2T le-}-l

and transform to momentum space
61 (1) =8 — ) k. (pg) +1' (0 — ) K, (B,g)

+ ch(p — @) xa (P), (3.20)
where we have been splitting the tanh? z contribution and &,
t', and ch denote the Fourier transform of c(x),
(d /dx)(tanh x-c(x)) and of c¢(x)/cosh?(x), respectively.
The two new kernels are given explicitly by

(3.19)

1
Kc(p’q) — 1 ___._pq+_’
N7 W& +1
1
K5 (pg) = ——r—"——, (3.21)
Vo + g+ 1

while «,, was already entering in (3.13). It is now simple to
see that the reasoning leading to finiteness of the HS norm in
(i) applies here as well. For the first term in (3.20) one does
the “partial integration trick” and uses ¢'eS(R), and the last
two terms also give finite contributions. Note that we need
no restrictions on the asymptotic values of ¢(x).

IV. REMARK

In this paper we have started the investigation of an
external field problem which ‘“‘determines” certain quantum
numbers by themselves.” We observe that the gauge trans-
formations are implementable iff the gauge functions take
asymptotic values, which also give invariance of H for rigid
transformations. This fact resembles the situation of the
massive Dirac operator.® The obtained quantization condi-
tion is obviously connected to the nonconservation of the
axial charge for our external field problem. It is tempting to
suggest that the integer involved (n — m) may correspond
to the Fredholm index of the operator P Vg P entering
into a Bogoliubov transformation, where P denotes the
projector onto the positive energy part of H. This together
with a study of the current algebra connected to our problem
is under investigation.
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Motivated by physically plausible axioms, the concept of a transition amplitude space (tas) is
defined. Various connections between this framework and other axiomatic approaches to the
foundations of quantum mechanics are derived. In particular, transition probability spaces, the
algebraic approach, the operational statistics and quantum logic approaches, and traditional
Hilbert space quantum mechanics are considered. It is shown that a tas always admits a
Hilbert space representation. Results are obtained concerning isomorphisms and
automorphisms for tas’s. The concept of an 4-form is introduced and the relationship between
certain A-forms and bounded linear operators on a Hilbert space are studied. Finally, it is
shown that sums and tensor products of tas’s can be formulated in a natural way.

I. INTRODUCTION

In the traditional Hilbert space formulation of quantum
mechanics, transition amplitudes play a secondary role.
Their definition and properties follow from the Hilbert space
structure of the pure states of the physical system. It is our
view that transition amplitudes should play the central role
in an axiomatic foundation for quantum mechanics. Thus
we should begin with the transition amplitude as the basic
undefined axiomatic element. The properties of these ele-
ments should be delineated and the axiomatic structure
should be built upon these properties. This idea is basic to the
early work of Feynman'~ in his path integral formalism,
although he was more interested in computational matters
than foundational ones. Moreover, many investigators have
studied axiomatic systems based on transition probabili-
ties,*® and this seems to be a step in the right direction.
However, we feel that transition amplitudes are more funda-
mental and that transition probabilities are easily derived in
terms of them. The fact that the transition probability is the
modulus squared of the transition amplitude is the best way
to explain interference phenomena that are characteristic of
quantum systems. "2 If this fact is ignored, then the interfer-
ence phenomena are obscured. As we shall show, once a few
simple properties of transition amplitudes are given, Hilbert
space representations follow quickly. This is a great advan-
tage, since a Hilbert space structure for quantum mechanics
is physically unmotivated and is only the result of fairly re-
strictive ad hoc assumptions.

At the basic level, our main problem is to find the cor-
rect properties of transition amplitudes. To this end, let S be
the set of pure states for a quantum system. If 4 is to be a
transition amplitude, then 4 should be a map from .S X .Sinto
C, where we interpret 4(x,y) as the transition amplitude
from state x to state y. To understand what this means, it is
important to distinguish between two types of transition am-
plitudes, a static transition amplitude 4, and a dynamic
transition amplitude 4,, £>0. Dynamic transition ampli-
tudes are physically more transparent so we begin with
them. It is clear that A4, (x,y) should be interpreted as fol-
lows. If the system is initially in the state x, then the ampli-
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tude that the system is in the state y at time ¢ > 0 is 4, (x,p).
We would then define the probability P, (x,p) of a transition
from x to y in time ¢ to be |4, (x,y) |2

There are strong physical reasons that our system acts
like a Markov process at the amplitude level. If the system is
in the state x at time 7,, then future states for ¢ > ¢, depend
only on x and not on states prior to #,. In other words, quan-
tum state evolutions do not appear to possess memory. An
important property of Markov processes is that they satisfy
the Chapman-Kolmogorov equation. In our framework this
may be stated as follows. There exists a set M of intermediate
states such that

At,+t2 (xy) = ZAI| (X,Z)A,,(Z,Y) » (1.1)

zeM

for all ¢,,¢,>0 and for every x,peS. As far as we are con-
cerned, (1.1) is the most important basic property of 4,.

Now we may view the static transition amplitude
Ay(x,p) as the limit 4,(x,p) = lim,_¢ 4, (x,p). Taking the
limit of (1.1) gives

Ao(xy) = Y Ao(x,2)40(2y) , (1.2)
zeM

for all x,yeS. It is convenient and useful to extend the process
A, > 0, to negative ¢. This is done by defining 4 _, (x,p)
=A4,(yx), >0, where 4, denotes the complex conjugate
of 4,. Thus if the initial state is x and 7>0, we interpret
4,(y.x) to be the amplitude that the state was y at ¢ units of
time previously. If welet 1 — 0, we obtain 4,(x,y) = 4,( y,x)

and we can write (1.2) in the form
Ap(xy) = ¥ Ag(x2)Ao( 2,2, (1.3)

zeM

for all x,yeS. Equation (1.3) will be used as the main defin-

ing relation for 4, in Sec. II. The other defining relation will

be
Ayxx)=1. (1.4)

This has a natural physical interpretation. We could also
derive (1.4) from the plausible assumption that a state x
transforms into the intermediate states in M with certainty.
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Then (1.3) gives

l = 2 Po(x,z) =A0(x,x) .
2eM

= 2 Ao(x,z)Ao(x,z)
zeM

One can give other interpretations for 4, and these give
alternative ways of justifying (1.2) [and subsequently
(1.3)]. We can view 4, as a transmission amplitude. In this
viewpoint,>® we represent the physical system as a particle.
In fact, since we are making a statistical analysis, it is better
to represent the system as an ensemble or beam of noninter-
acting particles. A pure state x can be thought of as a filter
which transmits only particles with certain specified proper-
ties. We call this an x filter. If an x filter is placed in the path
of the particle beam, then only particles in the x state are
transmitted. Suppose we now place an x filter preceding a y
filter in the beam path. Then A,(x,py) is interpreted as the
amplitude of transmission for the beam through the y filter
given that it is transmitted through the x filter. The transmis-
sion probability P, (x,y) = |4,(x,»)|*is the ratio of the num-
ber of particles that pass through the y filter to the number of
particles that pass through the x filter in the two-filter exper-
iment.

Now suppose we place a z filter between the x and y
filters. Let A,(x,2,y) be the transmission amplitude for this
set of three filters and let Py(x,z,y) = |4,(x,z,p) | be the cor-
responding transmission probability. It is then clear that

Py(x,2,p) = Po(x,2)Po(z,p) . (1.5)
However, at a deeper level we propose that
Ao(x,2,p) = Ao(x,2)Ap(2,y) . (1.6)

Property (1.6) has been emphasized by Feynman and oth-
ers>? and is called the product rule for transition amplitudes.
Of course, (1.5) easily follows from (1.6). We next propose
the existence of a complete set M of z filters. Such aset M has
the property that an individual particle of the beam is trans-
mitted by precisely one of the filters in M. That is, M is a
selection process that classifies particles into distinct cate-
gories. There may be many such selection processes but the
important point is that there exists at least one. It is now
natural to assume that 4,(x,p) is the sum of the transmission
amplitudes over the various particle categories in M. That is,

Ao(xy) = Ap(x,2,p) . (L7
zeM

Then (1.2) follows from (1.6) and (1.7).

It should be mentioned that (1.2) does not hold for tran-
sition probabilities. For these, only the much weaker relation
2 em Po(x,2) = 1, holds. Because of this less restrictive con-
dition, there are pathological examples of transition probabi-
lities that do not come from transition amplitudes. Although
some of these examples may have physical significance,*®
the situation is not entirely clear. In any case, (1.2) is not
only physically plausible, it has strong mathematical conse-
quences.

Still another interpretation is that 4,(x,y) gives an am-
plitude for the information that y has in common with x (see
Refs. 4 and 9). An analysis similar to that given previously
can be used to justify (1.2) in this situation.

In the Hilbert space formulation of quantum mechan-
ics, (1.1)-(1.4) follow from the Hilbert space structure. In
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this case, a pure state is represented by a unit vector x in a
complex Hilbert space H. We then define 4,(x,y) to be the
inner product (x,). Then (1.4) is just the relation ||x|| = 1.
If M is an orthonormal basis for H, then (1.2) [or (1.3)] is
Parseval’s equality. The time evolution for pure states is giv-
en by a one-parameter unitary group U, and the dynamic
transition amplitude is defined as 4, (x,y) = (U, x,y). Then
(1.1) follows from

At,-+-t2 (x,,V) = <Ut,+tz x)}’) = (Ut, x:U: y>

=Y (U, x2){z,U? y)
=zezj|l<Utl x,z)(U,z z,y)

=Y 4, (x2)4,(zp) .
zeM

Il. DEFINITIONS AND EXAMPLES

Let § be a nonempty set and let 4: § XS —C. We say
that x,yeS are orthogonal (x1y) if x#y and A(x,y) =0. It
follows from Zorn’s lemma that the collection of maximal
orthogonal sets .# , covers S; that is, $ = U.# ,. We call a
set MC.S an A-set if for every x,yeS, we have 2 ,,|4(x,z)
XA(p.2)| < o and

A(xy) =3 A(x2)A(p.2) . (2.1)

zeM
Denote the collection of 4-sets by .4",. Wecall4: 5 XS —C
a transition amplitude if (i) 4", #0,and (ii) 4 (x,x) = 1 for
all xeS. Property (ii) is a mild normalization condition since
it follows from (i) and (2.1) that 4(x,x) >0. Notice that if 4
is a transition amplitude on S, then from (2.1) we have
A (x,y) = A( p,x) for all x,yeS. If 4 is a transition amplitude
on S we call (S,4) a transition amplitude space (tas). A
strong (ultrastrong) tas is a tas (S,4) which satisfies (iii)
A(x,y) = 1[(iv)|4(x,p)| = 1] impliesx = y. Of course, an
ultrastrong tas is strong. A tas (S,4) is total if 4 , =N ,.
The following lemma shows that (S,4) is totalif .# , C.4",.

Lemma 2.1: If (S,4) is a tas, then 4/, C.#,.

Proof: Let Me.V", and suppose x, yeM with x# y. De-
noting M \{x} by M ', we have

1=A(xx) = Z |4(x,2)|> =1+ 2 |4 (x,2)1?.

=0 so x1 y. To show that Me # , suppose
= 0 for all zeM we have

Hence A(x,y)
x1M. Since A(x,z)

1=A(xx) = z, [A(x,2)|*=0.

zeM

This is a contradiction. 0

If a tas (S,4) is not strong, we can easily construct a
strong tas closely associated with (.S,4). Define a relation =~
on Sby x=~ yif A(x,y) = 1. Then clearly ~ is reflexive and
symmetric. It will follow from Lemma 3.1(b) that =~ is tran-
sitive so = is an equivalence relation. Denote the corre-
sponding equivalence classes by X,x€S, and let §=8/=.
Then the function 4: § X.§ —C defined by A (%)) =A4(xp)
is well defined [again by Lemma 3. 1(b)] and (S,A) be-
comes a strong tas. We call (S,A) the associated strong tas.

S. Gudder and S. Puimannova 377



In a similar way, we define a relation ~ on § by x~y if
|4(x,p)| = 1. It will follow from Corollary 3.3(a) that ~ is
transitive and hence is an equivalence relation. Denote the
corresponding equivalence classes by X,xeS, and let
S = §/~.Unfortunately, 4 cannot be transferred to.S'in the
usual way. However, if §| C.S consists of one representative
from each %,x€S, then (S,,4) becomes an ultrastrong tas,
which we call an associated ultrastrong tas.

Example 1: The unit sphere S(H) of a complex Hilbert
space H with A(x,p) = {x,y) is a total, strong tas. In this
case we use the notation 4y = ¥, = .#,. Notice that
(S(H),A) is not ultrastrong since {4 (ax,x)| = 1 whenever
|a| = 1. An equivalence class % has the form

% ={ax: aeC, |a| =1}.

If we select a representative x,€% from each equivalence class
and let S, = {x,: xeS(H)}, then (S,,4) is a total, ultra-
strong tas. Of course, /4" is the set of orthonormal bases
for H.

Example 2: Let S be anonempty set and let 4: S XS -C
be defined by A(x,y) =1 if x =y and A(x,y) =0if x5£ y.
Then S itself is the only A-set. Indeed, for every x,yeS we
have

Y A(x2)A(zp) =A(xy),
zeS

50 S is an A-set. Moreover, if M is a proper subset of .S and
x¢M, then

A(X,X) = 1¢0= Z A(X,Z)A(Z,X) ’
2eM

so M ,. It follows that (S,4) is a total, ultrastrong tas.
We call (S,4) a trivial tas.

Example 3: Let H be a complex Hilbert space and let
S = {xeH: x#0}. Define 4: S XS—>C by A(x,y) = {x,y)/
I%]| | ¥||- Then A(x,x) = 1 and for any Me.# , we have

A(x,2)A(zy)

ZEEM x z,y
g 2  lay) | ) g
Sl Nzl =l (Il

for every x, yeS. Hence (S,4) is a total tas. However, (S,4)
is not strong since 4 (x,y) = 1ifand only if x/||x|| = y/|| y||
so, for example, A(x,2x) = 1.

Example 4: Let A(x,y) = (x,p) be the usual inner prod-
uct on C2. Let x = (1,0), y = (0,1), z= (1,1)/42, be ele-
ments of C2and let S = {x,y,z}. Then (S,4) is an ultrastrong
tas with /", = {{x,y}}. Moreover, {z}e.# , but {z}¢ .4,
so (S,4) is not total.

We now consider the relationship between a tas and a
transition probability space.® Let S be a nonempty set and let
T:S XS —[0,1]. Wecall (S,T) a transition probability space
if (i) T(x,y) = lifand only if x = y, (ii) T(x,p) = T( y,x)
for every x,yeS, (iii) for any x&S' and Me.#  wehave 2 _,,
T(xy) =1

Theorem 2.2: Let (S,4) be a total tas. Then the pair
(S,T) where T(%,§) = |4(x,y)|* is a transition probability
space.

Proof: If % = p, then we shall show in Corollary 3.3(a)
that 4(x,z) = A(x,p)A( y,z) for all zeS. It follows that
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|4 (x,2)|> = |4( p,z)|? for all zS. This implies that T: § X3
— R is well defined. It will also be shown in Corollary 3.3(a)
that |4 (x,p)|<1forall x,yeS so T:.5 X.§ - [0,1]. Now con-
ditions (i) and (ii) clearly hold.§inceA (x,y) = 0ifand only
if T'(%,p) = 0 we have .# ; = # 5. Since (S,4) is total, for
any Mew rand %8 we have

2 T = z [A(xp) P =A(xx) =1.
yeM yeM
Hence condition (iii) holds. O

lil. REPRESENTATIONS

A representation of a tas (S,4) into a Hilbert space His a
map ¢: S—H such that A(xy) = ($(x), ¢(y)) for all
x,y€S and ¢(M)e V', for some Me V. Notice thatif ¢ is a
representation, then || ¢(x)|| = 1 for all xS and x1 y if and
only if #(x)L #( y). It follows that ¢ is injective on sets of
mutually orthogonal elements. However, ¢ need not be in-
jective on S. For instance, in Example 3 if we define ¢: S— H
by #(x) = x/||x||, then ¢ is a representation that is not injec-
tive.

Lemma 3.1: Let (S,4) be a tas.

(a) If ¢: S— H is a representation, then ¢ (M)e ", for
all Me¥",. Conversely, if MCS satisfies ¢|M is injective
and ¢(M)e AV "y, then Me 1V ,.

(b) The following statements are equivalent.

(i) There exists an injective representation ¢: S— H.

(ii) (S,4) is strong.

(iii) A(x,z) = A( y,z) for every zeS implies x = y.

(iv) Every representation of (S,4) is injective.

Proof: (a) Since ¢ is a representation, thereisa M./,
such that ¢(M,)et";,. Now let Me#",. By Lemma 2.1,
¢ (M) is an orthonormal set in H. Moreover, for any xeM,
we have

| 6CoI?
=A(xx) =Y [Ax2)*= 3 [{$(x), $(2))]*.

zeM zeM
It follows that

$() =3 ($(x),4()) $(2),

zeM
for all xeM,. For feH, if f1 ¢(z) for every zeM, then f1 ¢ (x)
for every xeM,. Since ¢(M,)eV "y f=0. Thus (M) is a
maximal orthonormal set so ¢(M)e+ ;. Conversely, sup-
pose ¢|M is injective and ¢(M)e+# . Then for any x,yeS
we have

Axy) = d(x), 6(»))
= T ($(x), 62 $(2), $( )
zeM

= Z A(x,2)A(z,p) .
P74

Hence Mc.V',.
(b) (i) = (ii) Suppose (i) holds and 4(x,y) = 1. Since

((x), (MY =|dx)| | ¢ it follows from
Schwarz’s inequality that ¢ (x) = ad( y) for some acC. But
then
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a=a{s(y),$(»)) =(sx),8(y) =1,
so ¢(x) = ¢( y). Since ¢ is injective x = y.

(ii) = (iii). Suppose (ii) holds and 4A(x,z) =A( y,z)
for every zeS. Then A(x,y) =A(y,y) =1lsox=y.

(iii) = (iv). Suppose (iii) holds and ¢: S — H is a repre-
sentation. If ¢(x) = ¢( »), then for every zeS we have

A(x,2) = {$(x), $(2)) = ($( ), #(2)) = A(p,2) .
Hence x = y so ¢ is injective.

(iv) = (i) will follow from Theorem 3.2. 0O

If (S,4) is a tas and x5 we call the function A,: S—C
defined by A, ( y) = A(x,p) an amplitude function. Ampli-
tude functions correspond to the “wave functions” of tradi-
tional quantum mechanics. The next theorem shows that
these wave functions are elements of a Hilbert space and they
may be used to construct a representation of (S5,4).

Theorem 3.2: Every tas admits a representation. In par-
ticular, if (S,4) is a tas, then there exists a Hilbert space
containing {4, : xeS} such that x >4, is a representation.

Proof: Fix an Me.V", and let H be the set of functions f:
S C such that

S ADP<w
zeM

and

3.1

Sx) =Y flz)d(zx), (3.2)
=M

for all xeS. It follows from (3.1) that the sum in (3.2) al-
ways converges absolutely since by Schwarz’s inequality we
have

g” 'f(Z)A(z'x)K[Zlf(z)lz]m [Z |A(Z,x)|2] N

[s o]

It is straightforward to show that H is a complex linear
space. We define ( f, 8) = 2, f(2) g(2) for £, geH and by
Schwarz’s inequality this sum converges absolutely. It is
clear that (-, ) is sesquilinear, Hermitian, and positive semi-
definite. If (£, ) = 0, then f(z) = O for all zeM. Applying
(3.2), wehave f(x) = Ofor allxeS sof= 0. Thus (H,{,"))
is an inner product space.

To show that H is complete, let f,€H be a Cauchy se-
quence. If xS, then by (3.2) we have

[fi(x) — fi(x)| = lz [fi(@ —j}(z)]A(z,x)l
<Y 1fiD = [(D] |4(z%)]

sin@ - s@r] " =1s- .

Hence £, (x) is a Cauchy sequence in C so it converges to a
number f(x)eC. We now show that feH. For any € > 0 there
exists an 7 such that i, j> n implies || f; — f;||> < €. Then for
any finite M, C M we have

> |fi ~ @< — [l <e,

zeM,
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if i, j> n. Hence for j > n we obtain

S | fin) ~ £ =1lim T |f(2) —f(2) <e.

M, i— 2eM,
It follows that for j>n

S A2 ~f@) <e,

=M
and hence by Minkowski’s inequality

LEM tf(z)(’]m

172 172
<[Z | f(2) —f}(z)l’] + [z If,(Z)l’] <o
zeM zeM
Thus (3.1) holds. Moreover, (3.2) holds since

(3.3)

fix) =timfi(x) = 3 lim f(2)4(zx) = 3 fz)A(zx) .
M i~ ® M

t—

Hence feH and f; — f follows from (3.3).
Now A,eH forany yeSsince 2., |4, (2)[* = 1,and for
any x€§

A, (x) =A(yx) =Y A(p2D)A(zx) =Y A,(2)4A(zx) .
M =M

Define ¢: S+ H by ¢(x) = A,. Then
($(x), 4(»))

=3 4,@4,@ =3 A(x2)A4(yz2) =A(xp).
zeM zeM

It follows from Lemma 2.1 that ¢ (M) is an orthonormal set
in H. If feH, zeM, it follows from (3.2) that

S#@) =( 3 A 80, 8) = S0

z’eM
Hence
IAP=3 1f@1P=3 {fid@)].
zeM zeM
It follows that ¢(M)e V. O

The null set n(A) for a transition amplitude 4 is the set
of all finite sequences (a;,x;), i = 1,...,n, a;€C, x,€S, such
that 2 a; A(x,,y) = O for all yeS.

Corollary 3.3: If (8,4) is a tas, then the following condi-
tions hold.

(a) |[A(xp)|<1land |[A(x,p)| =1 if and only if 4( y,2)

= A( y,x)A(x,z) for all zeS.

(b) For any a,,...,a,€C, x,,....X, €S we have

z a,a; A(x,;,x;)>0,
i)

and equality holds if and only if (a,,x;)}_,en(4).

(c) Every Me.#", has the same cardinality, and if (S,4)
is total, every Me.# , has the same cardinality.

Proof: Let ¢: S— H be a representation.

(@) |[Ax)| = [{ d(x), d( N ||| 6] |} (]
=1.

If |[A(x,y)| =1, then there is an aeC such that ¢(x)
= ad(y). Now

1=(d(x),d(x)) =a(d(x),d(y)) =ad(xy).
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Hence for any zeS
A(pz) =a 'd(x,z) =A(xy)A(x,2) .

) S a.a A(x,x) =Y a,a,( $(x.), $(x,))
ij ¥

= <Z a; $(x;), Y @, ¢(x,-)>

>0.
If equality holds, then for any yeS we have

2o Alxy) = <Z a; ¢(x;), ¢(,v)> =0.

Hence (a;,x;)}_ €n(A4). The converse follows from the fact
that { #( y): yeS}is total in H.

(c) If Me.v",, then ¢(M) is an orthonormal basis for H
and all orthonormal bases have the same cardinality. a

The next result characterizes transition amplitudes
which coincide.

Corollary 3.4: If A and B are transition amplitudes on .§
satisfying (a) n(B) Cn(A4), (b) 4 3 NA",#0,thenB = 4.

Proof: Let ¢ and ¢ be representations of (S,4) and
(S,B) on Hilbert spaces H, and H g, respectively. Let K, be
the linear hull of { #(x): x&S} and define the map U: K,
—~Hy by

U(Sabe)=Fa v,
To show that U is well defined, suppose

Zai #(x;) =ZBJ #(y;).
Then for any yeS, we have

zaiA(xny) =zai< #(x,), 6())

=>B{($(y). ¢(»)) =3 B A(yp) .
Applying (a) we have
zai B(xi,y) =2BJ B( yj’y) .

Hence

o ¥(x)=>B9(y).
Applying (b) there exists an Me.#"; N4, and by Lemma
3.1(a), g(M)eNV y,, Y(M)EN . Since Up(M) = (M),

U has a unique extension to a unitary transformation from
H, onto Hy. Then for any x,yeS we have

B(x,y) = (¢p(x), ¥(y))s
= (Up(x), Up(y)) 4 = (x), d(¥)) 4
=A(x,y) . O

The dimension dim (5,4 ) of a tas(S,4) is the cardinality
of any Ne.v",.

Theorem 3.5: Let (S5,4) and (7,B) be tas’s. Then
dim(S,4) = dim(7,B) ifand only if (S,4) and (7,B) admit
representations in the same Hilbert space.
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Proof: If (S,4) and (7,B) admit representations in H,
then

dim(S,4) = dim H = dim(7,B),
Conversely, suppose dim(S,4) = dim(7,B) and let ¢: S
—H and ¢: T-K be representations. Since dim H
= dim KX, there exists a unitary transformation U: K- H.
Define ': T— H by ¢’ = Uy. Then ¢’ is a representation of
T'sinceyy' (M)e V", forall Me 4 5 and for all x,peT we have

B(xp) = (¥(x), () x = (U(x),U( y))
=(¢'x),¢¥'(y))y. O

IV. ISOMORPHISMS AND A-FORMS

Two tas’s (S,4) and (T,B) are isomorphic if there exists
a bijection J: S—T such that 4(x,y) = B( Jx,Jy) for all
x,yeS. We then call J an isomorphism. An isomorphism from
S to S'is called an automorphism. Notice that if J: S— T isan
isomorphism, then J(A#", ) = A4 p.

Theorem 4.1: Let (5,4) and (7,B) be tas’s.

(a) if J: §— T'is an isomorphism, then for any represen-
tations ¢:.S— H, ¢: T— K there exists a unique unitary trans-
formation U: H— K such that ¢J = Us.

(b) Conversely, if (S,4), (T,B) are strong, ¢: S— H, ¢
T—-K are representations and there exists a unitary trans-
formation U: H— K such that Ug(S) = ¢(T), then (S,4)
and (7,B) are isomorphic.

Proof: (a) If Me#V",, then ¢(M)et",,. Now J(M)
ety and Y[ J(M)]e 4"y Define the unitary transforma-
tion U: H— K by defining Ug(z) = ¥( Jz) for all zeM and
extend by linearity and closure. Now for every xS, we have

$(x) = A(x.2) ¢(2),
zeM
and hence
Up(x) = > Ax2)y(Jz) .
2eM
Moreover,
P(JIx) = Z B(JxJz) ¢¥(Jz) = z A(x,2) ¥(J2) .
zeM zeM

Hence Ug = ¢J. To show that U is unique, let ¥: H—-K be
unitary and suppose V¢ = #J. Then U| 4(S) = V| ¢(S)
and in particular U and V agree on ¢(M)e ¥ . Hence
uv=vV.

(b) Define J: S— T by Jx = ¢~ 'Ud(x). Then J is a bi-
jection and for all x,yeS we have

Axp) = ($(x), $(¥)) g = (Ud(x), Up( y))x
=B(y~'Up(x), ¥y~ 'Us( )
= B( Jx,Jy). O

We say that two representations ¢: S—H and ¢: S—-K
are unitarily equivalent if there exists a unitary transforma-
tion U: H—- K such that ¢ = Us.

Corollary 4.2: Any two representations of a tas are uni-
tarily equivalent.

Proof: Let Jbe theidentity map Iin Theorem 4.1(a). O

Corollary 4.3: Let (S,4) be a tas and let ¢: S—H be a
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representation. If J: §—.5 is an automorphism, then there
exists a unique unitary operator U on H such that ¢J = Ug.
Conversely, if (S,4) is strong, U: H— H is a unitary operator
and Ug(S) = ¢(S), theJ = ¢~ 'Ug is an automorphism.

A one-parameter group of automorphisms on atas (S,4)
isamapJ from R to the automorphism group of S such that
J(0) =1 and J(s + t) = J(s) J(2) for all 5, teR. A one-pa-
rameter group of automorphisms J is continuous if
t—sA4 (J(2)x,y) is continuous for all x,yeS.

Theorem 4.4: Let ¢: S— H be a representation of the tas
(S,4). If J is a continuous one-parameter group of automor-
phisms on (5,4 ), then there exists a unique self-adjoint oper-
ator T on H such that ¢J(¢) = e ~ "¢ for all tcR.

Proof: By Corollary 4.3, there exist unique unitary oper-
ators U(¢) on H such that ¢J(¢t) = U(¢)¢ for all t€R. Since
U0)¢ = ¢and

Us+td=¢dJ(s+1) = ¢J(s) J(2)
=U(s) ¢J (1) = U5 U(1) ¢,
we see that U(Q) =T and U(s +¢t) = U(s)U(¢). Let M
et”, and hence ¢(M)eV "y, If f, geH, we have
(U f8)
= (v 3 @) 621, 3, (260 6)
zeM zeM

=Y (fid(2)){$(z).8)(U(2) $(2), $(2))
z,z'
=Y (f8(2))($(2).8) (4L J(D)z], 4(2))

=Y (f#@)($(H) A (J(D)z7).

It follows that ¢ — ( U(t)f,g) is continuous so U(?) is a weak-
ly continuous one-parameter group of unitary operators on
H. By Stone’s theorem there exists a unique self-adjoint op-
erator 7°on H such that U(t) = e ~ 7 for all teR. O

If (S,4) is a tas, amap B: S XS —»Cis called a form. A
sequence (a;,x;)eCX S is called a null sequence if for every
yeS we have

dlaA(xy)| <o and Y a, A(x;p) =0 (4.1)
We denote the set of null sequences by n,(A4). Notice that
n(A4)Cny(A). We call a form B an A-form if for all yeS and
(a;,x;)eny,(A) we have

Za B(x,y) =

Notice that (4.2) is a type of absolute continuity condition.
We now prove a variant of the Radon—Nikodym theorem.

Lemma 4.5: A form B is a A-form if and only if for all
Me V', and x, yeS we have

za B(yx,) = (4.2)

(4.3)

B(xy) =Y B(x2)A(zy) = Y A(x,2)B(zy) .
zeM zeM

Proof* Suppose B is an A-form and let Me/,, x,peS.
Since 3,4 |4(x,2)|* < 0, A(x,2) =0 except for a count-
able set z,z,,.... Let x,=x, x, =2, i=23,.., and let
a,=1, a,= —A(x,2;), i=2,3,.... We now show that
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(a;,x;)eny(A4). Indeed,

2. IaiA(xiny)l

= |A(xy)| + 2 |A(x,2,)A(z;,p)|

172

1/2
<+ [ 4Gz P = 4P|

=|Axp)| +1,

and
zai A(x,y) =Axp)

1t follows from (4.2) that

— > A(xz2)A(z,p) =

B(xy) — 3 A(x2)B(z,,y) =0

A similar method gives the other equality in (4.3). Con-
versely, suppose (4.3) holds and (a;,x;)eny(A4). Then for
Me V", we have

Y @ B(x,p) =Y a; 3 A(x,:2)B(zp)
3 T 2eM
=Y B(zy) > a; A(x;,,2) =0
zeM i
Again, the other equality in (4.3) is similar. a

A form B is bounded if there exists a b0 such that for
any Me/", and any (a;,z;,)eCXM, i = 1,...,n, we have

(44)

2
> ‘zaiB(z,.,z) <b2S .
=M |7 7

Notice that A4 itself is bounded since

=z_ |a,»|2.
1

Theorem 4.6: Let (S,4) be a tas and let : S—H be a
representation. There exists a bijection B— B from the set of
bounded 4-forms onto the set of bounded linear operators on
H such that B(x,y) = (B¢(x) é( y)) for every x,peS.

Proof: Let B be a bounded A-form and let Me./",. Let
H,C H be the linear hull of { ¢(z): zeM}. On H,, define

3 (z a, ¢(z,)) _

i=1

> > aB(z,2) $(2) .

zeM i

A
Then B is a bounded linear operator on H,, since

\ \ﬁ(Zamﬁ(z,-)) 2<b22 e |

Eai #(z;)

Since H, is dense in H, B hasa unique bounded linear exten-
sion to H, which we also denote by B.If x,yeS, z’eM, since

Bp(z) =3 B(z.2) $(2),
zeM

S. Gudder and S. Pulmannova 381



we have from Lemma 4.5,

(Bo(x), ()
= (B 3 4G 620, 3 40 62)
zeM

ZeM

=< Y A(x2)B(Zz) $(2), 3, A(9:2) ¢(z)>
zeM

z,z7eM

= <2 B(xz) $(2), 3 A(y:2) ¢(Z)>
2eM zeM

= Y B(xz)A(zy) = B(x) .
zeM
It is clear that B— B is injective. To show surjectivity, sup-
pose L is a bounded linear operator on H and define a form B

by B(x,y) = (Lé(x), #( )). Toshow that Bis bounded, let
MeV ', and (a;,2,)eCXM, i = 1,..,n. Then

> ‘Zai B(z;,2)
zeM

-3 lza,.<L¢(z,.),¢(z)>

2

2

2

=2 ’(L Za b)), ¢(z)>

2 2
}<Mn

2

=HL2a,~¢(Z,-) Sad@)

=ILIPY lal?.

To show that B is an A-form, we have for Me 4",
Y B(x2)A(zp) = 3 (Lo(x), $(2))( 8(2), 4( )
zeM zeM

= (Lo(x),d(y)) =B(xp),
and

> A(x2)B(zy) = Y (¢(x), $(2))(Lp(2), ¢(y))
zeM zeM

=3 ($(x), $(2)){($(2), L*$( )

zeM

= (¢(x), L*$(y))

= (Lg(x),¢(y)) =B(xyp) .

We conclude from Lemma 4.5 that B is an A-form. O

Let B(S,4) be the set of bounded 4-forms on the tas
(S,4). It is easy to check that B(S,4) is a complex linear
space under pointwise addition and scalar multiplica-
tion. For BeB(S,4), define B*(x,y) = B(yx). Then
B *c(S,A4). Moreover, for BeB(S,4) define ||B | to be the
infimum of the 4°’s in (4.4). Finally, for B, CeB(S,4),
Me.v",, define the form BC by

BC(xp) =y B(zy)C(x.2) .
zeM

It is not hard to show that BCeB(S,4) and is independent of
the Me#",. The next result is a straightforward corollary of
Theorem 4.6.

Corollary 4.7: B(S,4) is a C *-algebra under the above
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operations with identity 4, and BB is an isometric *-iso-
morphism.

A state on B(S,A) is a positive linear functional u:
B(S,4) >R such that u(4) =1. An important class of
states are given as follows. For xS, define the state u, by
K5 (B) = B(xx).If §: S— H is a representation, we see that
4, (B) = (Bé(x), #(x)). This observation together with
Corollary 4.7 gives a connection between the present frame-
work and the algebraic (or C *-algebra) approach to quan-
tum mechanics. %3

An A-form B is automorphic if for every Me V", x,yeS,
we have

Y B(x2)B(yz) =3 B(zp)B(zx) =A(xy). (4.5)
M zeM
If J: $—.S is an automorphism, we define the form B, by
B;(x,y) = A( Jx,y) for all x,yeS.

Lemma 4.8: (a) If J: § - Sis an automorphism, then B,
is automorphic.

(b) If B is automorphic, then B is bounded.

Proof: (a) Let ¢: S— H be a representation. By Corol-
lary 4.3 there is a unitary operator U on H such that
¢J = Ug. Hence

B, (xy) =A(Jx)p)

= (¢(Jx), d(y)) = (Up(x),4(y)) .
By Theorem 4.6, B, is an A-form. Moreover (4.5) follows
immediately.
b) IfMe V', (@, 2,)ECX M, i = 1,...,n, then we have
S |Sasea
2eM i

2 —
=Y > ;@ B(z,2)B(z,2)
zeM i,y

=Y az zé;{B(z,.,z)E(zj,Z)
LJ

=Za,-&’jA(z,-,zj) = la|’. m|
L

It follows from Lemma 4.8, that if B is automorphic,
then BeB(S,4). It is easy to show that the set of automor-
phic forms is a group under multiplication in B(S,4), which
we call the automorphic group. If B = B, for some automor-
phism J we say that B is implemented by J.

Corollary 4.9: Let (S,4) be a tas and let ¢: S—H be a
representation. R

(a) The map B— B is a group isomorphism from the
automorphic group onto the group of unitary operators
on H.

(b) If (S,4) is strong, an automorphic form B is imple-
mented if and only if B¢(S) = 4(S).

Proof: (a) Equation (4.5) is equivalent to BB * = B*B

=A. Hence BB* = B*B = [, s0 B is unitary. The rest is
straightforward.

(b) This follows from Corollary 4.3. a

We call EC.S an event if there exists an Me.#", such
that EC M. Twoevents E, Fareorthogonalif ENF = @ and
EUFCM forsome Me 4" ,. If E is an event, we call the form
Ay defined by

Ap(xp) =Y A(x2)A(zy)
zcE
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the A transition amplitude conditioned by E. For an event E
and an xeS we call 4, (E) = A (x,x) the probability of E in
the state x. Notice that 0< u, (E)<1, u(M) =1 for all
Me',, and if E, F are orthogonal, then u. (EUF)

= p, (E)+u,(F). Let ¢: S—H be a representation, let
JeH be a unit vector and let P, be the one-dimensional pro-
jection onto f. If E is an event, form the projection operator
Pp =% ¢ P,.,. We then have

Az (xp) =T ($(x), $(2)){ $(2), 6( )

= (Pg ¢(2),6())) .

It follows from Theorem 4.6 that 4;€B(S,4) and Pz = 4 E-
Let & = {A;: Eisanevent}. Ford;, A&, define A, <A,
ifdg Ar = Ag and define A4 ; = A — A;. The proof of the
next theorem is straightforward.

Theorem 4,10: If (S,4) is a total tas, then ( ,<,’) isan
atomistic, o orthocomplete, orthomodular poset.

A bounded 4-form B is an A-conditional transition am-
plitude if for every Me v, x,yeS we have

> B(x2)B(pz) =B(xp).
zeM

Denote the set of 4-conditional transition amplitudes by L.
Notice that & C L. For B,, B,cL, define B,<B, if B,B, = B,
and B| =A4 — B,. Again, the proof of the next result is
straightforward.

Theorem 4,11: Let (S,4) be a tas and let ¢: S—H be a
representation. Then L is a complete, atomic, weakly modu-
lar, orthomodular lattice, and the map B— B is an isomor-
phism from L onto the lattice of all closed subspaces of H.

The last two theorems give a connection between the
present framework and the operational statistics'*!® and
quantum logic approaches®'*?! to quantum mechanics.

V. SUMS AND TENSOR PRODUCTS

Direct sums and tensor products are two important con-
structions in the Hilbert space formulation of quantum me-
chanics. Direct sums are necessary in describing systems
that have superselection rules while tensor products are used
in describing combined systems. As we shall see, both of
these constructions proceed quite naturally in the present
framework.

Let (S1,4,) and (S,,4,) be tas’s where S,N.S, = &. Let
S§=5,US, and define 4: § XS—C by

A;(xy) ifxpyeS, i=12,
A(xyp) = [ )
0, otherwise.
We use the notation S=S5,0S5,, 4 =4,04,, and call
(S, 05,4, 0 4,) the sum of (S;,4,) and (S,,4,).

Lemma5.1: (S, ©S8,4,04,) isatasand MeV',  , if
and only if M = M,UM,, where M;e V", , i = 1,2.

Proof:LetS=S,95,and 4 = 4, ® 4,. Clearly 4(x,x)
= 1 for all xeS. Let M = M, UM,, where M;e. V", ,i = 1,2.
Then

S 4(x,2)A( y,2)
zeM

=3 AxA(p2) + Y Ax2)A(y2). (5.1
zeM, zeM,
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If x and y are not in the same S, then both sums on the right
side of (5.1) vanish so we obtain

S A(x,2)A(p2) =0=A(xp).
zeM

If both x and y are in the same S, then one of the sums on the

right side of (5.1) vanishes and the other equals 4, (x,y)
= A(x,). We conclude that 4 is a transition amplitude on .S

and that M, UM,e.4",. Finally, suppose Me.4", and let M,
= MNS,, i = 1,2. Then for all x,yeS we have

Axy) = Y Ax2)A(p2) + § Ax2)A(p2) .
2eM, zeM,

(5.2)
If x,yeS;, i = 1 or 2, then we obtain from (5.2)
A4;xp) =Y 4,(x2)4,(p2) .
=M,
Hence M;etV ", ,i= 1,2, and M = M,UM,. a

Lemma 5.2: A tas (S,4) is isomorphic to a sum of two
tas’s if and only if there is a proper, nonempty subset S, of
such that 4 (x,y) = 0 whenever x€S$,, y¢S,.

Proof: Let S, be a proper, nonempty subset of S such that
A(x,p) = 0 whenever x€S§,, y¢S,. Define 4,: S, XS, -C by
A, =A415,XS,, let S, =5 \S, and define 4,: $, XS, -»Cby
A, =A4|5,XS,. We now show that (5,,4,) is a tas [the
proof for (S,,4,) being similar]. Clearly, 4,(x,x) =1 for
all xeS§,. Let Me4", and let M, = MNS,. For x,yeS,; we
have

4,(xy) =A(xy) = Y A(x2)A(zy)
zeM
= z; A(x,2)A(z,p)

=3 A,(x2)4,(z) .
M,

Hence M,.45 and (§),4,) is a tas. We now show that the
identity map I: $—.5, @ 5, is an isomorphism from (S,4) to
(S,80S5,4,04,). Indeed, if x,yeS;, i = 1 or 2, then

A(xy) =A4;(xy) =4,04,(x),
and otherwise

A(xy)=0=4,04,(xy) .

Conversely, suppose there is an isomorphism J:
S-S5, 658, where (S,4), (5;,4,), i = 1,2, are tas’s. Then
J ~1(S)) is a proper, nonempty subset of S. Moreover, if
xeJ ~1(S,), y& J ~1(S,) we have

A(xy) =A,0A4,(JJxJy) =0. O

If S, is a proper, nonempty subset of S satisfying the
condition in Lemma 5.2, we call (5,4 |S,) a sub-tas of
(S.4).

Corollary 5.3: (a) dim(S, @ 5,4, 4,) = dim(S,,4;)

+ dim(S,,4,) .

(b) If (S,,4 |S,) is a sub-tas of (S,4), then dim(S,4)

=dim(S,,4 |S,) + dim(S \S,4 [(S\S)))-

If H, and H, are Hilbert spaces, we denote the usual
Hilbert space direct sum by H, & H,.

Theorem 5.4: A map ¢: S, & .5, H is a representation of
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(S5,9S5,4,84,) if and only if there are Hilbert spaces
H,, H, such that H = H, & H, and representations ¢,: S,
—H,;, i =12such that (x) = ¢,(x) for all xeS,, i = 1,2.

Proof: Let ¢: S, ® S, — H be arepresentation. If H, is the
closed span of ¢(S;), i = 1,2, then H, is a Hilbert space and
is a closed subspace of H. If xS, yeS,, then

($(x),d(y)) =A(x,p) =0,

so H,LH,. If Me V",, then by Lemma 5.1, M = M,UM,,
where M,eV” 4,1 = 1,2.Since ¢ (M) is an orthonormal basis
for H we have for any feH,

f=2{f¢2) ¢

zeM

=Y (£ ¢(2)) d(2) +z§,{ (f.¢(2)) ¢(2).

zeM,

It follows that H=H,® H,. Define ¢,: S;—H, as ¢,
= ¢|S;,i=1,2. We now show that ¢, is a representation of
(S;,4;),i=1,2. Indeed, ifx,yeS;, then for i = 1 or 2 we have

4, (xp) =A(xp) = ($(x), $(3)) = ($:(x), 6:(»)) .
If MietV",, i = 1,2, then by Theorem 5.1, M\UM,e4",.
Since #(M,UM,)etV Y, it follows that ¢(M;)etV "y, i
= 1,2. It is clear that ¢(x) = ¢, (x) for all xeS;, i = 1,2.

Conversely, suppose ¢,: S; = H,, i = 1,2, are represen-
tations and ¢: S, 8 S,— H, & H, satisfies ¢(x) = ¢,(x) for
all xe§;, i = 1,2. If x,yeS;, i = 1 or 2, then
A(xy) =4;(xp) = ¢:(x), 8, () = ($(x), (),
and otherwise A(x,p) =0=(d(x),$(y)). If MeV,,
then by Lemma 5.1, M = M,UM,, M.e.V", , i = 1,2. Since
d(M,)eV o, i = 1,2, we have g(M)e NV y. a

If we define the sum of an arbitrary collection of tas’s in
the natural way, then it is straightforward to generalize the
above theorems to this situation. Moreover, it is easy to show
that (S, @ S,,4, @ 4,) is strong (ultrastrong) if and only if
(S,,4,), (S5,4,) are strong (ultrastrong).

If (S;,4,) and (S,,4,) are tas’s, define

S, 88, =8, X8, = {(x,,%,): x,€5,, x,€5,},
and define 4,8 4,: 5, ®S,-Cby

A1 ® Ay ((x1,%2), ( Y102)) = A, (x1) 42 (x2.7) -

We call (S, ®85,,4, ® A,) the tensor product of (S,,4,) and
(S45).

Lemma 5.5: If (S,4,), (S,A4,) are tas’s then
($,855,4,©4,) isatasand MetV ", ,, if M =M XM,
where M;e V", ,i=1,2.

Proof: Let S = 5,885, and 4 = 4, ® 4,. It is clear that
A ((x4,%5),(x,,x,)) = 1. Now let MetV,,i=1.2, and let
M =M, XM,. Then

Z A ((x1,%2),(21,22)) ((P1,72)(21,2,))

(z,,z,)eM

= Z A,(x1,2,) A4, (x,,2,)A( Y1z A( Y223)

(2y,2;)eM

= 2 Al(x1>z1)Z(y|yzl) Z A(xzazz)z(yzyzz)

z,.eM, z,eM,

=A,(x,§)A2(%2,9,) = A ((x1,%,),( ¥y, ¥2)) .
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We conclude that (S,4) is a tas and M, XM,/ O
Corollary 5.6:

dim(S, 5,4, ®4,) = dim(S,,4,) dim(S,A4,) .

We denote the usual tensor product of two Hilbert
spaces H,, H,by H, e H,.

Theorem 5.7: Let (S,,4,), (S,,4,) be tas’s. A map ¢:
S,®8,—H is a representation of (S, ®.5,4,®4,) if and
only if there are Hilbert spaces H,, H, such that
H = H, ® H, and representations ¢,: S; - H,, i = 1,2, such
that ¢(x,,x;) = &,(x,) ® d,(x,).

Proof: Let ¢: S,®S,—H be a representation. Let M,
e/VA‘,,i= 1,2, ueM,, veM, be fixed, let H, C H be the closed
span of { ¢(x,,0): x,&S,} and let H,C H be the closed span
of { ¢(ux,): x,€8,}. Define the maps ¢,: S, - H,, i = 1,2,
by ¢,(x)) = d(x,0), ¢,(x;) = ¢(u,x,). We now show
that ¢, is a representation (the proof for ¢, is similar). For
X, 1€5,; we have

(B:1(x1), 6,(y)) = (d(x,0), (y1,0))
:Al ®A2((X1,U),( yl’v))
=A,(x,p)) .

Ifz,z’eM,,z#2', then ¢,(z) Lé,(z') so { 4,(z): zeM,}is an
orthonormal set in H,. Moreover, for any x,€S;, since
M\ XMV o5, We have

d(x,,0) = (P(x,0), #(2,2'))4(2,2")

(z,2)eM X M,

= Y  A(x,2)4,(02) $(z,2)

(z2,2')YeM, XM,

=Y A4\(x,2) $(zv) = Y A(x,,2) $,(2) .
2eM,

zeM,;

Hence if feH, satisfies f1 ¢,(z) for all zeM,, we have
{(f,d(x,0)) =0 for all x,eS,. Since { #(x,,v): x,e5,} is
dense in H,, we conclude that f=0, and hence ¢,(M,)
€4y, . Define the unitary transformation U: H— H, ® H, by
Ud(z,,2,) = ¢,(2,) ®$,(2,), 2,eM,, i = 1,2, and extend by
linearity and closure. We can thus identify H with H, ® H,.
Moreover, for any (x,,x,)€S, ® S, we have

Ug(x,x;) = > (P(x1,%,), $(2.2')) ¢1(2) ® $,(2)

(z.7)eM, X M,

= z (¢1(x1),¢1(2)>

(2,2')eM XM,

X $2(x3), $:(2')) 6,(2) ® $,(2)
= z < ¢1(X1)’ ¢1(Z)> ¢1(Z)

zeM,

® Y ($2(x,), 62(2')) $5(2)

zeM,
=¢,(x,) ® ¢,(x;) .
Conversely, suppose ¢,: S; = H;, i = 1,2, are represen-

tations and ¢: S,S5,-H =H,® H, satisfies ¢(x,,x,)
= ¢,(x,) ® d,(x,). We now show that ¢ is a representa-

S. Gudder and S. Pulmannova 384



tion. For (x,,x,), ( ¥;,0,)€S, ® S, we have
(d(x1,%2), $(y12))
= ($1(x,) ® $5(x2), $:(y1) @ $2(,))
= {1(x1), 6:( 1)) ( 2(x), $:( 32))
=A,(x,y,)A42(%2.9,)
=4, 8 Ax((x1,x2),( y1:2)) -

Finally, if M;e ¥, , i = 1,2, then by Lemma 5.5, M, XM,
€NV 4, 04, FoOr (x,,x,)€S, ® S, we have

[{ $(x1,x,), $(2,2'))|?

(z,2)eM, XM,
= z |A,(x1,z)|2z |4 (x2,2") |? = 1 = [|$(x,.x) | -

Hence

pxpx) = Y ($(xpxy), 6(22)) $(2.2) .

(z2')eM, X M,

If feH satisfies, fl ¢(z,2’) for all (z,2')eM,XM,, then
{f, ¢(x,,x,)) = Oforall (x,,x,)€S; & S,. Since the elements
B(x,x,) = &,(x,) ® ,(x,), (x,,x,)€S, ® S, are total in H
we conclude that /= 0. Hence, ¢ (M, X M,)eV y and ¢ isa
representation. O

If we define the tensor product of a finite number of tas’s
in the natural way, then it is straightforward to generalize
the above theorems to this situation. Moreover, it is easy to
show that (S, ®S5,,4,®4,) is ultrastrong if and only if
(S1,4,),(S,,4,) are ultrastrong. One can give simple exam-
ples which show that the converse of Lemma 5.5 does not
hold. That is, if Me. ¥,  4,, then M need not have the form
M=M XM, forMetV ,,i=12.
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Quantum motion on a half-line connected to a plane
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In this paper, the free motion of a particle on a manifold that consists of a one-dimensional and
a two-dimensional part connected in one point is discussed. The class of admissible
Hamiltonians is found using the theory of self-adjoint extensions. Particular attention is paid to
those Hamiltonians that allow the particle to pass through the point singularity; the reflection
coefficient and other quantities characterizing scattering on the connection point are

calculated. A possible application is also discussed.

I. INTRODUCTION

The theory of self-adjoint extensions represents a pow-
erful heuristic way to construct Hamiltonians of quantum
systems in cases when the correspondence principle yields
only incomplete information. For instance, Hamiltonians
describing the point-interaction phenomena in quantum me-
chanics are obtained as self-adjoint extensions of the corre-
sponding free Hamiltonians with the interaction points re-
moved.'”

As another illustration, one can consider Schrodinger
operators with singular potentials.>* When the potential is
singular enough, the correspondence principle provides us
with a differential operator that is not essentially self-adjoint
(e.s.a.). In this case, it is natural to approach the problem by
constructing all self-adjoint extensions of this operator.
After that one must select the appropriate one among them,;
it requires, of course, additional physical information. There
are other quantum-mechanical problems to which the the-
ory of self-adjoint extensions can be applied, e.g., a one-di-
mensional model of three-particle collisioris.’

Particularly interesting are the situations when a quan-
tum particle moves on a spatial manifold that consists of
several more simple parts. As an example, let us recall the
free-electron (or metallic) model of organic molecules in
which one assumes that the m-electrons move only along the
graph I representing the molecule (cf,, e.g., Ref. 6 or Chap.
6 of Ref. 7 for the one-dimensional case). Suppose that the
motion along the line T'; is described by the Hamiltonian

# d?
;= - m 2’? +V(x)
with a suitably chosen domainin L (T ;» dx) where the coor-
dinate x parametrizes I'; ~ [0, 1;]. The full Hamiltonian H
of the model is now obtained as an appropriate self-adjoint
extension of the operator constructed by “gluing together”
the line Hamiltonians H;.

The distinct parts of such a “configuration space” are
not necessarily of the same dimension. In the present paper,
we are going to discuss the most simple situation of this kind,
where the manifold consists of a half-line attached to a plane,

* On leave of absence fromvNuclear Physics Institute, Czechoslovak Aca-
demy of Sciences, 25068 ReZ near Prague, Czechoslovakia.

» On leave of absence from Nuclear Centre, Charles University, V Holeso-
vi¢kach 2, 18000 Prague 8, Czechoslovakia.
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i.e., the dimensions are 1 and 2, respectively. The motion in
either part is assumed to be free. Notice that one may regard
the sketched situation also as a motion in R? subjected to a
point interaction with some internal structure (compare to
Ref. 8). Such an interpretation, however, does not suit to the
model situation we are going to discusss, for which analysis
of the motion on the half-line is essential.

Let us resume briefly contents of the following sections.
First of all, we construct the class of admissible Hamilto-
nians as self-adjoint extensions of the operator obtained by
“gluing together” the free Hamiltonians for the motion on
the half-line and on the plane (Sec. II). Since the direct char-
acterization of these extensions obtained from the von Neu-
mann’s theory is not very suitable for practical calculations,
we deduce in Sec. III an alternative classification of them
using singular boundary conditions. In Sec. IV we analyze
scattering on the point singularity, with particular attention
paid to the reflection coefficient for the particle traveling
initially along the half-line. In conclusion, we discuss a possi-
ble application of the present analysis to modeling the quan-
tum point-contact spectroscopy.

Il. ADMISSIBLE HAMILTONIANS

Let us consider a particle, an electron for definiteness,
moving on the manifold G that consists of two parts—the
plane R? and the half-line R~ = ( — o, 0]—which are con-
nected at a point P as sketched in Fig. 2. The state Hilbert
space of such a system is therefore the orthogonal sum of the
state spaces referring to the plane and to the half-line. If we
neglect the possible internal degrees of freedom (spin of the
electron, for instance), we have

H =L*G):=L*(R>»eL*R"). (n

Since the electron motion is supposed to be free except at the
point P, we start the construction of Hamiltonian with the
operator

H,=H, ,eH,,, (2)

FIG. 1. The graph I for an anthra-
cene molecule.
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1 FIG. 2. The manifold G.
P

RZ

where the H, ; are restrictions of the respective free Hamil-
tonians on the two parts of G, namely,

d?
HO,I = —a? (3a)
D(H, ) =Cg R \{0}),

and
H,,= —A4,

(3b)

D(H,,) = C&RN\{P}).

The symbol C & (Q) denotes conventionally the set of all
infinitely differentiable functions with a compact support
contained in Q.

The operator H,, is not self-adjoint. It is well known®
that the deficiency indices of H,, , are (1, 1), and the same is
true for H,, , as weshall show alittle later. Consequently, the
deficiency indices of H, are (2, 2) so there is a four-param-
eter family of self-adjoint extensions. Let us construct them
explicitly.

We use the polar coordinates with the center at P and
decompose the space L *(R?) in the following way:

L*(R?) =L*(R*,rdr)®L*(0,2m)

-
= o

where the functions
Y,: Y, (p)=Q2m)" ™%, gel0,2m),

form the “trigonometric” orthonormal basis in L %(0, 27).
Using the standard procedure (Ref. 9, appendix to Sec.
X.1), one obtains the decomposition

L*R*, rdr)®{Y,, }i, (4)

oo

Ho,z rDmin = ® hm ®I’ (5)
where
h _d> 14d m
i dr’ r dr 72 (6)

D(h,,) = Co(R*\{0}),

and the domain D, consists of all finite linear combina-
tions of the functions ¥: ¢¥(r, @) =f(r)Y, (@) with
feD(h,,). The deficiency indices of the operators 4,, on
L2*(R™, rdr) are easily found. The latter are unitarily equi-
valent to

- d? m—}
h, = ——+——
T TaE T T
on D(}-t,,,) = D(h,, ), so we have
n(ho) =1,

N
n(h,) =0, for m#0.

The second relation follows from Theorem X.10 of Ref. 9,
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while the first one is verified directly (a solution to the defi-
ciency equations will be presented below). Relations (5)
and (7) yield

o

n(H, ,)< z

We want to show that the equality holds in the last relation.
To this end, one has to check that the functions
¥, ¥, (rne) =H{(+ir), witha equalto 1,2 for the
plus and minus sign, respectively, which span the deficiency
subspaces [cf. (11) below], belong to D(H § , ). This can be
performed in a straightforward manner using integration by
parts and properties of the Hankel functions. Relation (2)
then gives

n(H,) =n(H, ,) +n(H,,) =2. (8b)
Any self-adjoint extension of H, is therefore of the form
H=Koh, (92)

where K is a self-adjoint extension of the operator K, on
L2 (R™)®(L*(R*, rdr) ®{Y,}) defined by

n(h,)=1. (8a)

Ko =Hy , @ (hyo D), (9b)
and # denotes closure of the operator
h:= e h,, (9¢)
meZ

m#0

which is e.s.a. due to (7).

Now we must choose suitable bases in the deficiency
subspaces ¥, = Ker(K & J-il).Itis easy tofind that 7",
is spanned by the functions

i =(/,0), @it =(01), (10)
x) = e_e’x, €= e1ri/4’
Hi(x) an
fo(r) = 2m)'2H P (er).
In the same way, the functions
P70 =00, ¢i>=(01) (10")

form a basis in %" _. The self-adjoint extensions of K, are
now specified by isometries %", - % _, i.e., by 2X2 uni-
tary matrices U. The von Neumann’s theory gives a prescrip-
tion how the extensions K, can be constructed for an arbi-
trary U. Its domain D(K ) consists of all functions of the
form

f=Y+ec (@i +u,@{ +u,pi)

F @it Fun@{T) fuppiT), (12)
with eD(K,) and ¢,, c,eC, where u j are elements of U.
One might write an expression for K,/ as a linear combina-
tion of Ky and the deficiency functions. Instead, we are

going to derive a more transparent expression for the action
of K.

lil. BOUNDARY CONDITIONS

For practical calculations, it is more convenient to char-
acterize extensions K, by appropriate boundary conditions.
In this way, we are able to describe K, completely since
K, CK %, and it is easy to see that
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K(’)'.f=[~— d2¢1 —_ d2¢)2 _i d¢2 ]’ (13)

d®’ df r dr
for each f = {@,, @,} from D(K ¥). The deficiency functions
@ i’ are, however, singular around P, but we can eliminate
this difficulty by defining the regularized boundary values'®
Lo(g) : = lim 2

-0 Inr

L,(p) :=li_{2 [@(r) — Lo(@)inr], (14)

which will be used together with

,(0_): = limg,(x), @i(0_):= lim (_‘1_¢,1)(x) .
x=—0_ x-0_\dx
In particular, the standard expansion of Hankel functions'!
yields
Lo( f2) = — Lo( f,) = 2i/m,
L(f) =4+ Qi/m)(y —1n2),
L(f) =}— Qi/m)(y—n2),

where y = 0.577 216... is Euler’s constant.
Before proceeding further, we shall split the set of matri-
ces U characterizing the extensions into five disjoint classes.
Class I contains all U such that

1+ uyy — uyy —det U #0.
Class II contains all nondiagonal U such that
14 uy —uyy—det U=0.
Class III consists of the matrices
-1 0
( 0 ei“’)
with we(0, 27).
Class IV consists of the matrices
e 0
(% 1)

with we( — 7, 7).

(15)

Class V contains the matrix

(7o 1)
0 1/
Now we can formulate the mentioned result.
Theorem: Every self-adjoint extension of the operator
Hyisof theform H, : =Ky & %, where the operator K, is
specified uniquely by the following boundary conditions. If

S={@., .} belongs to D(K ), then we have the following.
(i) For U of class I, we have

@1(0_) =49, (0_) + BLy(@2),

L1(¢2) = C¢1(O_) + DLo(¢72):

where the coefficients are related to the matrix elements of U
by

(16a)

A=‘€'(1—u22)+e(uu—det U), (16b)
14+u—uy—detlU
B=-"_ Uz (16¢c)

2 l+u,1—u22—detU'
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U
= s 16d
14wy —uy, —detU (16d)
D=y—ln2+ll+ull+u22+detU. (16¢)
4 14 uy, —uy —detU
(ii) If U belongs to class II, then
Lo(g,) = E@,(0_), (17a)
L (@) =Fp,(0_) +Gp{(0_),
where
E=_211_u22____£l_ u12 , (17b)
T Uy 7 1+uy,
F=—t {e4eu,+i2(1 —up)L, (B}, (17¢)
2u,,
G= L 1+u, (17d)
2 un

(iii) For U of class III, the boundary conditions read
@,(0_) =0,

(18)

L (g,) = (m/4){cot (w/2))Ly(p,).
(iv) If U belongs to class IV, we have
@ (0_) = (1/42)(1 — tan(@/2))p,(0_),
Lo(p,) =0. {9
(v) Finally, if

—1 0
Uz( 0 1)’

then

@1(0_) =Ly(@,) =0. (20)

Proof: Suppose first that U belongs to class I. We express
@1, @, from (12) and insert it into (16a). It yields the follow-
ing equations:
T+euy =A( +uy,) + Bun,Lo( f),
uy€ = Auy, + B [Lo( f3) + u22L0(72) I,
UL, (f) = C(1+ uy) + DupLo( ),
Ly(f3) + Ly (f) = Cuyy + D [Lo( f) + unLo( )]
Now we substitute from (15), then the solution for
14+ u;; — u,, —det U #0 is given by (16b)—(16e). In a
similar way, one obtains relations (17)—-(20).

Next one has to check that the mapping from the set of
matrices U tothe set of boundary conditions is injective. This
is easy for Classes III-V. Assume further that thereare U, U’

of class I1, both leading to conditions (17), i.e., E = E’, etc.
Then we have G/E =G '/E' and F/E=F'/E’ so

(M u )/ (1 —up) =1 +uy ) /(1 —uy,),
and

(€4 €uy )/ (1 —uy) = (€E+€uly )/ (1 —usy).
Now one has to multiply the second equation by € and sub-
tract it from the first one. It yields u,, = u;,. Substituting
this back to the first equation, we get #,, = u1, . Finally, the
relations u;, = uj, for jk = 12, 21 follow from (17b). One

has to notice that |u;;| <1 since U is unitary and nondia-
gonal.
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The argument is most complicated for class I. Assume
again that there are U, U’ which yield the same values of the
coefficients (16b)—(16e). Then we have

Uk _ Ujk
14+uy—uyp—detU  14u), —u) —detU”
@n
for jk = 12 and 21. Moreover, the relations (16e) and (16b)
after multiplication by € give
I+€e'*u, tupy+etidetU
14 u,, —uypy—det U
_l4etu fup e det U

P+ ufy —uj, —detU’
It further imples
1 =a(l +uj,),
+ Uy, (14 1 ) (22)
l - u22=d(1 - uéz))
where we have denoted
- 1+uu—u22—detU. (23)
14+uy, —u; —det U’
Relations (21) can be similarly rewritten as
Uyp = QUYy, Uy = AUy, . (229

Hence
(14 1) (1 —135) + ug5uy,
=a2[(1 +ul ) (1 —u3y) +uju;, ]’
and combining this relation with (23), we get a® = a. Since
a is nonzero by assumption, we obtaina = 1. Then U= U’
follows from (22). |
In this way, we have been able to characterize the opera-
tors H;, by means of the boundary conditions. The relations
(16b)—(16e) and (17b)~(17d) do not show explicitly
which values the coefficients may assume. It becomes more
clear if one uses a suitable parametrization of the matrix U,
such as (29) below.

IV. SCATTERING ON THE SINGULARITY

Now we are going to discuss the extensions H;, with a
particular attention paid to scattering on the singular point
P. We shall distinguish two cases.

(a) U diagonal: Going through the boundary conditions
(16), (18)~(20), one finds easily that they separate. We can
express them in the form

@1(0_) =A4p,(0_), (24a)
L(@p,) =DLy(@,), (24b)
where the coefficients are with the usual license written as

class I: A=i-+—el—lﬂ,
14+ u,
D=y—In24+Z1lt4n
4 1 —u,,

[Notice that both 4 and D are real; this remains true for
nondiagonal matrices U—cf. (30a) and (30d) below. ]

classIII: 4 = o, D= (n/4) cot(w/2);
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class IV: 4 = (l/\/i)(l/tan(a)/2)), D= ;
classV: A =D = .

Hence the system separates for a diagonal U into two inde-
pendent subsystems and its Hamiltonian is of the form

H;,=H{NoH? (25)
where H {*} is the half-line Hamiltonian (cf. Ref. 9, Sec.
X.1) specified by the boundary condition (24a) and
H{P =h{P e h is the two-dimensional point-interaction
Hamiltonian.'? Scattering by this point interaction as well as
reflection on the half-line should be considered separately.
Passage of the electron between the two parts of the configu-
ration manifold is impossible.

(b) U nondiagonal: Now the transitions from R~ to R?
and vice versa become possible. First of all, we shall discuss
in detail the situation when U belongs to class I. Let us con-
sider reflection of the electron moving initially along the
half-line towards P. Using boundary conditions (16), it is
easy to see that the function f, = (¢ ¥, @ ¥) with

@ (x) =e* +aye™ ™, (26a)
@3(r) =b,H" (kr), (26b)
for a given k > 0 belongs locally to D(H ) if

ay = —[(A—ik)[l+£(y—D+ln£)] +£BC]
T 2 T

x{(A +ik)[1 +£(7—D+ln—k-)]
T 2

; -1
+2pc)”
T
(27a)
7 , . 2i k
b, =21€k{(A +lk)[1 +—(7—D+ln?)]
T
i -1
+3’-Bc] . (27b)
T

Moreover, it holds that

(—-A—kz)¢7§/=0,

0 fy given by the relations (26) and (27) is a generalized
eigenvector of Hy, and |ay|? is therefore nothing but the
reflection coefficient at the point singularity.

Relation (27a) shows that the reflection coefficient de-
pends on the chosen Hamiltonian H. In particular,
|ay | = 1 holds if U becomes diagonal so BC = 0. Then the
electron can be only reflected at P. On the other hand, occur-
rence of the transitions from R~ to R® means

lay| <1. (28)

We shall check directly that this inequality holds once U is
nondiagonal. To this end, we shall use the following explicit
parametrization of a unitary 2 X 2 matrix:

U o et cos B €~ sinf 29
=¢ ~e @ Bsing e~ e+d cosB)’ (29)
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where a, B, 8, £ are real parameters (the first three of them
are nothing but doubled Euler angles). It yields the follow-
ing expressions for the coefficients (16b)—(16e):

A=F/2, (30a)
B=(i/22)(¢“~Psin )/ D, (30b)
C= — (i/2)(e®~?sinB)/ D, (30c)
D=y—In2— (7/4)(¢/D), (30d)

where
K =sin(a + 8 + (7/4)) cos B — sin(€ + (7/4)),
9 =sin(a + §)cos B —sin §,
% =cos(a +8) cosf + cos &.

Notice that & is nonzero for Class I matrices. As we have
remarked, the relations (30) show that the “diagonal” coef-
ficients 4, D are real valued, while the “nondiagonal” ones
are complex conjugated up to a real multiplicative constant.
Using these expressions, we find

ay = — {(Y—ik@)[(l +-2£'1nk)@ +%%’]
v
i - 2 -
+ ——sin B”(f—}—tk,@)
V2

2i 1 i ., -1
x[(l+—lnk)@+—‘£]+——sm ,6’] ,
T 2 22

(31)
so after a short calculation we arrive at the relation
1 —Jay|* =29 ssin* B
2
x[.@z(f’ 2 gkmr—L fgk)
T 2
1 2
+(_ycg + 27Tk
2 T
1 271-1
+ 9% + sinzﬂ) ] >0, 28")
22

which proves (28).

Notice that the squared modulus of (27b) is not the
transition coefficient, since it is not properly normalized.
Relation (28') shows thatitis b, = (v2/k)"/?b,, which ful-
fills |ay |* + |6y ) = 1.

The fact that the singularity is penetrable for a nondia-
gonal U can be seen also when one considers scattering of the
electron moving in the plane on the point singularity P. The
corresponding generalized eigenfunction is fy = (¥7, ¥7)
with

@ U(x) =éye*, (32a)
¢§’(r) = Jy(kr) +d HV (kr), (32b)
where
2y =£B{(A +ik)[1 +-Zi(y—p+1ni)]
T T 2
: —1
+£BC] , (33a)
w
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2i k BC ~1
d =—[1 —( —D+4+1In— )] , 33b
v +1'r 14 + 2+A+ik (33b)

if we require f;; to belong locally to D(H, ). The asympto-
tics for large » can be found easily,

U(r) = (2/mkr) 2 {e®™Psin(kr + (7/4) + 84(k))
+0(r~H}, (34)
where 8, (k) is given by
Sy(k) = e

k =i BC
=y —D+In—+— )
('y 2+2+A+ik

m BC )“. (35a)

k
Xly-D+In———+
@ 2 2 A+ik
Here §,(k) represents the s-wave scattering phase shift and
Sy (k) is the on-shell s-wave scattering matrix. For the higher

partial waves, we get
6,.,(k)=0, m=+1, +2,... (35b)

In general, the scattering matrix is not unitary. This is not
surprising because the electron can continue its motion in
R~ after the scattering, vanishing thus from the plane. In
order to demonstrate it explicitly, one has to express S,(k)
using the parametrization (29). A short calculation then
gives

1—|So(k) > =1~ |ay|?, (36)
where the rhs is given by (28’). Hence S is nonunitary iff U'is
nondiagonal.

Let us turn now to matrices U of class IL In this case,
too, the electron is able to pass through the singular point.
The analysis is essentially the same as above. We restrict
ourselves with presenting the results. For the generalized
eigenvector (26), we find now

2%(  F+ikG k)]
N _(_ .3
v [+7r7 £ "7

. — . ‘_l
x[l +-2i(y—F ’kG+1n—k—)] ., (37a)
T E 2

- : 3 —1
by =2ikG[l +£(y—F ’kG+1ni)] . (37b)
T E 2

On the other hand, for the scattering in the plane corre-
sponding to (32), one can find the coefficients ¢, d,,;, which
give

So(k) = €250 = (,,

F—ikG i k)
_fome m
E + 2 + 2

V. A POSSIBLE APPLICATION

The problem treated in the preceding sections may seem
somewhat bizarre. Nevertheless, it can have a quite reasona-
ble physical application as a model of the quantum point-
contact spectroscopy.
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For a metallic contact, one usually expects a linear rela-
tion between the applied voltage and the current according
to Ohm’s law. This is true if the size of the contact is large
enough. On the other hand, if its linear dimensions becomes
comparable with mean free path of the electrons in metal,
then interesting nonlinear effects in the current-voltage
characteristics can be observed.' In this case, the electrons
are scattered at the orifice giving rise to a backward flow,
which adds a negative and voltage-dependent contribution
to the current.

The results of the present analysis can be used for mod-
eling of such a contact whose linear dimension tends to zero.
In order to calculate the current through the contact, one
has to know the electron-gas density and the transmission
coefficient through the singular point.'* In the simplest case,
when the electrons are supposed to be free, the latter is given
by (28') (or an analogous expression for U of class IT). If we
add a potential to H;; which should describe the metallic
structure of the system (a wire connected to a thin plate),
then the transmission coefficient must be calculated anew. It
remains possible, however, to characterize the admissible
Hamiltonians by the boundary conditions listed in the
theorem of Sec. I1I as far as the potential is bounded.

We are going to discusss the model, which we have
sketched briefly here, in a subsequent paper.
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Previous analysis of the Jacobi-matrix method based on the underlying SO(2,1) Lie algebra is
extended to the Coulomb Hamiltonian in parabolic coordinates. The general solution of the
generic SO(2,1) eigenvalue equation is constructed and special cases, which furnish expansions
of the Coulomb functions ¥{*’(r) in a complete set of parabolic Sturmians, are discussed.

I. INTRODUCTION

New possibilities for computing the scattering wave
function are afforded by expansion in a set of square-integra-
ble functions. There are two closely related but complemen-
tary techniques; the first is suitable when the focus is on the
overall behavior of a cross section over a broad energy range,
and the second is suitable for bringing out finer detail over a
narrow range of energy.

The first technique (Stieltjes imaging') relies on the fact
that given any Hamiltonian H [or a functional 4(H)], one
can recursively generate a basis set {|#, ), v = 0,1,2,...,0 } of
square-integrable functions in which the Hamiltonian H is
tridiagonal. This Jacobi-matrix representation of the Hamil-
tonian immediately permits application of the powerful
techniques for solving the classical “problem of moments”
to the problem at hand, usually a direct computation of a
matrix element for transition to the scattering state.

The alternative technique, christened the Jacobi-matrix
method,? is applicable when the Hamiltonian is of a special
form, H = H, + V, where H, is tridiagonal in a known, ana-
lytically defined, square-integrable basis set and the result-
ing Jacobi matrix can be diagonalized analytically. Further-
more, the potential Vis supposed to have a short range in the
sense that its matrix representation in this basis set contains,
at most, a finite nonzero submatrix. Under these conditions,
the scattering states of H may be constructed by expansion in
the set {|#,), v=0,1,2,...,00}. Problems that commonly
arise in atomic physics are amenable to this treatment.

An enumeration of the Hamiltonians H,, and the corre-
sponding basis sets {|@, ), v = 0,1,2,...,0 } is thus central to
the practical application of the Jacobi-matrix method. Hell-
er, Yamani, and Fishman? identified two distinct cases: (i)
the kinetic energy operator 7(r) diagonalized in the set of
harmonic oscillator functions, and (ii) the Coulomb Hamil-
tonian, H(r) = T(r) — Z /r, diagonalized in a set of Stur-
mian functions.

The unifying feature of these two seemingly distinct
cases has been identified in a recent paper.® It so happens
that both these basis sets constitute infinite-dimensional, un-
itary, irreducible representations of different realizations of
the SO(2,1) Lie algebra. Moreover, in both cases, solving
the Schrédinger equation for scattering states amounts to
diagonalizing a linear combination of the compact and non-
compact generators of the algebra in a basis in which the
compact generator is diagonal.
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The analysis of Refs. 2 and 3 was limited to spherical
geometry, i.e., to instances when L? and L, are simulta-
neously diagonalized. The task of expanding continuum
functions of a particular symmetry in square-integrable basis
functions of the same symmetry was accomplished there.

The analysis of the Coulomb potential, thus begun with-
in the framework of partial-wave expansion, is completed in
this paper. The final result is a set of coefficients for the
expansion of the Coulomb functions,

Y (r) = 27) 732 exp(%—f—)r‘(l :F%)

.k Z ,
Xexp[z—i—(n —5)]1F,[ j;l—k—;l; + ik (i)],

(1.1)
in a set of parabolic Sturmian functions,*
¢v,,v2,m (§’17’¢)

_ ST+ DL+ 1) I
[ﬂF(v, + |m| 4+ DT (v, + [m| + 1) exp(imé)
x[exp( = - ¢ JcormL o |
x[ewo( -2 en)emmaziren], a2

where§ =r — ker, n=r+ ker are the two parabolic coordi-
nates, ¢ is the azimuthal angle, { is a common Sturmian
exponent, the parabolic quantum numbers v, and v, range
from O to «0, and m is the magnetic quantum number. This
basis set is orthonormal with the inner product defined with
a 1/r weight:

f dr “’ll"’zvm (l‘)—}'— ¢v{,v§,m’ (l') = 5v,v{ 6v2v55mm’ .

Of course, only m = O states appear in the expansion of
2 (r).

Central to this expansion is the fact that the parabolic
bound states of the hydrogen atom are also generated by an
SO(2,1) Lie algebra.” Conversely, the basis functions of Eq.
(1.2), for a fixed value of m, constitute a unitary, irreducible
representation of the SO(2,1) ® SO(2,1) Lie algebra.

The generators of this algebra are specified in Sec. II.
The generic eigenvalue problem for the SO(2,1) algebra that
arises when the Schrédinger equation is rewritten in terms of
these generators (Sec. IV) is solved in Sec. III. Specific solu-
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tions that give the expansion coefficients of ¢ *’(r) in the
Sturmian functions are constructed in Sec. IV and possible
application to the Stark spectrum of hydrogenic atoms is
pointed out in the concluding section (Sec. V).

il. PARABOLIC GENERATORS OF THE HYDROGENIC
S$0(2,1) LIE ALGEBRA

One may define the following parabolic generators of
the SO(2,1) Lie algebra:
Ny =}(T,+kB), N,=}T,—kD),
" (2.1a)
N, = }(T; + k-A)
and
M, =}(T,—kB), M,=}T,+kT),
M, = (T, — k-A),

in terms of the standard generators of the SO(4,2) noninvar-
iance algebra,>®

(2.1b)

T1=—I-Y(P2—§2), T2=r'p—f:

2
T, =31§-r( P +EY, (2.22)
A=-§Erp2-—2:p(r'p) —-g—r, (2.2b)
B= _;Erpz -—%p(r-p) +—§~r, (2.2¢)
'=n, (2.2d)

and the unit vector k which may be taken to lie along the z
axis. The raising and lowering operators are defined, as usu-
aLbyN, =N, tiN,and M, =M, +iM,.

1t is easily verified from the known commutation rela-
tions of the generators of (2.2) that the generators of (2.1)
do, indeed, satisfy the canonical SO(2,1) commutation rela-

tions:
[leNz} = - z'N3,

[N2’N3}=iN19 [N3’N1}=i-‘v2’

(2.3a)
and similarly for M,, M,, and M. It may also be verified that
the corresponding Casimir invariants are equal for the two
realizations:

M?=N?=N?—N?_Ni=}L2-1), (2.3b)

where L, is the projection of the angular momentum on the
vector K.

The label “parabolic generators” is justified by the ex-
plicit form of the operators of (2.1) in parabolic coordinates:

77=r+12-r and §=r—l’%-r. (2.4)
Then,
ne L) £ ) o
N,= —i[ggé_—-i--;—], (2.5b)
w3 )5 s
um (25} o
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_ 1@ a ) 1 (8 2 ) £? ]
M= ———|p—}+—|—]—-2—7n}] (2.6
=l 5 e ) - s
The action of the operators N, to M, on the basis functions of
(1.2) can be deduced from the properties of associated La-~
guerre polynomials.” It may be summarized succinctly by
replacing the quantum numbers (v,,v,,m) by the set
(91,921), where gy =v,+1+4m|, g=v,+}+4|m|,
and t = — } + }|m|, and relabeling the basis functions, i.e.,
iql»QZJ )= f"p"’z:m)- Then,
N?lg1,gat ) = t(t + 1)]g1,951) (2.72)
N;|91,92:1 ) = q119192:1 )s (2.7v)
N,lgugt) =g Ft)(q 1+ 117%|g, + Lgat).
(2.7¢)
Similarly the action of M %, M5, and M, is given by replacing
¢:—q¢»in Eq. (2.7);i.e., |¢,,¢,,¢ ) is also an eigenfunction of
M? and M, with eigenvalues (¢ + 1) and ¢,, respectively,
and M, are raising and lowering operators in the index g,.

This is, of course, the standard action of SO(2,1) gener-
ators on the basis functions of the 2 * (t) representation.>®
Thus the set {|g,,¢5,2 ), g, = + 1,£ + 2,..., 0 } constitutes a
2 (t) representation of the SO(2,1) Lie algebra [Eq.
(2.1a) ]; similarly the set {|¢,,¢2,2 ), go =1+ 1,t +2,..., 0}
constitutes a & * (¢) representation of another realization of
the algebra [Eq. (2.1b) ]. Taken together, the set {|¢,,¢,, ),
gg =t + Lt +2,..,00} constitutes a Z*+ (1) Z* (1)
representation of the corresponding algebra SO(2,1)
®S0(2,1).

Transcribing this statement in terms of the original
quantum numbers, the basis set of Eq. (1.2), for a fixed value
of the magnetic quantum number m, constitutes a
Dr(—L+4m) @D+ (—1+14im|) representation of
the SO(2,1) ® SO(2,1) algebra defined by the generators of
(2.1).

{ll. SOLUTION OF THE BASIC EIGENVALUE EQUATION

In anticipation of the problem encountered in the next
section, I will now summarize the relevant solutions of the
basic eigenvalue problem,

(Ti+mT— ) ¥) =0, (.1
where T, and T, are generators of an SO(2,1) Lie algebra,

— 1«7, <1, and 7, is a complex number. The correspond-
ing problem for real values of 77, was solved in Ref. 3. The
extension to complex 7, is straightforward, so all proofs will
be omitted.

Expansion of |¢) in the basis functions of the & * (¢)
representation of the algebra,

=3 a,lt +14v1),

v=0

leads to the following three-term recursion for a,,:
[viv+2t + 1)1V, _,
—2[(v + t + 1)cos ¢ + ¥ sin ¢la,
+[(v+ D (v+2t +2)]"%,,, =0, (3.2)

where sing=+1—7?,cos¢= —7,, O<d<m, and ¥
=Y+ iy, =1n/sing.
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It can be easily verified® that and
[C(v+ DI(v+2t +2)]'2

al(y)= - exp(ive) lim a!
T(v+1+2+10p) p(ivd Jm a, (7)
X2Fl(t+1+17,V+2t+2;v+t+2+l'y;ei2¢) = exp[_.},l(¢—ﬂ-/2)] [2(V+t+l)sin¢]—l/2+}’z
(3.3a) (2sing)*+172
and Xe~ ™ expli(t+ 1+ ;) (¢ — 7/2)
[Cv+ DI(v+2t+2)]"? : _ _
a)(y) = T 41127 exp( — ivg) + iy, In2(v + ¢ + 1)sin 4)]. (3.4b)
X Fi(t+1—iyv+2t +2 The linear combination
V+t4+2—iye %) (3.3b) 2.0
are two linearly independent solutions of the recursion Y ) 2t Lo
(3.2). [Here ,F,(a,b;c;z) is the Gauss hypergeometric func- =T+ 14iy)[1—exp(i2$)]** 'e“a, (¥)

tion. ] The second of these solutions is obtained from the first
by replacing y—» — 7, ¢— — &.

One must exercise some care in writing the asymptotic
forms of these solutions for complex y=y, + i7,:

—T@+1—ip)[1 —exp( —i2¢)]** e~ “a"(y)
(3.5a)

satisfies the initial condition

lim a, (%)
_ exp[yl(¢—1r/2)] [2(v+ 1+ 1)Sin¢]“1/2+yz V(2t+2).}"1('y) —=2[(t + 1)003¢+75in¢]y0(7/) =0,
- . t+1/2 (3.5b)
(2sing)'t
Xe™ expl —i(t+ 1= y,) (¢ —7/2) and hence defines the regular solution of the recursion. It
— iy, In2(v 4+t + 1)sin )], (3.4a)  may be written compactly in the following form:
]
: . . i L@+ 14+ +1—iy)
S =e - —i1)](2sing)*+!
L(¥) =exp[ (26 — m) (¥ —i})](2sin @) Tt 2)
F(v+2t+2) 1'% ivi s . —a
—_ 1 Y Fi(—wvt+ 142t 4+2;,1 —e %), 3.6
[ T+ 1) L1~ + 1y, ) (3.6)

which brings out the finite polynomial nature of the solution. Asymptotically,

4 t+1/72
lim % _ exply (¢ —7/2)](2sin 4) N |
Jm 7 () [2(v+1+ Dsing]2-7 |

re+1+ iy)exp[i(v + D +i(t+ 7’z)(¢ - %)

LCi+1—1iy)
[2(v + t + 1)sin ¢]?"

— iy, In(2(v + ¢t + 1)sin ¢)] —

Xexp| —i(v+ 1) —i(t— 7'2)(¢ - %) + iy, In(2(v + £ 4 1)sin ¢)”- (3.7)

One may define another solution of the recursion by the linear combination
C, ()= =T+ 1+ip)[1 —exp(i2¢) 1%+ 'e%a, (y) + D1+ 1 —iy)[1 —exp( — i24)]*'* 'e~ “all(p).
This satisfies the initial condition
V2 +2)€ 1 (r) — 2[(t + 1)cos ¢ + y sin $] € o(¥) %0,
and it is therefore an irregular solution of the recursion. It may be written more compactly as
C, (1) +i7, ()
C(t+1—iy)

= 2 T TiT2—) [Tv+ DL (v+2t4+2)12e "+ Fi(v+ L, —t—iyv+t+2—iye= ). (3.8)
Asymptotically,
3 t+ 172
lim 2, (y) = — ; &P (G = 7/2)]2sin §) [r th 14 [ 1)é + it ( —-”-)
wn v [2(v 41+ Dsing] 27 + it mep(iv+ DI+t ra)\d =3

F't+1—1iy)
[2(v + 1 + 1)sin ¢]?"

— iy In{2(v + ¢ + 1)sin ¢)] +

xeXp[ —i(v+ g —i(r+ 7’2)(¢ - %) + iy In2(v + ¢ + 1)sin ¢} — iﬂ'?’z”' (3.9)
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This irregular solution is defined so that for real ¥ (3, = 0),
in the asymptotic limit, it has the same amplitude as the
regular solution and its phase leads that of the regular solu-
tion by 7/2.

The Wronskian of these solutions, defined by

WILC1=[(v+ D(v+2 +2)]'7

X [yv+ 1 (gv - yv%v+l ]’

may be computed most easily for v = 0:

W[5, €] =2exply(2¢ — 7)](2sing)**+!

XL+ 1+iy) Tt +1—ip). (3.10)
IV. SCATTERING STATES OF THE COULOMB
POTENTIAL
The Schrodinger equation
Up*—Z/r—E)y)=0 (4.1)

is rewritten in terms of the operators of (2.1) after multiply-
ing on the left by r:

[(Nl +M1) +771(N3 +M3) —772]|¢) =0,
where

(4.2)

_1-2E/¢? . 2Z/

T1t2E/¢ =T E g

Note that for scattering states (E>0), — 1<, <.
Equation (4.2) is solved by expanding |#) in the basis

set {|v,v,m), vi,v, =0,1,2,...} of (1.2) and requiring the

expansion coefficients to be separable in the indices v, and

V2

M

|¢) = i av. bv2 I'VI,‘VZ,m). (4.3)

viv, =0
Next introduce separation constants 7, and 7,,, such
that 9,5 + 723 = %, (This implies a separation of charge,
Z,, + Zy = Z.) Then (4.2) separates into two equations

[N+ 7 N5 — Nan ] z a,, |V1,v2,m)] =0 (44a)

v, =0

2
+ 1 (1 —iZ/k)
2(v+1/2)sing¢ T (iZ /k)
and the asymptotic form of the £ component of ¢{*+’(r),
1

21/4‘/517_'

V= o ‘ﬂ'§

fim ht(E) =

.k . Z
{exp[ —17§—t?ln(k§)] +

and

[M, + M5 — 7,0 ] 2 b, |v1,v2,m)] =0. (4.4b)

v, =0

Note that 7,5 and 7,,, may be complex and recall that
t =} + i|m| (Sec. II). Indeed, in the following special cases,
which correspond to the Coulomb function ¥ (r) solutions
of the Schrodinger equation, both 7, and 17,,, will be com-
plex.

A.m=0,Z2y=2+ik/2, 2, = —Ik/2

This choice of the separation constants, being identical
to the choice made in obtaining ¥{ *’(r) as a separable solu-
tion of the Schrodinger equation in parabolic coordinates,
implies that the corresponding coefficients a, b,, in (4.3)
are the expansion coefficients of ¢ * > (r) in the Sturmian set
of (1.2). Note that in the following, the dependence of a,,
and b, on the Sturmian exponent £ is only through the angle
# (O<p<m) defined by sing=.1—n=2k/
(£? + k?). The parameter y = 71,/4\/1 — 0} = Z /k does
not depend on £.

Corresponding to the parameters defined in the head-
ing, t=4, ¥y =Z/k +i}, and ¥, = —i}. The corre-
sponding regular solutions of the recursion are

a, = j;r; sin(%)

xexp|i 24— m |exp| (¢ - Z)|r(1 - Z)

X e, F( — v ,iZ /k;1;1 — e~ 2#) (4.5a)
and
1/4 ¢ 1 )
b, = sin(——)exp[ —i—(¢~ 1r)]e“”2¢. (4.5b)
NF7s 2 2

Note the close correspondence between the asymptotic form
ofa,,

‘71 sin(-?—)( - l)"[exp[ - i(v+ %)(n'— d) — i—%—ln(Z(v+ %)sin(ﬂ'— ¢))]

exp[i(v + %)(17' —é)+ i% In(2(v + 1)sin(r — ¢))”, (4.6a)
1 ra—z/m [.ke ;Z

The normalization of @, and b,_ is verified by computing a, and b, by direct integration.

B.m=0,2,=ik/2, 2, =2~ 1k/2

For this choice of the separation constants, the coefficients @, and b, are the coefficients for expansion of #/{ ~’(r) in the
Sturmian basis set. Corresponding to these parameters, ¢ =}, ¥y =i}, and ¥,, = Z /k — i }. The corresponding regular

solutions of the recursion are

/
a, = \/2% sin(%)exp[i%(rﬁ —ﬂ)]e“’""

and
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Vs (é .1 Z T , , ] R
sm(—)exp[ —l?(¢ — 17)]8Xp[;-(¢ —-7)]1“(1 +iZ 7k)exp( — ivy@) JF ( — vy, — iZ /K151 — e~ 29),

vy 17.§ 2
(4.7b)
Once again, note the close correspondence between the asymptotic form of b, ,
lim b, =2 sin(i)(—1)V{exp[i(v+i)(7r—¢)+i£1n(2(v+i)sin(1r—¢))]
O 2 2 k 2
1 (1l +iZ/k) [ ( l) . Z (( 1). )”
—Jr—¢)—iZm(2(v+— - , 4.
TG e Tz SR TAY )T —i {2y £ o (= 4) (4.82)
and that of the % component of ¥~ (r),
. _ k 1 T +iZ/k) .k .Z
(-) x £ 2l ria/k) iRk _ L
e =7 o ST s

As before, the normalization of @, and b,,

V. CONCLUSIONS

The preceding parabolic formulation of the Jacobi-ma-
trix method may be used to study the Rydberg spectrum of
hydrogenic atoms in a Stark field. This problem is of much
current theoretical as well as experimental interest.® Classi-
cally, the motion is bounded in the 7 coordinate; at a given
electric field 7, and at energies less than a critical energy
E, (%), the motion in the £ coordinate is also bounded.
However, the quantum-mechanical spectrum is continuous
at all energies due to tunneling. At energies below the classi-
cal critical energy for field ionization, the effective Stark po-
tential in the £ coordinate may also be approximated by a
short-range potential, i.e., its matrix representation in the
Sturmian basis may be truncated, and the Jacobi-matrix
method is applicable. The resulting matrices being banded,
one can use large basis sets and ensure effective complete-
ness. At higher energies, further generalization would be
necessary.
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Coherent angular momentum states are defined for the two-dimensional isotropic harmonic
oscillator. They share many attractive properties with the familiar (Cartesian) coherent states,
but are in general distinct from those states. The probabilities of obtaining particular values for
the radial and angular momentum quantum numbers follow independent Poisson distributions
in the new states, but not in the old. In a quasiclassical description of the oscillator,
corresponding to a given classical trajectory, the uncertainty in the angular momentum of the
system is smaller if the new states are used rather than the old. The new states are the natural
analogs of the coherent angular momentum states introduced for the three-dimensional
oscillator by Bracken and Leemon [A. J. Bracken and H. I. Leemon, J. Math. Phys. 22, 719

(1981 ].

I. INTRODUCTION

Coherent angular momentum (CAM) states have been
defined for the three-dimensional isotropic harmonic oscil-
lator in quantum mechanics by Bracken and Leemon'?
(henceforth referred to as BL1 and BL2). Previously such
states had been defined in various ways by various authors,>
for systems with purely rotational degrees of freedom.

The Hamiltonian operator for the r-dimensional oscilla-
tor with mass p and angular frequency o is

H= (p*/2u) +  po’x> = fiwo (N + ir), (1.1)
where

N=N,+N,+ - +N,, (1.2)

N, =ala, (i=12,.,r, no sum), (1.3)

a; = (2ufiw) ~'*(ip; + pox,). (1.4)

The operators @, and their Hermitian conjugates a] satisfy
the usual boson relations and so are lowering and raising
operators for the operators &,, which have non-negative in-
teger eigenvalues n,. For » = 3, it was shown in BL1 that we
can write, as well as (1.2),

N=2K+1L, (1.5)

where K and L have non-negative integer eigenvalues k and
l, the radial and total angular momentum quantum
numbers. Commuting lowering operators v and A for K and
L were introduced, and CAM states defined as their com-
mon eigenvectors (with complex eigenvalues).

This procedure mirrors that used for the usual Cartesian
coherent (CC) states which are eigenvectors of the lowering
operators ¢;, again with complex eigenvalues. The CAM
states and CC states have many attractive properties in com-
mon, but they form quite distinct sets. A major difference is
that, in a CAM state, the probabilities of obtaining particu-
lar k and / values follow independent Poisson distributions,
whereas in a CC state, such a property holds instead for the
values of n,, n,, and n,. These properties are only shared by

) Permanent address: Department of Physics, University of Ife, Ile-Ife, Ni-
geria.
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both sorts of states in the special cases corresponding to cir-
cular classical orbits, when in fact the CAM states and CC
states can be identified with one another.

It was remarked in BL2 that the treatment given there
should be capable of generalization to »> 3 dimensions. In
fact it is clear from the solution of the eigenvalue problem for
H in a spherical basis, that (1.5) holds for all r>2, with X
and L taking non-negative integral eigenvalues £ and / in
each case. Then k is in each case the radial quantum number
while, for the r-dimensional oscillator, /(! 4+ r — 2) is the

eigenvalue of the SO(r) Casimir operator 4L;L;, where

L; = (x,p; — x;p;))/fi=i(a,a] — a;a]), (1.6)
are the generators of SO(r). Thus
\L,L;=L(L+r-2). (L.7)

As remarked in BL2, it should be possible to define CAM
states for r> 3 by identifying suitable commuting lowering
operators for K and L in much the same way as for » = 3, and
by then finding their common eigenvectors.

The case 7 = 2 is special, and in BL2 it was observed
that, if CAM states are defined in this case as common eigen-
vectors of the familiar “angular” boson operators* for the
two-dimensional oscillator,

p=2""%a,—ia), o=2"Y%(a,+ia,), (1.8)

which are shift operators for the SO(2) generator/invariant
M( = L,,), then the CC states and CAM states can be iden-
tified with each other. The common eigenvectors of p and o
are also eigenvectors of ¢, and a,, as (1.8) shows. However,
following the work of Odiindin® (henceforth referred to as
OD), it can be seen that the situation is not quite so simple.

In particular, the operator M has eigenvalues m running
over all the integers while, as already mentioned, the eigen-
values / of L are non-negative. Indeed M, although an SO(2)
scalar, is not the analog in two dimensions of the operator L
when r> 2, since that L is not only an SO(r) scalar but also
an O(r) scalar, like H, N, and K. In contrast, M is an O(2)
pseudoscalar, changing sign when, for example, x, and p, are
replaced by their negatives. In the two-dimensional case we
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must in fact define L as an O(2) scalar by setting
L=|M| (1.9)

consistently with (1.7). Then we may ask if it is possible to
define CAM states for » = 2 which are analogs of those for
r =13, as eigenvectors of lowering operators for K and L
rather than eigenvectors of p and o, which are shift operators
for M and N.

Despite the close relationship betweek K, L, M, and N
indicated above, and the simple algebraic structure of the
two-dimensional oscillator, we shall show that CAM states
can indeed be defined in this way, and that they differ funda-
mentally from the CC states, much as in the three-dimen-
sional case. It is surprising to find new coherent states for so
well-known and simple a system, and their study is of inter-
est not only because of the importance of the two-dimension-
al oscillator in applications, but also because the simplicity
of the algebraic structure makes their properties easier to
appreciate than in higher-dimensional cases.

Lowering operators v and A for K and L were defined in
OD for r = 2, with A a two-vector operator. However, the
algebraic structure is so simple in the two-dimensional case
that it is convenient in what follows to do away with the
SO(2) tensor rotation entirely and work always with one
component entities.

li. SHIFT OPERATORS FOR X AND L

For the Hilbert space £ of the two-dimensional oscilla-
tor, let P, P,, P_ be projectors onto the mutually orthogo-
nalsubspaces 9 , $o, §_ on which M has positive, zero, and
negative eigenvalues, respectively. Evidently these projec-
tors sum to unity and commute with X, L, M, and N. Since

LP,=MP,=0,
LP,=MP,, LP_= —MP_, .
it follows from (1.9) that
L=MP, —P_), 2.2)
and then, from (1.5), that
K=IN—-iM(P, —P_)
=4{(N—M)P, +{(N+ M)P_ + INP,. (2.3)

The operator o of (1.8) lowers N and raises M by one

unit, that is to say,
No=o(N—1),

Mo=oc(M+1). (2.4)

It follows from the second of these equations and the defini-
tions of P, , P, that

o(P.+P)=P,o, oP_=(Py+P_)o. (2.5)
Similarly,
p(Po+P_)=P_p, pP,=(P,+P,)p. (2.6)

The relations Hermitian conjugate to these must also hold:
(P, +Pyat=0'P,, o"(P,+P_)=P_o', @7
(Po+P_)p'=pP_, p'(P, +P)=P,p" .

Because o lowers N and raises M, and because
K={(N+M)andL = — Mon $_, it follows that, when
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applied to vectors in $_, o lowers L by one unit and com-
mutes with K. Therefore

LoP_=oP_(L—-1), KoP_=o0P_K, (2.8)
which can be verified directly from (2.1) and (2.3)-(2.5).
Similarly,

LpP, =pP (L—-1), KpP, =pP K. (2.9)
Noting further than any lowering operator for L must vanish
on o, where L has its least value, we therefore identify

A=SfIK.L)pP, +g(K,LyoP_ (2.10)

as the general form of the operator we seek which lowers L
by one unit while commuting with X. In (2.10), the func-
tions fand g are arbitrary at this stage. The Hermitian conju-
gate operator A T, which raises L by one unit and commutes
with X, is then

AT=P, p'f(K,L)' + P_o'g(K,L)?
=AK.L— 1) p"(P, + P,)
+g(K,L — 1) (P, + P_), (2.11)

using the shifting properties of P, p"and P_o", and the rela-
tions (2.7).

The O(2) scalar (a,)*+ (a,)*>( =2po) commutes
with M (and hence with L) and lowers N by two units; it
therefore lowers K by one unit, according to (1.5). The most
general operator with these shifting properties for K and L is
then

v=h(K,L) po, (2.12)

where 4 is arbitrary. The conjugate operator, which raises K
by one unit and commutes with L, is

vi=op'h(K, L)t = h(K — 1,L) p'o. (2.13)

We now choose the functions £, g, and 4 so as to make as
simple as possible the commutation and other relations
amongst A, A%, v, and v', and arrive at the expressions

v=(K+L+1)"Yp0, v'=ple'(K+L+ 1)1
A=[L+1D/(K+L+1D)]1"*(pP, +0P_), (2.14)
At=(P, p'+P_o)[(L+1/(K+L+ 1]
It can be checked that these operators satisfy not only
Kv=v(K—-1), Kvi=+viI(K+1),
[Ly] =0=[Ln'],

(2.15)

LA=A(L—-1), LAT=AYL+1),
[KA]=0=[KAT],

but also
[vAl=[vAT]=[v 4] =[vAT] =0,
viv=K, wi=K+1, [v]l=1, (2.16)
AA=L+Q Al'=L+1+P,
[AAt]=14+P,—Q,

where ‘
Q=K+ 1) Y (P,.ploP_+P_o'pP,). (2.17)

This operator Q is nonzero only on vectors that are eigenvec-
tors of L with / = 1. (It interchanges any vector correspond-
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ing to m = + 1 with a vector corresponding tom = F1.)
It follows that A and A * satisfy boson relations on that part
of © spanned by eigenvectors of K and L with /> 1: that they
do not satisfy such relations on all of § is associated with the
fact that the common eigenvectors of K and L are nondegen-
erate for / = 0, but doubly degenerate for /> 0. The expres-
sions (2.14) are determined from (2.10)—~(2.13), up to uni-
tary transformations, by the relations (2.16).

The structure of the operators (2.14) is better appreciat-
ed if one considers their action on a familiar basis for 9,
provided by the common eigenvectors |7,s) of the operators
p'pl =1(N+ M)] and o'o[ = }(N — M)]. These vectors
are given by

|rs) = [As11=2(p")"(0%)0), rs=0,1,2,.., (2.18)

where |0) is the normalized vector corresponding to the os-
cillator ground state, satisfying

p|0) =a|0) =0. (2.19)

The vectors |r,s) with 7>sspan $,, those with r=s
span £,, and those with 7 <s span $_. It follows from the
definitions given above that, if 7 > s,

Nirs) = (r+s)|rs), K|rs)=s|rs),
L|rs) =M |rs) = (r—s)|rs),
P, |rs) =|rs), P_|rs)=Py|rs) =0,

virs) =s2r— 1,5 — 1), (2.20)
sy = s+ DY3r+ 15+ 1),
Alrs) = (r—s)"?r—1s),
Atlrs) = (r—s+ D"?|r+ 1),
while, if 7 <,
Nirs) = (r+s)|rs), Kl|rs)=r|rs),
Lirs) = —M|rs) = (s —r)|rs),
P_|rs) =|rs), P.|rs)=Prs)=0,
virs) =r'?r— 15— 1), (2.21)
Virns) = (r+ DY3r+ 1,5+ 1),
Alrs) =(s—r'?rs—1),
Aflrsy = (s—r+ 1D"2rs+1).
Finally, if r =,
Nirr)y =2rirr), K|rr) =rinr),
Lirry=M|rr)=0,
Py|r,ry = |rr), P |rr)=P_|rr)=0, (222)

vlrry =r2r - 1,r—1),
Virry = (r+ DY r+ 1Lr+ 1),
Alnry =0, Atrry=|r+Lr) +|rr+1).

Ill. EIGENVECTORS OF THE LOWERING OPERATORS

We now define CAM states as common eigenvectors
|2,£ ) of the lowering operators v and 4,

V|z’§> =Z|Z,§), A |z’§> =¢ lzv§>,

and we seek each such vector in the form

(3.1)
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o

IZ’;> = Z c,,lr,s)

rs=0

(s

O<s<r r=s

(3.2)

+ Z{ + 3 ]c,slr,s).

ores
Then, given the action of v as in (2.20)—(2.22) and the orth-
ogonality of the vectors |r,s), the first of Egs. (3.1) yields

zc,, =(s+ 1", 1,1, O<s<r,

zc,, = (r+ l)llzcr+1r+1’ 0<r, (3.3)
2z = (r+1)"%, 1, 1, O0<r<s.
Similarly, the second of Egs. (3.1) yields
b, =(r—s+1)"%, ., O<s<r,
e, =¢yp+Cpprs 0<ry (3.4)

fe,=(s—r+1)"%,,,, O<r<s.

Equations (3.3) and (3.4) are straightforward to solve and
give, if § 0 and z are any complex numbers

¢, =azf 7 [sl(r—s)N1 V2, 0<s<r< o,
¢ = (@ +B8)Z[A17% 0<r< o,
c,s=,32’§S_’[r!(s—r)!]_”2, 0<r<s< o0,

where a and 8 may vary arbitrarily with z and £, but are
independent of » and s. The special case { = O gives, for any
complex z,

(3.5)

cr+lr= _crr+1 =7’Z’["!]_l'2, O<r< 0,
c, =6z[M]7"%, 0<r<w, (3.6)
with ¥ and & arbitrary. In this case
¢, =0, |r—si>1 (3.7)
Thus we have, if § #0,
28)=a ¥ 2L (r — sN] V3 rs)
0<s<r
+B Y Z¢ A= rs),  (3.8)
0<r<s
and, if { =0,
20y =7 3 ZIA12(r + Lr) — |rr + 1))
r=0
+6 3 2[4, (3.9)
r=90

The appearance of two arbitrary constants in the expres-
sion for |z,{ ), whether or not { = 0, indicates that some op-
erator other than v and 4 can be diagonalized on these vec-
tors in order to complete their specification. Setting first 5
and 7, and then a and ¥, equal to zero we may define

26, +) =4 T zEC[sl(r— )~ rs),
o<s<r

(3.10)
28, —)=B Y 2 [As— " |rs),

ogr<s
whether or not £ = 0. (Then |2,0, + ) = |2,0, — ) = |2,0).)
It can then be seen from Egs. (2.20)—(2.22) that, in addition
to Egs. (3.1), these vectors satisfy

P_|z{, +)=0. (3.11)
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Despite the fact that no vector of the form (3.9) with y#£0

appears in the set (3.10), we shall see that this set is in fact ,

overcomplete, and that the states |z,5 + ) have properties
which justify their identification as the natural CAM states
for the two-dimensional oscillator. The values of 4 and B in
(3.10) are determined (up to unimportant phases) by nor-
malization of |z,{, + ) to unit length, as

A=B=exp[ —}(|z?+ £ D] (3.12)

(Aside: As a possible procedure alternative to that lead-
ing from (3.8)—(3.9) to the vectors (3.10), we could have
first set a =4 in (3.8) and y=0 in (3.9), and then
a = — Band § =0, in order to obtain, if { #0,

128 deven =C 3 267 °[sl(r — N1 72 () + Isir)),

o<s<r
(3.13)
128 Yoaa =D 3 28" *[si(r — )1~V 2(|rs) — |s,r)),
0<s<r
and, if{ =0,
200 een =E 3 Z[A172|1,1),
o (3.14)

(2,0)0qqa = F i 272 (|r 4+ 1,ry — |1+ 1)).
r=0

These vectors satisfy, in addition to Eqs. (3.1) and whether
ornot{ =0,

T|Z’§>evm = |21§ )even)

T12§ Yoss = — |2.6 Yoaa> G-19)
where T is the Hermitian operator, defined by

T|rs) =|sr), rs=01.2,., (3.16)
which interchanges the operators p and o of (1.8)

TpT=0, T=T7", (3.17)
and changes the sign of M

TMT = — M. (3.18)

[In a treatment of the two-dimensional oscillator using a
Hilbert space of functions fof polar variables (#,8), the oper-
ator T acts as

Tf(r,0) =f(r, — 0). (3.19)

The vectors |z,£ ) even and |2,6 ) oqs Would then be represent-
ed by functions even and odd, respectively, in 6.] The con-
stants C, D, E, and Fin (3.13)-(3.14) can be fixed by nor-
malizing the corresponding vectors, as
C = [2exp(Jz]®) (exp|L >+ 1)] 72,
D =[2exp(|z]*)(exp|f |* —1)] /%,
E = exp[ — }|z|*] =2"/*F.
This alternative set of vectors, defined by (3.13), (3.14), and
(3.20), also has interesting mathematical properties, and
could also be considered as a set of candidate CAM states.
However, since the angular momentum operator #M has
zero expectation value for all such states, as is easily checked,
it seems that they could not provide a quasiclassical descrip-

tion of an oscillator with a nonzero angular momentum. We
do not consider these vectors further.)

(3.20)
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IV. PROPERTIES OF CAM STATES

We shall now list some properties of the CAM states
{z,6,€) (e = + ) defined by (3.10) and (3.12). They may be
compared with properties® of the familiar CC states |u,v)
defined by

|u,0) = exp[ — (Ju|* + [v|D)] i wv'[rst] ~V2|r,s),

rs=0
(4.1)
for arbitrary complex » and v. These vectors |u,v) satisfy
plup) = uluw), oluw) =vluw), (4.2)
and hence, by (1.8),
a,|uw) =27 (u + iv) [up) = z,|u,p),
4.3)

ay|uv) =27 (u — iv) |uw) = z,|u,v).
Note that the vectors (4.1) and (3.10) are quite distinct,
except when z = 0. In that special case,

lz=05,+)=|u=Lp=0),

2=04 =) =|u=0p=¢).
Because the derivations of the properties of the CAM states

are quite similar to those for the three-dimensional case, as
given in BL2, we shall omit such details.

(4.4)

A. Expectation values in the state |z,§,¢>
Ary=¢ AN=E* L)y=)
M=z (=24 (K)=|}
(H) =#fw2z]*+ | ]* + 1).

[In the CC state |u,v) we have
(N = |z, =1(u|* + [v|* — iuv* + iu*v),
(N,) = |2,)* = 3(|u)* + [v]* + iuv* — iu*v),
(H) = fio([u]* + [v]* + 1).]

(M) =€t |7,
(4.5)

(4.6)

B. Poisson distributions

The probability p(k,/) of obtaining simultaneously the
values k and / for K and L in the state |z,¢,€) is given by

plkDy = (|2 /k Ve~ (|2 /11)e 15", (4.7)
The unconditional probabilities p(k) and p(/) of obtaining
values k for X or ! for L therefore follow independent Pois-
son distributions with means |z| and |{ |?, respectively. (In
constrast, for the CC state |u,v), a result analogous to (4.7)
holds instead for the probability p(n,,n,) of obtaining values
n,, n, on measuring N, and N,, with z,, z, [as in (4.3)]
replacing z,£, and n,, n, replacing k,/.)

C. Minimum uncertainty
Let
v=2""2(ag4+ib), A=2""*a+if), (4.8)

where a, b, a, and B are Hermitian. In a general state, let
Aa = ({a*) — (a)?)"/?, etc. Then it follows from (2.16)
that

AaAb>), Aal B>i(1+ (Py) —(Q)). 4.9)
However, in the CAM state |z,5,€),
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AagAb =1,

AaAB=4(1+(P) —(@)) [ =}(1+e"¥N)].

The CAM states are therefore minimum uncertainty states
fora, b, a, and . The equalities (4.10) do not hold in the CC
state |u,v), which is therefore not a minimum uncertainty
state for these variables (unless ¥ = 0 or v = 0, when the CC
state is also a CAM state). [ On the other hand, the equalities

AxlApl =%ﬁ=AX2Ap2 (4.11)

hold in a CC state but not (unless z =0) in a CAM state.
The latter are not in general minimum uncertainty states for
the Cartesian variables x and p. ]

(4.10)

D. Evolution in the Schrodinger picture

If the state vector |#(¢) ) of the oscillator is a CAM state
at one time, then it is so at all subsequent times ¢. Thus, if

[#(0)) = |zob0€), (4.12)
then

[W(1)) =e . l2(£),5(2),€), ,t>0’ 4.13)

Z(t) =zoe—2m)t, é—(t) = é—oe——m)t‘

The expectation values z(¢), §(¢) of v, A then follow a trajec-
tory of the corresponding classical variables ¥, A in a “com-
plex phase space” (C X C,€). We can associate a volume of
uncertainty AcAbAaAB with the representative point in this
space, subject to inequalities (4.9). When the motion pro-
ceeds through a succession of CAM states as in (4.13), this
volume is maintained at a constant minimal value.

E. Uncertainty in angular momentum

Consider a typical classical trajectory of the oscillator,
for which the classical analogs X, p of the operators x and p
are given by

% = (4 cos wt, Bsinwt),

R ) (4.14)

p=pw( —Asinwt, Bcoswt),
with 4, B real and 4>|B|>0. The angular momentum M
corresponding to the operator #M) is, for this trajectory,

M( =3P, — %, p;) = pwAB, (4.15)
and the classical analogs of v and A take the values
D= %('uw)ln(A _ |B|)e—2imt’
(4.16)

1= (pwd |B|)1/2e—imt.

Comparison with (4.5) shows that a quasiclassical descrip-
tion of this motion is given in terms of CAM states if we take

2o = Y (uw/%)'*(4 — |B|), &= (uod|B|/H)'?,
(4.17)

and choose € to match the sign of the angular momentum, or
equivalently, from (4.15), the sign of B. (If B = 0, we must
take £, =0 and € is then meaningless; recall that
|2,0, + ) = |2,0, — ).) A measure of the (constant) uncer-
tainty in the angular momentum of the quantum oscillator is
then given by (#AM)?, and we find that

(HAM)? = #iuwA |B |. (4.18)
An alternative quasiclassical description of the motion
(4.14) using CC states is given in terms of the state vector
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(@) =e“ lu(n),u(@)),

u(t) = uge =", v(r) =ve ", (4.19)

uy = Y (uw/#)*(4 — B), v, =}(pw/%)*(4 + B).
In this case we find

(AAM)* = Wiuw (4> + B?). (4.20)
We see that the (squared) uncertainty in the angular mo-
mentum is greater in general for the description using CC
states than for the one using CAM states, by an amount
Wiuw(A — |B |)?. (Inthecaseofacircularorbit,4 = |B |, the

CAM states and CC states coincide and the two descriptions
become one.)

F. Classical limit

This can be treated very simply by considering at each
time ¢ a succession of states |z,{,€), with |z| - w0, |§ | — o and
#-0 in such a way that (#)'/?z and (#)'/%¢ remain finite
{and equal to L (uw)V*(4 — |B |)e~ 2,
(uwA |B |)"/%e ~ ™, respectively, for the case of the typical
orbit described by (4.14)]. The sign of € must be chosen to
match that of the classical angular momentum. The case of a
circular orbit is special and corresponds always toz = 0. Itis
not difficult to check that, as the limit is approached, the
relative uncertainties in H, K, L, M, a, b, a, and 3 all go to
zero. (In a treatment in terms of CC states, one considers
instead a succession of states |u,v) with |#]|— 0, [V]— 0,
#-0, and (#)"%u, (#)"% finite [and equal to
1(pw)'*(4 — B)e =™, L(uw)'*(4 + B)e ™' for the orbit
(4.14)].)

G. Nonorthogonality
The CAM states are not mutually orthogonal. Instead,
(24" elzge) | = exp( — |2 2’ — | £ ),
(4.21)
(2§, —elzge) P =exp(— |2/ —z|* — |£'P — £ %),
so that orthogonality is approached as |z’ — z| and |{' — & |
become large. [Similarly, for the CC states,
| (u' ' |uw) | = exp( — |4/ — ul® — |v' —v]?).] (4.22)

H. Overcompleteness

The CAM states are overcomplete in . Completeness is
most conveniently expressed in terms of the nonunit vectors

|2,6,€) = exp(3|z|* + 4I& |*) |26 *.€), (4.23)
as
[zt )6+ 1+ lag — 26— |
—|2,0)(2,0))dp(2,£) =1, (4.24)
where I is the unit operator,
dp(z,8) = (1/7) exp( — |z|* — |£ |P)d zd %, (4.25)

and the integrals run over all complex values of z and £,
Let |¢) be an arbitrary vector in §, with expansion in
terms of the vectors |r,s) of (2.18) as
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l¢) = i By |1 (4.26)

rs=0

Then, let

Pl = @6+ 18) = 3 b lslr =722 L7,

0s<r

¢z = (2.6, — |4) (4.27)
== z ¢rs [r!(s _ r)y] —l/Zngs—-r’
oKr<s
and note that
$1(2,0) = ¢'7(2,0) = go(2). (4.28)

The function ¢‘© (z,£) is entire on C X C, and satisfies

169(2,8) |<({$|#)) " * exp i(Iz]* + | |*), (4.29)
and
f |#(z,£)|*dp < 0. (4.30)
Furthermore,
1) = [ (B2 + 1670~ 182,
(4.31)
and
1) = f @026 +)
+¢'7(z2,8) |26, — ) — ¢o(2)|2,0))dp. (4.32)

Conversely, given any pair of entire functions
€ (z,£), e = +, which satisfy (4.28)-(4.30), we can de-
fine a vector |@) in § by (4.32), check that its squared length
is given by (4.31), and that

9 (z,8) = (z,£.€|8). (4.33)

I. Reproducing kernel Hilbert space

Equations (4.27)-(4.32) establish a 1-1 correspon-
dence between vectors in § and pairs of functions ¢ (z,5).
Accordingly, a realization of § is provided by taking the pair
®(z,8) = {6(2,£),6' 7 (2,£) } as the representative of the
abstract vector |¢), and identifying the scalar product of two
pairs @, V¥ as

(P,¥) = J @O (28) + 6728 Y (28)

— @o(2)*9hy(2))dp (4.34)
(equal in fact to {¢|#) ). In this realization of 9, we find
v=£, vi=z, K=zi,
dz S dz (435)
ﬂ' t = g’ L = ;'_ y
a

while A and M act as

_ a¢(+) a¢(—) a¢(—) a¢(+)
m_{ a T ‘;=o’ a ¢ g=o}’
_ 5¢(+) _ a¢(—) (4.36)
Mq"[g ac ' & a }
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This realization of § has a reproducing kernel
K(Z¢'28) ={k@ ¢ 2.0)k2 20},

k(z'\'2,L) = exp(Z*z + £ '*¢),
(4.37)

since

K& )0 =0(Z.87). (4.38)

V. CONCLUDING REMARKS

We have identified CAM states for the two-dimensional
oscillator. They have many properties in common with the
familiar CC states, but are quite distinct from those states in
general. The expressions (3.10) and (3.12) for the CAM
states are of a simplicity comparable with that for the CC
states, as in (4.1). Perhaps the most important distinguish-
ing features of the CAM states, vis-a-vis the CC states, are
those described in IV B and IV E. We can summarize by
saying that CAM states have special properties in relation to
the radial and angular momentum operators K and L for the
oscillator while CC states have similar properties in relation
to the number operators N, and N,.

The CAM states could also have been called O(2) co-
herent states for the oscillator, in that they are eigenvectors
of a lowering operator for the O(2) invariant L. [In con-
trast, the CC states could be called SO(2) coherent states,
being eigenvectors of a lowering operator for the SO(2) in-
variant M.] However, the names “O(2) coherent states”
and “CAM states” are both deficient to the extent that they
do not reflect the fact that a lowering operator for the radial
quantum number X is also diagonalized on these states. This
is an important feature, associated with the fact that the two-
dimensional oscillator has a radial as well as a rotational
degree of freedom. Even in the two-dimensional case it is not
a trivial matter to find suitable commuting lowering opera-
tors for the radial and angular momentum quantum
numbers k and /, as in Sec. II. If this feature is overlooked,
then the CAM states defined here (and those for the three-
dimensional oscillator, defined in BL2) can easily be con-
fused with those defined by many others? for systems, such
as the rigid rotor, which do have only rotational degrees of
freedom. This potential for confusion is compounded by the
fact that the Schwinger boson calculus is often used to pro-
vide a convenient realization of the SO(2) < SO(3) group
for such systems.

Bhaumik e al.” have defined ““charged” coherent states,
also different from CC states, for the two-dimensional oscil-
lator. Their states are, however, also quite distinct from the
CAM states defined here. In our notation (with their g and b
replaced by our p and o), their states are eigenvectors of M
andpo ( = [K + L + 1]'/?v). They are therefore labeled by
a definite charge ¢ (an integer, equal to our m) and a com-
plex number & (essentially) equivalent to our zin (3.1) and
(3.10), whereas a CAM state is labeled by two complex
numbers. From the point of view of Ref. 7, a CAM state does
not have a definite charge (though it does have a definite
charge sign); rather, the probability of obtaining a given
charge in such a state follows a Poisson distribution.
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Comments on exact solutions for a one-dimensional periodic solid
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An alternative method to get exact solutions of the single-band time-dependent Schrédinger
equation for an electron in a spatially periodic one-dimensional potential in the presence of a

uniform electric field is presented.

I. INTRODUCTION

In arecent paper Luban® has presented an exact solution
for a single-band time-dependent Schrodinger equation for
an electron in a one-dimensional periodic solid in the pres-
ence of a constant uniform electric field. The technique of
solution used by this author consists of mapping the Schro-
dinger equation of the problem to the exact solvable prob-
lem, in the eikonal approximation, of a quantum planar ro-
tor subject to an arbitrary periodic time-dependent external
potential.

In this paper we will propose an alternative method by
treating the problem in a more direct way. In fact, in Ref. 1 it
has been shown that the time-dependent Schrodinger equa-
tion of the relevant problem can be reduced to a differential
difference equation. We will use a solution technique pro-
posed by us in Ref. 2 to give an exact solution in terms of a
combination of Bessel functions.

The Hamiltonian considered in Ref. 1 is

Hx,t) = Hy(x,t) + e, (1)
where I?o  is an Hermitian operator, spatially periodic with
period a(Hy(x + a,t) = Hy(x,7)). The electron charge is e
and £ is the magnitude of the electric field. The wave func-
tion can be expanded in terms of orthonormal Wannier func-
tions; according to Ref. 1 we write ¢ in the single band ap-
proximation as

¢(x,t)— Z o @) (x|n1), (2)

where/isthe band indexand (x|n,/ ) = ¢,(x — na) isasetof
Wannier functions satisfying the condition

+
f dx ¢¥(x —na)g,(x —n'a) =6,,.6 (3)

In the single-band approximation we replace the Hamilto-
nian Eq. (1) with the new operator
’}J + oo
H, = 2
All the temporal behavior of the ¥-function is contained in
the time-dependent coefficients f, (¢#) which have been

shown to satisfy the following set of coupled homogeneous
equations (see Ref. 1 for further comments):

;Y
Yar

(| H |00y |md Yl ). (4)

_nf;l+ z {Vf;l+n +V—n.fn—n} (5)

) Permanent address: Quantum Institute, University of California, Santa
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and Dipartimento di Fisica, Universita di Salerno, Salerno, Italy.
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where

T=1t/10, To="H/(ea), V, ={(OH|n')roy/h. (6)

. GENERAL PROCEDURES

We will deal with Eq. (5) following a rather direct
method which is an immediate generalization of the tech-
nique developed in Ref. 2.
As a first step, it is convenient to introduce the new
function C, (7) =f, (7)e ~ " thus getting
dC ®

z Q,C,,
dr n=1

with Q, = ¥V, e "",

The solution of Eq. (7) can be found straightforwardly.
We introduce the “Hamiltonian” operator

vt Q_C_u), (7N

=3 [0.E )y +a_ED], (®)
n=1

where (E*)" is a shifting operator defined as
(E £)”|n) = [n + n'). The time evolution of the states
driven by Eq. (8) can be found by solving the equation for
the evolution operator, namely

zﬂ=T(r)U U(O)—l 9)
dr

Finally, C, (7) can be easily obtained as
C, (1) ={(n|U|0). (10)

The solution gf Eq. (9) can be immediately obtained since

the operators E * are commuting and therefore there is no

problem with time ordering. We find

ﬁ - iL,,r(-r)(E‘)"'e - iL_,,.(r)(E'*)"',

U(r) = (11)

n=1
where L, (1) = [5d7'V,, (7')e ", The evaluation of the
scalar product in Eq. (10) is straightforward, indeed we
easily get

C, (1) = Lt

)r+s
nn'(s—r)

(12)

33

n=15=0r=0 r S!

We can now write f,, (7) in a closed form, recalling the series
expansion of the Bessel function of first kind, i.e.,

n __\k /2)2k
J,(x) = (_x_) (=) /)™ , 13
) 2 kgo kl(n+k)! (13
thus we get
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. o L , n/2n’
_/;,(T)=e_""' H ( L——n )
n =1 n

X (= DT, 2Ly L _ )" (14)

We must note that Eq. (14) is relevant to the_initial condi-
tions £, (0) = 8,,,. For the more general case £, (0) we find

- +o _
Fm =3 FOf,_(n). (15)

Il= —
If the Hamiltonian Eq. (1) only contains near-neighbors
interaction,® then

(OlH |n) = H\(8,, +86,,_1)-
We easily get for £,

[, (1) = (= D)re~ "] (2V,([sin(7/2)1/8)). (17)
In this paper we have presented an alternative method to get

(16)
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exact solutions of the single-band time-dependent Schro-
dinger equation in the presence of a uniform electric field.
The method is based on the technique developed by the auth-
ors to get solutions of the Raman-Nath-type equations.>
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Stationary, rotating Kaluza-Klein black hole solutions are studied in the case of vanishing
electric charge. It is shown that in this case the field equations decouple and consist of the
vacuum Ernst equations and the Laplace equation for the scalar (dilaton) field. The regular,
electrically neutral, rotating Kaluza—Klein black hole is described uniquely by the trivial
embedding of the Kerr metric in the five-dimensional space-time.

I. INTRODUCTION

The five-dimensional Einstein gravity according to Ka-
luza and Klein' leads to a unified theory of gravity, electro-
magnetism, and a scalar field when the compact extra di-
mension representing the U(1) gauge group is not visible.
The vacuum four-dimensional Einstein and Einstein—Max-
well equations possess a number of physically important so-
lutions like the stationary, rotating Kerr and Kerr-Newman
black holes which were proved to be the unique stationary
equilibrium states of black holes.> In the Kaluza-Klein the-
ory new solutions are arising like the topologically nontrivial
Kaluza-Klein magnetic monopoles*® corresponding to the
twisted U(1) bundles representing five-dimensional space-
times. One should expect therefore that the presence of a
scalar field will modify the four-dimensional black hole solu-
tions. Black hole solutions for the Kaluza-Klein theory are
known only for the spherically symmetric case.>'* It seems
interesting to explore the stationary, rotating Kaluza—Klein
black hole solutions. One may also ask if the no-hair conjec-
ture is true for the Kaluza—Klein black holes. One should
expect that the Kaluza—Klein black holes are characterized
completely by four parameters, the mass M, the angular mo-
mentum J, the electric charge Q, and the scalar charge =,
which seems not to be independent from the other three pa-
rameters.'® Before attempting to prove the uniqueness
theorem (or no-hair lemma) for Kaluza—Klein black holes
one should first study the exact solutions describing them.

We will study the uncharged black holes, i.e., @ =0
case, where the electromagnetic field 4, is assumed to be
zero. The five-dimensional metric is “static” with respect to
the Killing vector 3 /9x° = 3 /dy. It is also a stationary met-
ric. The stationary Einstein-Maxwell equations possess a
hidden symmetry group® which is represented nonlinearly
and is isomorphic to the pseudounitary group SU(2,1). Asit
is well known, this property of the field equations is related
to the fact that the Einstein—-Maxwell action for stationary
fields can be dimensionally reduced to the action describing
three-dimensional gravity coupled to the nonlinear sigma
model on the hyperbolic Kihler symmetric space
SU(2,1)/5(U(2) xU(1)) (see Ref. 3). The fact that the di-
mensionally reduced action contains a part describing a sig-
ma model turned out to be crucial in proving black hole
uniqueness theorems.® Of course, this is the case because
during dimensional reduction of the Einstein—Hilbert La-
grangian the sigma model Lagrangian emerges as a rule,
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with the scalar fields parametrizing a coset symmetric
space.'! The scalar fields correspond to degrees of freedom
related to invisible extra dimensions (forming a torus). The
hidden symmetry group of the dimensionally reduced action
is a noncompact one and the coset space is always hyperbo-
lic. Maison'? has shown that the stationary Kaluza-Klein
fields possess the hidden symmetry group SL(3,R). The
field equations in this case are equivalent to a sigma model
on the hyperbolic symmetric space SL(3,R)/SO(3). The
five scalar fields parametrizing the SL(3,R)/S0O(3) coset
space correspond to two complex Ernst potentials, the gravi-
tational and the electromagnetic ones, and to a real scalar
field. Looking for the Kaluza—Klein black hole solutions we
will use the sigma model form of the field equations.

In Sec. II of this paper we will discuss the Geroch for-
mulation of the field equations for the stationary Kaluza-
Klein theory. We will show that the field equations in the
case when the electromagnetic field vanishes decouple and
they consist of the vacuum Ernst equations and the Laplace
equation for the scalar field. This fact considerably simplifies
the analysis and allows one to find the rotating Kaluza~
Klein black hole solution. In Sec. III we will construct the
metric describing the rotating Kaluza-Klein black hole so-
lution. We will show that the solution is nonsingular only
when the scalar charge vanishes. This result could be antici-
pated on the basis of the fact that black holes cannot have
scalar “hair.” The regular, electrically neutral, rotating Ka-
luza—Klein black hole is described by the trivial embedding
of the four-dimensional Kerr solution in the five-dimension-
al space-time, i.e., it is a trivial product metric of a circle with
the Kerr space-time. Using this observation it is easy to show
that this is the unique electrically neutral, rotating Kaluza~
Klein black hole.

Il. STATIONARY KALUZA-KLEIN FIELDS

In this section we shall present the Geroch formula-
tion!2!3 of the stationary Kaluza-Klein theory. We will also
discuss the axisymmetric fields. We will assume that the
metric g,,, a,b = 1,...,5 of signature (—,+,+,+,+)
satisfies the five-dimensional Einstein equations and admits
two commuting Killing vectors £9%, 4 =1,2: £, =4 /34,
&, =3 /9x> = 3 /3y, and that the projection from the five-
dimensional space-time manifold M onto the space S of or-
bits of the Killing vectors induces a smooth manifold struc-
ture on S. This is always true unless the isometry group has
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fixed points. Introducing the matrix A, defined by

Aup =8ar 4€ 3> (2.1)
and its inverse A “5, we can define the projection operator on
the tangent space to S,

hey =8% — A1%E 5 Ep,, (2.2)
and the metric on S,
hab = hachbdgcd' (23)

The metric g, is described completely by the geometrical
objects on S: 4,,,4 5 and the “twists” @,

Dygq = abcde§ ll’ggvdgi’ (24)
which are curl-free V(, @ ,, , = O because of the vacuum Ein-
stein’s equations R,, =0, and can be locally expressed as
w4, = V,»,.0necanshow that R, = Ois equivalent to the
following equations on § (Ref. 12):

®R. (7) ={Tr(A ~'D,A4 ~'D,A)

+4r2D,7D,7 + yr~'D, 0™ "'D,w, (2.5)
DDA =D,AA ‘D4 — 7D, D7, (2.6)
D°D,w =D,AA ~'D° + 7D, D0, 2.7)

where A is the 2 X 2 matrix 4 .5 with nonvanishing determi-
nant 7 = det A and w is a column two-vector @ = (w, ). The
covariant derivative operator D, is the one compatible with
the conformally rescaled three-metric ¥,, = 7h,,. Equa-
tions (2.6) and (2.7) can be written as the sigma model
equations for a 3 X 3 matrix y (Ref. 12),

! — 1 T
x= ( -7 A4 r“wa)’
with the properties
x"=y, dety=1.
The equations for a sigma model are
D4, =0,

where

(2.8)

(2.9)

(2.10)

1

J,=Dyx" .
From conditions (2.8) and (2.9) we can see that y trans-

forms as a covariant, second-rank tensor under SL(3,R).
Moreover a matrix satisfying (2.9) can be decomposed as

x=A4T4, detA=1, AeSL(3,R). (2.11)

Itis easy to see that the left SL(3,R) translation 4—A ' = hA
leaves y unchanged if 4 Th = I, or heSO(3). In other words
there is a one-to-one correspondence beteween y and ele-
ments of the coset symmetric space SL(3,R)/SO(3). Equa-
tion (2.10) describes the nonlinear sigma model on the sym-
metric space SL(3,R)/SO(3).

In the case of the vanishing electromagnetic field
@, =0, so we set w; = @ and the field equations (2.6) and
(2.7) simplify considerably. The five-dimensional metric
can be written then in the form

ds® = e® dy? + A(dt — o dg)?

—A “‘e““’[ez"zdxi + & dxs + p? d¢2]. (2.12)
From the form (2.12) of the five-dimensional metric we
haveA,, =A,4,,=e® A,, =0, and the matrix A ., is diag-
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onal. In the axisymmetric case d /d¢ is a Killing vector and

— p? is the determinant of the matrix of scalar products of
the three Killing vectors (d /9,3 /dt,d /3¢). It can be seen
from (2.5) that p satisfies the Laplace equation on the two-
dimensional space of orbits of three Killing vectors. Equa-
tions (2.6) and (2.7) reduce to

AD“D,A =DAD,A — e~ *D°wD,0, (2.13)
AD®D,w = 2D°AD,w + AD“®D, v, (2.14)
DD, d =0. (2.15)

These equations are similar to the vacuum Ernst equations'*
for which we know many solutions. It turns out that by re-
scaling A one can reduce (2.13) and (2.14) to the form of the
Ernst equations. Let A = Ff, where F is a solution of

FD°D,F=D°FD,F. (2.16)

At this point we observe that F' = BF“ is also a solution of
(2.16) for arbitrary a8 #0: this corresponds to the symme-

try of the Laplace equation satisfied by In F: In F»aln F
+ In B. Using (2.16) we get from (2.13) and (2.14)

F*(fD°D,f—D*fD,f) = —e~*D°wD, 0, (2.17)
F(fD°D,w — 2D*D,w) = F(2F ~'D°F + D°®)D, .
(2.18)

One can easily see that when F = ¢ ~ ®/? then fand w satisfy
the Ernst equation for a complex potential € = f + i,

fD°D,e = D°eD,e. (2.19)

Now we observe that when ® =0, or F =1, then the
field equations reduce to the vacuum four-dimensional Ein-
stein equations. Equation (2.19) has a very simple solution
describing the Kerr black hole. Therefore if we take for € the
Ernst potential of the Kerr solution and for ® the simplest
monopole solution of the Laplace equation then we will au-
tomatically obtain a Kaluza-Klein solution which in the
limit of vanishing scalar charge describes the vacuum Kerr
black hole. We expect this solution to describe a genuine
rotating Kaluza—Klein black hole.

The five-dimensional metric can be written in a new
form,

ds* = e® dy? + e~ P2 [f(dt — w d)?
—f7 N (e*#dx3 + e dx3 + p? dg?]
— e¢ d1/’2 + e-—¢/2 (4)gaﬁ dxa dxﬁ,

(2.20)
where the four-dimensional metric g, is regular on and

outside the event horizon of a black hole solution. In order to
reconstruct the metric (2.20) from the Ernst potential € and
the scalar field ® one has to solve Eq. (2.5), which in the
present case has the form

ORas (1) =42 fufp +©,0,) +§P,D,. (221)
We also need the relation between the twist @ and the metric
coefficient w:

w, =p le i %%, (2.22a)
(2.22b)

which after rescaling 4 = e ~ ®/2f has the same form as in the

wy= —plem ) %%,,
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4-D vacuum case,
(2.23a)
(2.23b)

When we take the Ernst potential € of the Kerr solution then
w will be the same as in the Kerr metric. The presence of the
scalar field ® has the effect of changing the four-dimensional
metric “g,.; only through the change in u, 1, with respect to
their vacuum form.

w, =p Tl f Y,

w; = —pTlet Ty,

{ll. ROTATING KALUZA-KLEIN BLACK HOLE
SOLUTION

We are looking for the axisymmetric black hole solution
to Egs. (2.15), (2.19), and (2.21), where we define the Ka-
luza-Klein black hole solution in the standard way, i.e., we
assume that the metric “g,,; has a regular event horizon and
symmetry axis, and it is asymptotically flat. We assume that
the event horizon is the Killing horizon spanned by the Kill-
ing vectors d /dt and 3@ /3¢. The event horizon is a null hyper-
surface given by the equation'®

N(x%x®) =0, ‘4’g“‘91\{aNﬁ =0. (3.1)
This leads to the condition on N
eZ(IJs—I-‘z)(]V’r)z_'_ (Ms)zzo’ (3.2)

where x? = r, x> = 6. From Eq. (3.2) we obtain the equation
of the event horizon

A=) — A(r) =0. (3.3)

The function p vanishes on the event horizon #° when A = 0
because the horizon is a fixed set for the vector field
3 /9t + Q50 /34, where Q; is the angular velocity of the
horizon. We may put

p=A"2H(6). (3.4)
Then the Laplace equation for p gives

1A, +H Hgy =0, (3.5)
with the solution

A(r) =P —2mr+a? H(O) =siné, (3.6)

for some constants m and a. The harmonic conjugate func-
tions z and p have the form

3.7

It is convenient to introduce the ellipsoidal coordinates 7, u
because the solutions describing black holes have a very sim-
ple form in terms of these coordinates

p=A"Y%in 6, z= (r — m)cos 6.

(3.8)

The coordinate range for pandpisne[ 1,0 ], ue[ — 1,1].In
this coordinate system, A, p, and z have the form

A=K2(772—1), p=K(7]2—1)1/2(1—ﬂ2)1/2,
Z = K.

7=« (r—m), u=cosb, K¥¥=m?*—a’

(3.9)

The horizon position is now at 7 =1, the axis at
p = + 1, and spatial infinity at 7 = «. In ellipsodial co-
ordinates, the field equations become
FU@? = De,), +((1—pDe,) ]

= (P — D&, + (1 —p?)é, (3.10)
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(P = D)D), +((1—u>)®,), =0, (3.11)

The boundary condition on € as 77— « is €-» — 1, which
corresponds to asymptotic flatness of the metric. This sug-
gests the change of variables

E=U—-e)/(1+e), e=(1-£6/(1+§), (3.12)
where £ satisfies the equation
(§€ — 1)D°D,§ = 22D (D, £. (3.13)

The Kerr solution to the Ernst equation (3.13) has a surpris-
ingly simple form

§=pn +igu,
where p? + ¢° = 1.

Now we have to find an appropriate solution for the
Kaluza-Klein scalar field ® with the boundary condition
® - 0as n— «. If ® depends only on one arbitrary constant,
i.e., the scalar charge X, then ® must be a function of 7 only.
The solution of Eq. (3.11) with the correct boundary condi-
tion has the form

<I>=-c—ln(17—l).
2 \g+1

(3.14)

(3.15)

Then ® has the asymptotic form as 7— oo, ® ~cx/r, where
¢« is proportional to the scalar charge 3. The presence of the
scalar field ® will have only an effect on the two-metric on
the space of orbits of the Killing vectors d /¢ and d /3¢. In
order to calculate the two-metric on the space of orbits of the
Killing vectors it is convenient to work in a “conformal
gauge”

ds3, = ¥ dx: + e dxt = " (dp® + dz?). (3.16)

The remaining field equations (2.21) simplify considerably
in the conformal gauge

7, =p(G,, —G.), (3.17a)
Y:=2pR,., (3.17b)
where
G = G =4/ (S5 = f2 + 0, —0L)
+ (95, — P%), (3.18a)
R,=4f"f,f.+0,0,)+1P,P,. (3.18b)

Using Egs. (3.12), (3.14), (3.15), (3.17), and (3.18) one
obtains

2¥( Jn2 172 "72—1 e, 2 2,2
e’ (dp +d)=K27’ @*n* +qu*— 1)

2 __'uz
dy? dy’ )
X . 3.19
(172 T (3.19)
From Eqgs. (2.23a) and (2.23b) one can also calculate w,
w=2ugp (1 —p®)(pu + VPP’ + > — D"
(3.20)

Observing that the constraint p? + ¢* = 1 is easily solved by
p = «k/m, q = a/m one has kgp~—' = a. The four-dimension-
al metric “g,, looks like the slightly modified Kerr metric.
The only difference is that the scale factor €*” of the two-
dimensional metric on the space of orbits of d /dtand 3 /3¢ is

P. O. Mazur and L. Bombelli 408



modified by the presence of the scalar field

7 ( ,'72 -1 )sa/mezyk,
7 — #2
where ¢°™ stand for a scale factor of the Kerr metric. The
multiplicative factor vanishes on the event horizon when the
scalar charge is nonvanishing. The effect of the scalar charge
is to produce a curvature singularity on the even horizon 5#°.
The regularity of the event horizon /# and the boundedness
of @ on 7 implies that the scalar charge ¥ (or ¢) must
vanish identically. We conclude therefore that the only ac-
ceptable regular electrically neutral Kaluza—Klein black
hole is the trivially embedded Kerr black hole in five dimen-
sions. The metric describing such a black hole is a product
metric on §' ' X M,, where M, is the Kerr space-time. It is
quite easy to extend the standard argument of uniqueness
(and no hair) theorems to the case of electrically neutral
Kaluza-Klein black holes, and show that the product metric
of the Kerr metric with the metric on the circle is the unique
electrically neutral rotating Kaluza-Klein black hole solu-
tion. The regular Kaluza—Klein black hole solution with
nonzero scalar charge is necessarily electrically charged.
The proof of uniqueness, once the boundary conditions for
the fields @, £, and @ on the space of orbits of the Killing
vectors are given, uses the ordinary Green’s identity to show
that ®=0 is the only possible solution for the scalar field,
and the generalized Green’s identity® to show uniqueness for
JSand @, which in fact reduces to the analogous question for
ordinary four-dimensional general relativity. Details of the
proof and a generalization to charged rotating black holes
will be given elsewhere.'®

To conclude, we will remark that all our arguments can
be trivially extended to a particular class of higher-dimen-
sional Kaluza—-Klein theories, where the internal manifold is
ad-dimensional torus 7 °. If we assume again the presence of
a stationary Killing vector &, = d /d¢ and a Killing vector
&, =3 /dy” for each of the internal dimensions, and the
metric ansatz

(3.21)

d
ds’= Y " (dyY)? + A(dt —wdgp)*

a=1

d
—A1 H e P (eMadx? 4 s dx} +p*dp?)

a=1
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(where for simplicity we are taking a unit radius for all inter-
nal dimensions, but this does not affect our conclusions),
then each scalar field ®,,, will satisfy an uncoupled Laplace
equation and, rescaling A = Ff, with

d
= = P2
F= 7%,
a=1

€ =f+ io will satisfy the Ernst equation (2.19). The re-
maining equations for 1, and y;, solved in the conformal
gauge, again tell us that, to get a regular solution on the
horizon, we must impose that all scalar charges associated
with the extra dimensions vanish, and the only solutions we
obtain are trivial metric products of Kerr space-time with a
d-dimensional torus 77
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Imperfect fluid sources to the Schwarzschild exterior solution are studied under the
assumption that the metric coefficients g4, and g,; of the interior solution satisfy the relation
8oo &1 = — 1. It was found that the core of such a distribution is gravitationally repulsive

provided the energy density is positive.

I. INTRODUCTION

The coefficients g4, and g,, of the Schwarzschild exteri-
or solution have the interesting property that in curvature
coordinates they satisfy the relation g, g,; = — 1. This fact
motivates one to study the assumption that this relation also
is valid within the matter distribution. Tiwari, Rao, and
Kanakamedala® showed (among other things) that in the
case in which the interior is filled with perfect fluid, this
assumption leads to the vanishing of the density and pressure
identically, i.e., there exists no interior solution. This means
that the assumption g, g1, = — 1 is incompatible with the
assumption of perfect fluid.

In this work we investigate the relation in the case in
which the interior is filled with imperfect fluid. First, we will
show that in this case there exist sources to the Schwarzs-
child exterior metric. Second, we will prove that the gravita-
tional mass is negative in the central region of such sources.
Third, we will exhibit a specific model which illustrates the
results.

Il. THEORY

Let us then consider a static and spherically symmetric
gravitational field. In curvature coordinates, the associated
line element reads

ds* =e"dt? — &* dr* — P(d8? + sin® 8 d¢?), (N
where v and A are functions of r only.

The Einstein field equations corresponding to this line
element can be written as

ar}

drl=%(rg_r:)+%(rg—ri>, (2)

4T} — m’(;) +12—6‘”'1=0, (3)
r —A

m(r) =47rf AT drzl_‘ze_._r, (4)
(V]

T =T3. (5)

The gravitational mass inside a sphere of “radius” 7 is
given by the Tolman—-Whittaker formula, viz.,

M;(r) =417'f (TS —T! —T2 — T3P~ +»72 gy,
o
(6)

*) Postal address: Apartado 2816, Caracas 1010A, Venezuela,
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We assume that the matter distribution extends to radius r,.
Hence the exterior space-time is described by the Schwarzs-
child metric

ds>= (1 -2M/rydt?*— (1 —2M /r) =1 dPr?

— r*(d@? + sin? 6 d¢?), (7N
where M is the total gravitational mass inside the sphere,
viz., M = M;(r,).

Necessary and sufficient conditions for matching the

metrics (1) and (7) are given by the continuity of the first
and second fundamental form across 7, viz.,

e =g~ =1 —2M /r,, (8)

7oV (rg) = QM /ry) (1 —2M /ry) ™1, 9)
Eq. (3) then shows that on the boundary T} = 0.

We now assume the relation gy g, = — e % = — 1

to be valid within the distribution. Then from Eqs. (3) and
(4) we find

T =Tj. (10)

The converse is also true, viz., if 7’3 = T'} then from Egs.
(3), (4), (8), (9) it follows that gy, g, = — 1.

Now substituting Eq. (10) into Eq. (2) and using the
boundary conditions we find

Yo 1 _ 2

Ty=2 SZ—‘—;—Q dr. (11)
This equation shows that if a specific relation between the
stresses is given a priori, then the source will be fully deter-
mined. In particular, the energy momentum tensor vanishes
everywhere only when T'; = T2 (perfect fluid). This equa-
tion also indicates that the energy density T'§ will decrease
monotonically outward provided 773 > T'3.

For the configurations under study the gravitational
mass inside 7, as given by Eq. (6), is

Mg = —-877'J TiAPdr. (12)
0
Since at the center of the distribution all physical quantities
must be finite, it follows from Eq. (11) that (T} — T'3)
should vanish at least as rapidly as » when »—0. Hence
T3 = T'! = T? near the center. Equation (12) then shows
that if 7 > O then the gravitational mass is negative in the
central region. Consequently, for T3 >0 the core of the
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sphere is gravitationally repulsive in the sense that a free
particle will be accelerated away from this region.?

Let us now give an explicit solution to the set of Egs.
(2)-(5), (10), and (11). With this aim we assume the fol-
lowing relation between the stresses:

T —T2 =K1 -~/R2), (13)

where K ? is a constant. Using the field equations and the
boundary conditions we obtain the solution as follows:

e’ =e *=1— (e/4)*(35 + 15v* — 42?), (14)

T =T\ = (105¢/32n73) (1 — v?)?, (15)

T — T2 = (105ev*/16772) (1 — v?), (16)
where v=r/ryand e=M /r,.

The above solution has the following properties.

(i) The energy density T'§ is positive and decreases
monotonically outward. Furthermore, T3 =T7! and
T>T2=T3.

(ii) The metric coefficients e and ¢* are positive
throughout the matter for M 50.438r,.

(iii) Atthecenter T) = T} = T2 = T3 >0, and at the
boundary 79 =T =T2=T3=0.

(iv) The red shift (from a point in the sphere to infinity)

is maximum at r~=0.792r, rather than at the center.
(v) The gravitational mass inside

Mg (r) = (M /4)v° (840 — 45v* — 35), (17)
is negative for r $0.792r,,

(vi) The mass function m(r) defined by Eq. (4) is posi-
tive at all points within the distribution.

Ili. CONCLUSION
We conclude from this work that (a) the necessary and
sufficient condition for g8,y = — 1is T} = TY; (b) if

T} = T3, thenall physical quantities depend on the “degree
of imperfection” of the fluid and vanish for perfect fluid; (c)
if T} = T'J and T§ >0, then the central region of the sphere
is gravitationally repulsive.

Concerning the solution presented here it could serve as
initial (or final) configuration in the evolution scenario and
it could be interesting to investigate the time evolution of
such models where there exist gravitational repulsion.

We would like to finish with the following remarks.

(1) The energy momentum tensor of a viscous fluid sat-
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isfies the relation gy,g,,= —1
T3 =T!). In fact, for a viscous fluid

(and consequently

T4 = (p + p)utu, —p&, + 2not, (18)

where p and p are the density and pressure of the fluid, re-
spectively, #* is the four velocity (##u, = 1), 7 is the coeffi-
cient of viscosity, and o # is the shear tensor which satisfies

o,u'=0, o,8"=0, (19)

from Eqgs. (18) and (19) and using T} = T9 = O we obtain
(we recall that u'#0 otherwise o, = 0)

TS =T} =p. (20)

Thus we see that the central region of any viscous static fluid
sphere which satisfies the regularity conditions is gravita-
tionally repulsive.

(2) The relation go, g,; = — 1 has already been used
for perfect fluid spheres with charge, and it was shown by
Gr¢n? and Gautreau® that such spheres also give rise to gra-
vitational repulsion.

(3) The gravitational repulsion in these models’= is a
consequence of the violation of the ‘““strong energy condi-
tion” [(T,, — &, T/2)W*W>>0 where W* is any time-
like vector] which requires that gravity is always an attrac-
tive force (for details see Hawking and Ellis*). As it is
known, this condition is violated in a number of situations
(see, for example, Refs. 5-10).
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Using the Dyson equation repeatedly, starting with the Green’s function for the infinite
medium, the Green’s function for the semi-infinite medium and finally the Green’s function for
a slab of a diatomic NaCl-type crystal using the Montroll-Potts model of nearest-neighbor

central and noncentral forces are obtained.
I. INTRODUCTION

The model of a crystal popularized by Montroll and
Potts’ has had a long and useful history. There seem to be
prevalent philosophies among theoretical physicists when
solving real physical problems. One view is that one should
start with the exact equations of motion and then make ap-
proximations as required as one works analytically towards
the final solution. One disadvantage of this method is that
the character of the solution may be related very intimately,
but in an unknown manner, to the approximations made in
the course of arriving at the solution. The other view is that
one tries to approximately model the real problem in the
beginning in such a way that the analysis carries all the way
through without any further approximations. The solution
may then reveal characteristics one might deduce must carry
over to the solution of the real problem and, thereby, open up
new vistas. This second attitude or philosophy seemed to be
the one that guided Montroll throughout his illustrious sci-
entific career. An outstanding example of this attitude was
Montroll’s exact calculation of the frequency distribution
for a simple model of a two-dimensional harmonic lattice,
for which he obtained log singularities.” van Hove® later
showed that the log singularities were not due to the special
model that Montroll had chosen but were due to the fact that
the frequency versus wave vector relationship had math-
ematical critical points which, in turn, were due to the fact
that the frequency was a periodic function of the wave vector
K.

The model, now called the Montroll-Potts model,
seems to be still alive. Recently, Dobrzynski et al.* have used
it to calculate the exact Green’s function for a superlattice.

One knows that the model is not useful for the calcula-
tion of some properties of interest. For example, the model
does not yield Rayleigh (surface) waves.

Our plan is to first calculate the Green’s function for the
infinite lattice and then use the Dyson equation twice to
eventually obtain the slab Green’s function. A detailed de-
scription of the model will be found in Sec. II.

In Sec. I1, as an application of the infinite lattice Green’s
function to the calculation of the mean-square displace-
ments of each of the two kinds of atoms in an NaCl-type
lattice, we show that both mean-square displacements ap-
proach the same value as the temperature increases. To show
this we had to use a symmetry property of the frequency
distribution function for our particular mode. But it is gener-
ally known that the high-temperature limit is the classical
limit and in this limit two different atoms, irrespective of
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their masses, will have the same mean-square displacements
if the potential energy functions connecting each atom to its
neighbors are identical. It is a little peculiar that we had to
use a symmetry property of the distribution function to
prove this. In the Appendix, we show this classical limit in
the case of a two-atom crystal as an example.

Il. CALCULATION

To establish notation we first determine the Green’s
function for the infinite lattice. Our crystal is diatomic of the
NaCl-type structure and we assume central and noncentral
forces between nearest neighbors only. The central and non-
central force constants are taken to be equal ( =f3). The
atomic positions are designated by three integers, /, m, and n.
The atoms of mass M, are located at the positions where the
sum [/ + m + n is even. Atoms of mass M, are located at
positions where this sum is odd.

The equations of motion of the two kinds of atoms are
given by

Mli‘.I,m,n = B [ul,m,n +1 + ul,m,n —1 + ul,m + Lin

+ uI,m— 1,n + u1+ 1,m,n + ul— 1,m,n

—6u;,,,]1, 1+ m+n even, (n
M2i21,m,n =B [ul,m,n +1 + ul,m,n -1 + ul,m + 1,n

+ ul,m— 1,n + u1+ 1,m,n + ul— 1,m,n

—6u;,. .1, [+m+n odd 2)

The quantities «,,,, are the displacements of the
I,m,nth atoms in the x direction from their equilibrium posi-
tions. There are similar sets of equations for displacements in
the y and z directions. The matrix whose eigenvalues are the

frequencies can be made Hermitian if we renormalize the
displacements right at the beginning.

We set

Uppin = Vimn/NM, for I4+m+n even, (3)
and

Uppn = Vimn/NM, for I+ m+n odd. (4)

To obtain the frequencies of vibration of the lattice we
assume the following form for v, ,.:

[/I,m,n = Aeiwlei¢j1ei¢kmei¢1n, / + m 4+ n even, (5)
= Be®'ee? " |+ m +n odd. (6)

Here 4 and B are constants to be determined.
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Substituting Egs. (3)-(6) into (1) and (2), we obtain,
after a slight simplification, two equations for 4, B, and v*:

-1
M,
+[ L2 (cos¢1+cos¢2+cos¢3)]B=0, (7)
MIMZ
[ L2 (cos¢1+cos¢2+cos¢3)]A
VMM,
[——w]B:O. (8)

The solutions of (7) and (8) are
3 J9B? Ly
= ﬁ(‘M‘W‘;)i (E"‘AZ)

..k

(cos @, + cos @, + cos é,)?,

2

2B(cos ¢; + cos ¢, + cos &)
\'Mle( +w2:t - 6B/M1)
For convenience, we can set B = 1.

Our normalized eigenvectors for the infinite lattice can
now be written as

4, = 9

W, 0= 5 —— J_—‘ —L_{a, )™ (10)
where

I=(m,n), b=(¢;,6:.9,),
and

a, L)=1, fI+m+nis odd,

_ 2B(cos ¢; + cos ¢, + cos ¢;)
* VMle['—wzi + (6y/M,) ]
if +m + nis even.
We now form the sum

BAILALEY
¢ E— wZi (¢)

The sum in Eq.(11) takes different forms depending on
whether LI’ refer to M, or M, atoms. We write out explicitly
the three possible cases.

Case I: (1 and I’ both refer to M, atoms; [ + m + n,
' 4+ m' + n’ both even)

GY(E) = (11)

C2+ ei(l—l‘)-d)
(1+C*)HE—-o* (§)
C2 ei(l-l)-¢
*rer |

(14+C%2)E - (§)

. 2
Gl,l — GM,M, + z [
e T N3

(12)

Case II: (1 and I both refer to M, atoms; / +m + n,
!’ + m’ 4+ n' both odd)

14

2ONE— o (§)

. 2
Gl,l =GM2M2_________ {
0 0 N“:-: (1+C

PR S (13
+ .
(1+C* )E—-o* (¢))]

Case I1I: (1 corresponds to M, atom, I' to M, atom)
GY = GMM,__Z{ C, et
N3 (1+C%)H)E—-d%)

C_et—1ré
M (1+C2)(E - )]

(14)

Let us rewrite the sums again using the following nota-
tions:

1 1)
=38 (— ——),
% B(Ml M,
b, = (cos ¢; + cos ¢, + cos ¢,),
WM,
i
~E—3 (._ __)
B +M2

S=.a +b7.
In the above notations, the three sums in Eqgs. (12)~(14)
simplify to

2 ; . b
GM'M'= ex#-(l-l)[ 1 }’ (15)
SRS TR ey
2 (] 1 a,+a
GM’M’= e:¢-(l l){ 1 2 ]’ (16)
TTW R d-a-n
G MM — P 1)[ —a, ] (17)
° 3 z al —02 _b

As a check on these Green’s functions, we have used Eq.
(8.6.49) in the book by Maradudin et al.’ to calculate the
mean square displacement of an M, and M, atom. The re-
sults are

J
) # E 8(a?) [M,0* — 68 |do?
(ux )M = 3 2 ’ (18)
CT2N+ 1) [MMyw? —38(M, + M,)]e tanh(#iw/2kT)
and
2 A ; g(e?) [M,0* — 68 |do?
(W) p, = 3 5 : (19)
2N+ )Y b [MM,w® —3B8(M,+ M,)]o tanh(#iw/2kT)
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In Egs. (18) and (19), g(@?)dw” is the number of nor-
mal modes between w? and w® + dw*. Equations (18) and
(19) were first derived by Mazur.® In the classical limit
(T— « ),we should have that

(U3 pr, = (U2 pa, (20)

Explicitly, we have for T— o in Egs. (18) and (19) that

kT j g(@®) [M,0* — 6B ]de?
(N+ 13D [MMw*—38(M, +MZ)]w:2’1

<u§>M, =

and
KT (% g(o?) [My0? — 68 1do?

N+ 12

(“:2: )M, =

It is not obvious by inspection that the integrals in Eqgs.
(21) and (22) are equal to each other. However, by using a
symmetry property of g(w?), we can demonstrate the equa-
lity of the two expressions. It is well known that the normal
modes of a diatomic crystal separate themselves into two
groups or bands separated by a gap. [It is easy to show in our
case that g(w?) is (symmetrical about the middle of the gap
when) plotted as a function of @*.] We now subtract Eq.
(21) from Eq. (22) to obtain

(u? )M, — (2 )M,
— kT JIDL g(a)z)(Mz —M,)dwz
(N+ 1)’ Jo  [M;M,* —38(M,+ M))]

Since also the widths of the acoustical and optical bands
are equal in units of w?, we have that

(23)

g(e?) =g(w} — o), (24)
where @, is the highest frequency in the optical band.

Changing the variable of integration from »” to (©')* = 0}
— w?% Eq. (23) becomes

[MM,0? — 38(M, + M) ]o*
(22)

1

(ul >M, - <“;2:>M,
kT
(N+1)°
XJ(’ glw — (w')z)(_d(wl)z)(Mz—Ml)
o [MoM\(o}, — ('))) = 3B(M, + M))]
(25)
Using Eq. (24) and the fact that w} = 68(1/M, + 1/M,),
Eq. (25) becomes
()4, — (2D,
_ +kT
(N+1)°
XJ° 8(0?) (—do®) (M, — M)
ot [ — MM 0* +38(M, + M,)]
. kT
(VN +1)°
L g(0)dw’ (M, — M)
o [MM0® —38(M,+M,)]
Comparing Eq. (26) with Eq. (23), we see immediately
that
(W) s, — (W) ar, =0 (27)
The three-dimensional sums in Egs. (15)-(17) can be
replaced by 3-D integrals and one of the integrations can be
carried out explicitly. We now do this for each of the sums.
First, we note that = (2#j/N, 2wk /N, 2ws/N). Any two
of the /, m, and n can be taken to go from 1 to N. The other
goes from 1 to N /2. Each band contains N3/2 frequencies
and both bands together contain N * frequencies, which is
correct. Eventually we want to consider a slab with / num-
bering the layers. We letj go from 1 to N /2. We sum over jin
Egs. (15)-(17). We let 6 = 27j/N and 6 goes from 0 to
and 2% = (N /27)S§ d6. First we calculate G M,

—1 o

M,M. igp(m-—~m') ip(n—n') M.

G™ 2____2 E et e z 2(¢k’¢s),
TN k,s

(26)

£ (g, p,) = — (Gt a) [ [ " dg [b

2 2
2\a; —a;

vai —a;

— (a; +a,)

r (J1-d, —1

|7
—Zﬁf—agﬁ J1—a \ a,
with

a,=B/[B(cos g, +cosd,) — ot —a2 ],

and

a_=pB/[B(cosg; +cosg,) +Ja? — a3 ].
It is clear from Egs. (16) and (17) that

G MM (___"1 —“2) G,
a,+a,

Note that when M, = M,, we have a, = 0 and we obtain the obvious result.

Finally, for GM*:, we have
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with (28)
1
1 ]ei¢(l—1')} ,
b, +ai —d}
)“_I’ ar_(J1-d% -1 )“—” (29)
N \ a_ ,
(30)
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GMIMI — 1 z ei¢k(m—-m')ei¢_‘(n—-n') J‘ﬂ bleio(l-—l')dg
aN? £ o —al+a;+b}
- 1 Eeinﬁk(m—-m')ei!ﬁ;(n—n') J‘"de e,'g(l_p) [ 1 + 1 ]
27N 13 0 b, + \/a% ~a; b, - \]a% —a
1 ib(m —m') id(n—n') MM
= e e 2 (D ), 31
Y g (isp (31
with
M a+17_ ( '1__02+ _1 -1 a_m ( ,l_al_ _l 11—=1'f
g M (Pps) = \ + \ .
m a, ‘/1_—02_— a_
I
It is not immediately clear that GM*: = G ™™ when  where
M, =M,. In fact, it is not true. To see this, note that V. (Lmnl'm' ')
I+m-+nisevenand /' + m' + n’ is odd in GM™:, while sETRIE T
these sums are both even or both odd for G ™™ and G M-, =B 80n0116 pm Oore — B 848,81 01n
respectively. Now l1and ' appear in the G ’s through the com- M, M,
binations / — /', m — m’, and n — n’. But these quantities in " B (5,6 .6..8
G M™: can never have the same values of these quantities JM.M, T mm =0 ln
when they occur in the expressions for G #**: and G ™. So 48,5, .8.,8,), I+miseven (34)
simply setting M, = M, in G™*: does not give G ™. T mm A on 5
We now proceed to obtain the Green’s functions for the ~ 2nd
semi-infinite medium. The equations of motion, (1) and V.(ILmmn,l',m',n')
(2), can be written in terms of the reduced displacements, 8 B
V(l,m,n), as a matrix equation: = — A 8116 mm OonOom — A 81/ Gmm 01001
2 1
Dy(lmunl’sm' n"Yo(I'm'n') =0,
I'.mz',n’ ° + B {818, 8180w
with VMM,
+ 64 B OonOi }, 1+ mis odd. (35)

Dy(l,m,n,l'm'n’)
— (& — )61 b ——L—
M, VMM,
+ 8- 1.0 Cmm Oun + 818 4 1, O
+ 81 8m — 1 Ouw + Ot G O 4 1,
+ 6480w On_ 1) I+ m+neven. (32)

Substitute M, for M, and M, for M, in Eq. (32) to obtain the
matrix Dy, for / + m + n odd.

We now break the bonds between the layers labeled
n =0and n = 1. The new dynamical matrix, D,, is given by
D (I,m,nl'm',n")

= Dy(Im,n,l'\m',n’) + V, (Im,n,l',m',n’),

(61 + 1,17 amm’ 5nn’

(33)
J

G . (Imnl'mn’)

= G()(Lmynsl’)m,’nl) - Z
1"m”"n”
I"m"n"™
I* + m" even

Gy(l,m,n,l ",m",n")[

The Green’s function for our semi-infinite medium, G,
is now determined through Dysons’ equation,

G, =G, — G,V,G,.
Writing out Eq. (36) explicitly, we obtain

(36)

G, (Imnl'm'n')

- Go(lymynyl I,m’sn') - z Go(l,m,n,l ”m”n”)

1"m"n”
1" m™n

XV, (1"m"n"Imn)G (Imnl'm'n'). 37N
The form of ¥V, changes depending on whether/” + m”

is even or odd. Substituting for V; its two forms we expand
Eq.(37) to obtain

Bone 8121 Bt Bom — -Lm 812128 -8y 81

—B
M, M,

+ ﬁ {61'1"5m"m"'6ln"60n" + 6!"1"’6m"m"'50n"61n"}]Gs(lmnl ,mlnl)}

vM M,
1"m"n*
1*“m™n™

I” + m” odd

Gy(l,m,n,l ”,m”,n”)[

—B
M,

+ ﬁ {61"1'6m’m'5ln"60n" + 51"1"'6m"m'60n' 61n"}]Gs (lmmmn"'l lmln,)'

VMM,
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B
8,+1-Brmemir B O — = 811 S e By S
1”1 0 0 Ml 171 1 1

(38)
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In Eq. (38), we can sum over /™, m”, n", and n” immediately to give
Gs (l,m,n,ll,ml,n’) = Go(lymyn’l,mlyn’)
- Z [Go(l,m!nJ ”’m”90)Gs(l ",m",OJ ,’mlsnl) (;é)
1ome M

1
1" + m” even

— (—MB—) Go(Immnl" m" n" )G, (1" m",1,l'm'n")

2

+ {Go(tm,nl",n" )G, (I",m" ,0,l';m' ;") + Go(Im,n,l " ,m",0)G,(I",m",1,] ’,m',n’)}]
MM,
-y [ _E Gy(Immnl"m" 0)G, (", m",0',m',n'")
I"m" M2
1* + m” odd

{G,(mn,l",m" 1)G, (1" ,m" 0,l',;m’',n")

B " ” " » ’ [ I
——Gy(mn,l" m" )G, (" m",1,l'm',n") +
M, ° VMM,

+ Go(m,n,l ", m",0)G,(1",m",1,] ’,m’,n')}] . (39)
The G,’s appearing in Eq. (39) are either G '™, G M-z, or G ™™: depending on the oddness or evenness of / + m + n and

I' + m’ + n'. First, wetake! + m + nand!’ 4+ m’ + n' both even. Since we still have periodicity in the x and y directions after
breaking of the bond we can Fourier analyze G, (/,m,n,l',m’,n’). Let

G (Lmn ') = = 3 =g =M (g g ' ),
N*¢3,
Go(l,m,n,l ’,m',n’) — # Zeid’x(l— I‘)ei¢,(m — m')gg[,M,(¢x’¢y,n’n:’E). (40)
o}
We also need the following factors which appear in Eq. (39), with /" + m":
Go(l,m,n,l",m",0) = -!7 > g 10 Him =T MM, (), (41a)
N* i3,
G, (1" 00 ') = = 3 =D =gt ), (41b)
N* 43,
Go(lm,nl"m",1) = L2 T T Dt gt (1), (41c)
N* i3,
G.("m",L,I'm'nn') = -J—V% E g7 10 ity (m” = '"')gﬁ”zM'( 1,n"). (41d)
¢xr¢y

Substituting Eqs. (40) and (41a)-(41d) into Eq. (39), we obtain

1 g (I — 1) _if,(m—m'
—5 T T T g MMy ()
N2
b0,
— 12 ei¢x(l—I‘)ei¢y(m—m')ggf|Ml(n’n/) + ﬂ4 ei¢,(1—1')ei¢,(m—m”)ei¢;(1"—1')ei¢;(m~-m')
N* 43, N i3,
4.8}
1"m"

1" + m” even

M, M, ! M, M, 4
x{gg{ e o (0,n)+g3’ mlg 7 (L) 1 &M (n,1)g} ¥ (0,n")
M, M, VMM,

1 bt — 1" —m"y L — 1) ig(mt —
- g5"™M (n,0)g} (1,n") +————B4 S [T T AT = T =)
VMM, N 43,
[
1" ,m"
1" +m” odd

X {83'1Mz(n,0)g§“zm(0,n’) " g M (n,1)g ™ (Ln") 8" (n, 1) (O,n') - gg"M=(n,,_0)g?"M'(1’”') ” “2)
M2 M] VMIMZ M1M2
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We now show that the sums over /” and m" demand that ¢, = ¢, and ¢, = ¢,. We must show that

Y 7% =0 unlessg, =¢.
1"+ n:" iseven
Note that as we do the sum over/ ”, m” is considered to be a constant (odd integer or even integer). If we choose m” as an odd
integer, then / ” must go over the odd integers from 1 to N. On the other hand, if we choose m” as an even integer, then / “ goes
over the even integers from 1 to V.
First, let N be even and m” be even. Then
i4mj/N __ ei(41rj/N)(N/2 +1)

N/72
2l " /N _ 2a2n/N __ € _
e ™ = E e = = 0,
idmj/N

1% even n=1 1—e
N even

unless j =0 or ¢, = ¢.. Since ZI_,e?7"/¥ = 0, when / " goes over all integers from 1 to N we can conclude that

e?"/N =Qalso unlessd, = ¢..
1" odd
Neven

Setting ¢, = ¢; and ¢, = ¢} and equating Fourier coefficients on both sides of Eq. (42), we get

g””'(nn)—g“M(n,n)+M > gMM'(nO)g”M'(On)

+——g”“z(n1)g’”=“-(1n) B gt (n, 1M (0
M, 2 2\/M1 -0

-————gMM'(nO)gM’M'(l,n)+ ——g‘“”’(nO)gMM‘(On)
WM, M,

+———g’”“”'(n Dg ™ (1,n') — ——— gb"™i(n,1)gM:*(0,n")
M, 2 2\/M,M2 °

B gMM M, ’
— ——— g} M (n,0)g¥ M (1,n"). (43)
VMM, |

Ing,, we want both n and »’ to be greater than or equal to 1. Because of this criterion, four terms in the above equation are
dropped. The above equation, therefore, simplifies to

gﬁ"‘M‘(n,n') = 8o

oM (n,1)gM M (1,n")

5 21”‘( I!nl)

B : B :
- g (n,0)gM M (Ln') — ———=gt"™(m,0)g} M (1,n"). (44)
2\/M1M2 ° 2 MIMZ °

Remember, n,n’ can be any integers greater than or equal to 1. What we would like to dois to find G ¥**:(n,n’) in terms of
the G,’s. But we need other equations similar to Eq.(42). We now derive the equation for G ®*:(n,n'). We start out with
G,(Imnl';m',;n') withl+ m + noddand /' + m’ + n’ even. We start with Eq. (38) again. We need to Fourier analyze the
Green’s functions again.

Forl/+m+noddand!’' + m' + n' even, we get

G, (Lmmnl'm'n') = # (g?, T = MM, () iy, (45a)
Gy(Imunl" m",0) = —&1—245% g1 m =MD MM, (1 0) forI” + m” even, (45b)
Gy,(Im,n,l",m",0) = % (1 =17 iy m = m MMy 0),  for 1” + m” odd, (45¢)
G.(I"m"0l'.m'n') = ——2 z¢ 9T = = MM 'y for 17 4+ m” even, (45d)
G (" m"0l'm'n')=— % 4T T I =g MMu 0 'y for I” 4+ m” odd, (45¢)
Gy(Imun,l"m",1) = —2 g gD m MmO MM () 1) for 1" 4 m” even, (45f)
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Go(l,m,n,l ",m”,l) ___% z ei¢x(l—1")ei¢y(m-m") O’M'(n,l), forl” +m" Odd, (45g)

[
G_‘(l ”,m”,l,l I’ml,n’) — Lz z ei¢x(1" —I')ei¢y(m' —m') A 2M|( l,nr)’ forl” + m"” even, (45h)
[
G.(I"m" 1 ,I'\m'n') = % g7 T MM () 'y for 1" + m” odd, (45i)
[
Go(l,m,n,l",m",l) =% Z ei¢x(1—[~)ei¢y(M—M”) A 21|42(n,1)’ forl” + m” even, (45j)
¢x¢y

” " 1 i (I —1") i —m” ” ”
Go(bmnl"m", 1) =— % gD bm =G MMy () 1), forl” + m”odd.
[

Substituting the above expressions into Eq.(39), we get an equation similar to Eq. (42) and then Eq. (43),

M (m') = g (') + B gMM (1,0)M0M (0,1) + —B— g, 1)gMM: (1)
M, M,

B gMM M ’ B M, M, '
- ? z(nyl)g‘:;w2 ‘(O,n ) '-"—‘—SMZ I(nyo)g:lz l(lyn )
VMM, WMM,

_L M 0 M, ’ B M, 1 M, ’
+2M2g3‘ (n,0)g;" (o,n)+2M1g3’ (m, g™ (1,n")

B {g.MM M ’ M. M, '
e — 2 l(nyl)gglz l(oan ) +gM2 2(71,0)3_19”' l(lyn )}' (46)
WMM, °

Again, since G, is zero unless n,n'>1, we strike out four terms [Eq. (46)] and obtain

g¥Mi(n,n') = gitM (n,n') + 4 gMa(n, 1)g¥ M (1,n') + ig{,"”"'(n,l g M (1,n')
M WM,

2
B gMM M, ! ﬁ M. M, ’
— ———g"M(n,0)g¥M(1,n') — ——— g¢"M:(n,0)g¥"* (1,n"). (47)
WM, WMM, |

In Eqs.(44) and (47), we can have n = 1. When we do this we get two equations that we have to solve simultaneously for
g¥Mi(1,n') and g¥*:(1,n’). The equations are

B M, ﬂ M. M, '
1B _gumy 4B __gm =(1,0))g:" (1)
( M, > WMM,

ﬂ M. ﬂ M, ) M, ' M. ’
+ [ — =g M(1,1) + ———g§"™(1,0) | g¥M(L,n') = gg"M(1,n'), (48a)
( 2M2ggl WMM, °
B M, B M. M, !
__r f |(1’1)+____gM2 2(1’0))g£!. '(l,n)
( 2M, ™ WMM,
B M. B M M, ’ M, ’
+ {1 — =& (1L,1) + ———go™""(1,0) g (1,n') = g2"*(1,n"). (48b)
( M, " WM, °

One can solve Egs. (48) simultaneously for g2 (1,n’) and g*:*:(1,n') and substitute back into Eqs. (44) and (47).
When M, = M, = M, both Egs. (48) give

go(1,n')
1— (B/M){go(1,1) —go(1,0)}
which is the monatomic case.

We now repeat the arguments leading to Egs. (48) to find determining equations for g?=*:(n,n’). We again start with Eq.
(39) but for the case that both / 4+ m + nand /' + m’ 4+ n’ are odd. In this case, the Fourier transformed Green’s functions
needed are the following.

Forl!l" 4+ m” even,

& (1Ln') = (49)

Gs(l)m’nyl'ym',n’) _’giszz(nyn’), Go(l,m,n,l ”;m”so) - (4] 2M‘(”)O)9
Gs(l ”,m”,oyl '1m”n,) _’gyle(O,nI), Go(l9m)nyl "ym”)I) —&0 2M2(n’1)1

G, (1",m" 1,I'm',n') -g"¥-™:(1,n').
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For!” + m" odd,

G, (Imnl'm';n)-g"M(nn'), Gy(lmnl”m",0)-gt:*(n0),
G, (1" m"0,l',;m'n') -g"M(n0), Go(l,mnl"m",1)-gh:M(n,1),
G.(I"m" L,I',;m'n') -gMt™(1,n').

Equation (39) then gives, after simplification,

S’y = (') + % M (1,00 M (0" + %g&’?”’(n,l )& (1,n")

1 2

B gMM M. ' B M M. ’ B
. F oM z(n’l)giuz 2(0,n") __—gMz |(n,0)gSM2 (L,n') + g-MzMz(n,O)g:'lez(n,O)
WMHM, | WMM, . M,

+ Lgsle'(n91 )giwle( l)nl) - —'é_—_ {ggle'(n’l)gﬁszz(’l,O) + g(IJWZMz(naO)g_I:"Mz( I,n')}- (50)
2M, /MM,
After eliminating the four terms which connect g, with the other layer we get

&Y (n,n') = g™ (n,n') + 22 &M (n,1)g¥M:(1,n') +%g€"“‘(rz,l)gﬁ”’"’*(l,n')

2 1

B {gMM M. ’ M. M. '
— ———{g}" (n,0)g¥"=(1,n") + go=™2(n,0)g¥™:(1,n")}. (51)
WHMM, °

We now do the case for / + m + neven and /' + m’ + n’ odd to obtain a second equation which can be solved simulta-
neously with Eq. (51). We now give the Green’s functions needed.

For!” 4+ m" even,

G (ILmmnl'm',n')>g" ™ (nn'), Gy(lmmnl"m"0)—-gt*(n0),

G.(1",m"0,l'.m',n")-g¥™(0,n"), G,(I,mnl",m"1)-gd™:(n,1),

G .(1".m"1,I'm'n") >g"M(1,n).

Forl!” 4+ m" odd,

G . (Immnl'm'.n')->g"™(nn'), Gy(lmmnl"m",0)—ghl™(n,0),

G.(I"m"0,l',m'n') -g"M(n0), Gy(lmnl",m",1)-gdM(n,l),

G (" m" 1,l';m'n') -g"™(1,n').

Equation (39) then gives, after simplification,

M (') = g (mn') %gﬁ’n“*(nmg?"“z(o,n') + sz g4 (n, 1)gMM:(1,n')
1 2

B {gMM M. ' M, M. ] B ’
i — M, 1)gMM(0,n") + g™ (n,0)g¥M(1,n")} + —=— gMM2(n,0)g¥M:(0,n')
N g g 2M2g3‘ n,0)g¥ n

ﬂ {g.MM M. M. M. ' B M 12
D ———— ! l(nyl)g?lz 2(nyo) +ng 2(’1,0) s ! 2(1,” )} +_ ! l(n’l) s IM2(19 )’ (52)
WMM, ° &’ 2M1ggl gL

and after striking out terms like g (0,n") we obtain
M ') = My + =B g, 1) g (1,7 4 B B (1, 1) b 1,m)
M, M,

B {gMM M. ’ M, M. ’
— ———{gd"™:(n,0)g¥™:(1,n") + g™ (n,0)gMM:(1,n")}. (53)
WMM, °

By letting n = 1in Eqs.(51) and (53), we can solve them simultaneously for g4*:(1,n') and g¥:*:(1,n’). Rearranging
terms we rewrite (51) and (53) as follows (after setting n = 1):

B M. ﬁ M, M. ’
1 — ——ght:M(1,1) 4 —=—— g '(1,0)]g';"2 :(1,n")
[ M, ° WMM,

ﬁ M. B M, M. ’ '
+ | — &M (L) + —— g =(1,0)]g£" (1,n') = gi=(1,n’), (54)
[ 2M, 7 WMHM, °
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B gMM B M, ] M. ’
— g} (1,1) + ———ga"™(1,0) | g¥=*:(1,n")
[ M, WMM,

1

B s B w ] a1 M
+ |1 — g8 (1,1) + —=——g§"*(1,0) | g¥™:(1,n’) = g3"™:(1,n"). (55)
[ 2M, ° 2YM M, ° °
If we let M, = M, in Egs. (52) and (53), either of the equations give
g(1n') = £olLn)

1 — (B/M)go(1,1) + (B/M)go(1,0)

which is correct. We now have effectively all of the Green’s functions for the semi-infinite medium written in terms of the g,’s.
To finally form the slab we break the bonds between the L th layer and the L + 1stlayer and use the Dyson equation again.

As in the semi-infinite medium case, we obtain four equations relating the semi-infinite Green’s functions to the slab Green’s

functions,

UMM (') = S'M*(n,n')—i—[——g——gf"M’(n,L+l)+—§—- S-M'(n,m} UMM (L)
&' 2WMM M, &’

M,

+ [ _#ﬁgﬁ"-“-(r@ +1) +——2f72g§‘"”=(n,L)]UM=”°(L,n'), (56)
UMMy = gHMs(mn’) + [ - “’{’ﬁgf’”«m +1) +%1gi"zM'(n,L)} UMM ')

+ [ _.2_‘/?/’1__: FM(n,L + 1) +2i%g:'zM=(n,L>] UML), (57)
UMM (nn'y =g (n,n') + [ — ﬁgﬁ””’mi +1+ %lgf”M'(n,L)] UMM (L")

" [ — 2___\mfl_M_z_,!,r;ww-(n,L F D+ —Z%ng‘zMz(n,L)] UML), (58)
UMM(p,n')y =g"M(nn') + [ — E—\/ﬂ%gﬁ"'“’(n,L +1) + —zfl—lgi”'”'(n,L)] u ML

N [ —#\/%Egy'M'(n,L +1) +2LMzg§”‘M’(n,L)] UMM (L), (59)

In Egs. (56)—(59) we have that 1<n,n'<L.
UMM (Ln"), UMM(Ln'), UMM (L,n'),and UM::(L,n') on the right-hand side of Eqs. (56)—(59) are determined by
setting n = L in the same equations. We obtain

B M, ﬁ M. M M. ’
1————gg"- (L,L) + —=—g" =(L,L+1)] UMM ([ p'y
[ M 2WMM

1 2
B M, B M. MM. M.
+[ g” (LL+1)—B_ g z(L,L)]U ML’y = gMM(Lon'), (60)
2/M 2M,
B M. ﬂ M, M,M. ’
1B g ’(L,L)+——g§"* I(L,L+1)] UMM (L)
{ 2Mng /MM,
B M. B M, MM. M.
+[ g’" (LL+ 1) — B g -(LL)]U N(Ln') = g™ (L), (61)
2yM 2M,
{ s g”*”*(L,L)+ s — g”’”'(L,L+1)]U”2”-(L,n’)
V 1 2
+[2 B gM=M2(LL+1)—2fI gM=M1(LL)]UMM-(Ln)—g“=M-(Ln), (62)
ﬁ M, M, MM, I3
1+——g:" z(L,L+1)——g§" -<L,L)] UML)
[ WMM,
+ [ e J_ﬂ_ gL+ 1) — L gﬁ”M(L,L)] UMM (L 'y = gL'y, (63)
2

Equations (60) and (61) can be solved simultaneously for U**:(L,n’) and U:*:(L,n") while Eqs.(62) and (63) can
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be solved for UM:M:(L,n’) and UM ™:(L,n’). Since all of the U’s are now known in terms of the g, ’s and the g, ’s are known in
terms of the g,’s, we have in hand explicit expressions for the slab Green’s functions.
Solving Egs. (60) and (61) we obtain

UM,M,(L,n:) =A1Fl "DlEl ; UM,M;(L,n') — ClEl _BlFl ,
A,C, - B,D, A,C,—B.D,
where
A =1-L gy & gM(LL + 1),
WM, I,

B,= MLL+ 1) — B gL L),
= zf__g" (LL+1) 7 L_gMM ([ L)
B M B ”
Ci=1—-L—gMM(LL)+ g M (L,L + 1),
l 2M2 2YM M,
D, = gM(LL+1) — 2 B g“z“-(L,L)
' 2\/M1M2 M

El —gi"‘ *(L,n'),
Fl = gf’zM2(L,n’).
We need the following g, ’s:

gYM(LL) = gMM(LL) + 7’3—g3"”2(L,1)g£’2M=(1,L) + 7I’i’—{—gz,“-“'(L,l)g:’-"'-(1,L)
1

g (L,0)gH:M (1,L) — —L__ gty 0)gMidi(1,L),
2y _, A WHM,
gHM(LL 4 1) = g (LL + 1) — —zfl—gg’-“z(L,l)gi“le(l,L +1)— %ggﬁ*’u,l)gf‘-“‘-( LL+1)
2 1

B o M, B
+ g™ (L,0)g ™ (1,L + 1) +
WMM, WM M,

g (L,0)gM M (1,L + 1),

g:"”z(L,L+l)=g3"Mz(L,L+1>—@— o 1))
{gd"™:(L,0)g¥M=(1,L) + g™ (L,0)g¥M(1,L + 1)},
2v M 2
g™ (L,Ly =gg"™(L,L) +Wg3"M’(L,l)g§"M’(L,1) +—2'37g3"M'(L,1)gJS”'M2(1,L)
2 1
B {gMM M. M M.
- Ma(L,0)gMM:(1,L) + g™ (L,0)g™M:(1,1)},
i & g &' g (
grMi(L,L) = ghtMs(L,L) + %gﬁ””’(L,l)gﬁ"’M‘(l,L) + —Z%gg'zM-(L,l)gy-Mz( 1.L)
2 1
B {gMM M., M. M.
— M (L,0)gMM:(1,1) + ght=™(L,0)g"*:(1,L)},
I 2 g &" g M:(1,L
SU(LL 4+ 1) = (L + 1) — B g gL 4 1) - %gyﬂ-w,l)g:'-”z(u +1)
2 1
g " .
+ Mi(L,0)g¥M(1,L + 1 Me(L,0)gMM(1 DA
2*“M,M‘_2{g3{ g ) + g (L,0)g}"*(1,L + 1)}
gM(L,L) = gt (L,L) —ﬁgg’zMz(L,l)gf’zM'(l,L) _% MM (L 1)gMMi(1,L)
1
B M, M, M,
+ M(L,0)gMM (1,L) + ghtMi(L,0)g™*:(1,1)},
T {gtt g &M (L,0)gM ¥ (1,L)}
g M(LL + 1) =g (L,L + 1) +—2f{—g3”M’(L,l)g;“=M'(1,L +1) +—2fl—g3”M'(L,l)gf"M'(l,L +1)

2 1

{3 (L,0)g™M (1,L) + ght::(L,0)g™™:(1,L)}.
T, & 8" g M (1,L)
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We now write down the expressions for g#™i(1,n'),

g¥M(1,n'), g#™:(1,n’), and g¥™(1,n'):

g (1) = EoDe = Foby
A4,D, — B,C,

21y = Aef2 =BGy
A,D, — B,C,

B M B M
A, =1——E_ghtM(] 1) + —Z __ ghtit2(1)0),
? M, °° WHM,

_B gm0y,
M.

Ml 2

B M
B,= — — g™ (1,1
2 2M2ggl (L,1) +

Cz = __2% 0 2M'(l’l) +—£'—,_g(1)”2M2(1’0)’

1 1Mo

B M B M
D,=1— Ma(1,1) 4+ — 0 gMMi(10),
2 ZMgS’ ( )+2\/ﬁ_g3’ (1,0)

2 ISh]
E,= gg"M'( 1,n"),
F, =gl (1,n’).
We also need the following g, ’s:

Age™™ (1,L) — C¥M(1,L)

szMn 1,L — ’
D 4,D, — B,C,
gzth\(l L) — DQg(I)‘le‘(l,L) —‘Bzgglel(l,L)
s » AZDZ—-BZCZ s
E.D, — B,F.
grM (1) = 2333,
A3D3’—B3C3
AF; — C.E
g (1) =3 T3
A3D3—B3C3
: B o B .
A = 1 —_gMz z(l,l) -i-_____gM2 1(1,0)’
? 2M2 0 2‘/71—2 [o]

B M, B M
B, = — g™ (1,1) + ———g3"™(1,0),
oM’ WM,

C,= — sz grM(1,1) +—Jf—:—g3’-’"'<1,0>,

2 2VM M,

B M B M
D,=1— =g/ ™(],1 —= —g"(1,0),
3 ZMlga” ( )+2Wg3‘ (1,0)

442
E, =g¥(1,n"),
F, =g*":(1,n"),
Dygh™:(1,L) — B:g™™(1,L)

Ma(1,L) = ,
gD A45D; — ByC;
g1 L) = 28 (LL) — Cig*=*:(1,L)
) ’ 4;D; — ByC;

J

(x}) =

§x} exp[ — E(x,p;)/kT |dx, dx,"* -dXy dp, dp,"

Solving Egs. (62) and (63) for U™:™/(L,n’) and
UMMi(L,n'), we obtain
UMM (L ') =M, (64)
4,D,— B,C,
UMM\ n') = M’ (65)
4,0, — B,C,
with
Ag=1—B gy B __gumrr i,
2M, WM M,

B,=—bB gt 41) - —ZZ—#”‘(L,L),

VM M, 1

B M B M
Co=—o-"—gMM(LL+1) - ——gM"™(LL),
WM, 2M,

B M B
D=1+ —E__gMM(LL 4 1) _gMM(LL),
RERY 757 M,

E4 =gy2M‘(L,”'),
F,=g"™(L,n").

We now have in hand explicitly all of the infinite lattice
and semi-infinite lattice Green’s functions to determine our
slab Green’s functions, U. Mazur and Maradudin’ calculat-
ed analytically the root-mean square displacement of atoms
in a slab for the monatomic case in the high-temperature
limit. The mass dependence disappears in this limit so noth-
ing new would be obtained using the present diatomic
Green’s function. Mazur® calculated analytically the low-
temperature specific heat for the monatomic slab. Our inten-
tion is to use a computer to calculate the low-temperature
specific heat of a diatomic slab and (as a by-product when
M, = M,) compare also the numerical calculation with Ma-
zur’s analytic result.

APPENDIX: AN EXAMPLE OF QUANTUM TO
CLASSICAL LIMIT PERTINENT TO EQ. (27)

We present an elementary example illustrating a general
principle of quantum mechanics that quantum mechanical
results, such as, for example, the averages of dynamical
quantities, must go to well-known classical results in certain
limits. In the context of this paper we are thinking, in parti-
cular, of the mean-square displacements of atoms from their
equilibrium positions in a crystal lattice. Classically, the
mean-square displacement x; of the ith atom from its equi-
librium position in the x direction is given by

oy (A1)

Sexp[ — E(x;,p;)/kT |dx, dx, - -dxy dp, dp,""

where T is the absolute temperature, x; = (x;,y;,2;), B;
= (PxiPyiPz)» and E is the total energy of the lattice.The
corresponding quantum mechanical average should become
equal to the above classical result when T becomes large.
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Further, if the potential energy part of E is invariant to an
exchange of two particular atoms, then the mean-square dis-
placements of these two atoms are the same, independent of
their individual masses. This can be seen immediately from
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Eq. (A1) if the potential energy part of E does not contain
the masses, which is the case for the most useful forms of the
crystal potential. Qur model consists of two atoms

14 14 Y
oA O— N C T WS
m M
connected by a spring. Each atom is also anchored by a simi-
lar spring to a fixed point as seen in the diagram. Each spring
has the same force constant y. Let # and v be the displace-
ments from equilibrium of the two masses, 7 and M, respec-
tively. The Lagrangian for the system is

L =imi® + IM* — jyu® — ' — Jy(u —v)?. (A2)
This Lagrangian yields the following equations of motion:

(A3)
(A4)

mii= —yu+y(u—v),
My = —yv+y(u-—v),

Transforming coordinates, the Lagrangian becomes

1. 1. Yo ¥
L=—3x?+4+—3x2—
2T T Ty

4
L x4+ XX,  (AS)
2 ’_.Mm 2
with u =x/m and v = x,/\/M .
Letting x, = A exp(iwt) and x, = Bexp(iwt), the
equations of motion from Eq. (AS5) are

4 Y B4, (A6)
m \/Mm
Y 4+ ¥ p_ B (A7)
vMm M

Equations (A6) and (A7) yield two solutions for »?, which
are

= (y/Mm){M+m+VM*+m*—Mm}>0, (A8)

. = (y/Mm)Y{M +m—JM?+m>—Mm}>0, (A9)

with
=_7,/____ MB+; _ —__—_.ﬂ—_. "MnB—. (AIO)
2y/m — o?, 2¥/m — o
Set B, = B_ =1 and transforms to a new set of coordi-
nates,
X, = A,y A_y, , (A11)
JAZ +1 42 +1
S LE e e L (A12)
J4%4 +1 42 +1

In these new coordinates, the Schrédinger Hamiltonian op-
erator becomes

2 2 2
¥ ¢'] 2P4 a);
H= ——lb + b, + + » (Al3

2[‘ 2 a2 2 > o (A1)

where a,, b,, a,, and b, are functions of m, M, and y. The
Schridinger equation gives two harmonic oscillator-type
equations,
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PIT
——bl—ﬂ+%y%¢l=E,¢,;

2
5}’%1 (Al14)
E, = (” + —‘) #ivaby, ¥y, 1),
~%s, ‘Zy'f + 21y, = Bty = Bl
(Al5)
E,, = (” + —2')’5\‘“2172’ Y2, (1) .

Our complete eigenfunctions and energies for our sys-
tem are given by

¢mn = 'ﬁlm (yl)'/IZn (y2); Emn =Elm +E2n' (A16)

The mean-square displacement of the m atom is given
by

(Y = f f dy, dy ¥, 1) 2 Y ) ()
AL O O

s Al7
A% +1 42 +1 (A17)
with
1\ #h
<y2>n=(n+_) ! 5
' 27/ Ja,b,
1\ #b
(y’),,=(n+—)——2—. (A18)
’ 2 vayb,
The thermal average of (x?) is given by
Zn X2 mn €xp( — E,,,/kT)
(e )y = S T e TP
3,.exp( —E,..kT)
AZ
= Aby 1 coth &t
A%, +1 g5 2 2
A2
o fib,_ 1 coth %2 (A19)
A +1 ,[azbz 2 2
with
o = fiva,b, o = #iab,
1= s 2 .
kT T

As the temperature, T, goes to infinity the mean-square dis-
placement becomes

Az AZ
(G2)) we[ s A% ]kT,
i (A% +Da, (A% +Da,
(A20)
with
ot A% Ly Vv A
mA?* +1 MA> +1 Mm A% +1
oY A= L r 1 v A
mA* +1 MAa2 +1 MA2_+1
1 1 «/M2+m2—Mm”_1
_ [ #tm [____ ,
[ m M Mm
1 1 \/MﬁrmhMmH"
= \’Mm{———-— .
[ m M+ Mm
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We then have that 'E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955).
1 42 42 2E, W. Montroll, J. Chem.Phys. 15, 575 (1947).

— () = + - :

kT

+ 3L. van Hove, Phys. Rev. 89, 1189 (1953).
(4 2+ + Dam 4% + Da ,m L. Dobrzynski, B. Djafari-Rouhani, and O. Hardouin Duparc, Phys. Rev.
B 29, 3138 (1984).
(A21) >A. A. Maradudin et al., Theory of Lattice Dynamics in The Harmonic Ap-

T r in . proximation (Academic, New York, 1971).
he bracket i Eq (A21) can be shown to be equal to 4/37/ ¢P. Mazur, Ph.D. thesis, University of Maryland, 1957 (unpublished).

which is independent of m and M, which is the result we 7p. Mazur and A. A. Maradudin, Phys. Rev. B 24, 2996 (1981).
wanted to show. 8p. Mazur, Phys. Rev. B. 23, 6503 (1981).

424 J. Math. Phys., Vol. 28, No. 2, February 1987 P. Mazur and R. H. Barron 424



Physical condition for elimination of ambiguity in conditionally convergent

lattice sums
K. Young

Department of Physics, The Chinese University of Hong Kong, Hong Kong
(Received 25 March 1986; accepted for publication 24 September 1986)

The conditional convergence of the lattice sum defining the Madelung constant gives rise to an
ambiguity in its value. It is shown that this ambiguity is related, through a simple and
universal integral, to the average charge density on the crystal surface. The physically correct
value is obtained by setting the charge density to zero. A simple and universally applicable
formula for the Madelung constant is derived as a consequence. It consists of adding up
dipole~dipole energies together with a nontrivial correction term.

I. INTRODUCTION

It is well known that the lattice sum defining the Made-
lung constant’? is conditionally convergent, so that its value
is not mathematically unique. Recently an unambiguous de-
finition has been provided using analytic continuation® in
which the Coulomb potential 7~ ! is replaced by  ~* and the
corresponding lattice sum 1is investigated in the complex s
plane, giving mathematical precision lacking in earlier
works using direct summation.*

The selection of one out of infinitely many possible val-
ues must correspond to some physical assumption about the
crystal and our purpose is to complement the work on ana-
lytic continuation by addressing the question in a physical
manner. The first observation is that real crystals are large
but finite, so the conditional convergence for the infinite sum
translates into the possible dependence of the corresponding
finite sum on the shape (and size) of the crystal. We shall
show that the shape dependence can be isolated into a simple
integral I over the surface of the crystal. More importantly,
the integral is universal, being independent of the details of
the crystal structure and macroscopic, being determined only
by the averaged surface charge density. The analysis clarifies
not only the question of convergence (which is widely dis-
cussed in the literature'~) but also the question of conver-
gence to the physically correct value (which is quite distinct
and in general ignored). In fact much of the early work,'~®
done in days of limited computational power, was concerned
with rate of convergence, which is now increasingly irrele-
vant. In contrast, the algorithm developed here is extremely
simple to implement.

Il. FORMALISM

Consider a finite crystal made up of ions with charges
+ g at positions r,. The energy required to remove the ion i
is, in units of ¢7,

2=y 0 (1)
#Fi Ty
wherer; = |r, —r;|and s(i,j) = — 1( + 1) if the charges
i and j have the same (opposite) charge.
In general it will be possible to organize the charges into
pairs forming dipoles with separation d between the opposite
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charges. The case of NaCl-type crystals is shown in Fig, 1.
Now

a=1/d+B/2, (2)

where S is the energy required to remove one dipole from the
crystal. Choose the center of one dipole as the origin and let r
be the center of another dipole. The attractive energy
between the pair is

-2 1 1
Ur) = . 3
(r) " +[r—dl rtd (3)
Then
B= z Ur). (4)
Next choose some R>»1 and break B into

B =p1(R) + B,(R), where the two terms correspond to
the sumin (4) being restricted to r < R and r > R, respective-
ly. The first sum presents no problem and in the second sum
we expand |r + d| ™! in powers of 7' to get

Ba(R) =2 z S;(R), (5
%0
{ even
where
dl
S(R)y=Y —r-mP,(cosﬂ), (6)
r>R

+)

4
5

H 0

FIG. 1. Dipole pairs in NaCl.
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and 6 is the polar angle of r, and d is assumed to be along
+ z. Each sum in (6) is finite, since r is restricted to within
the surface of the crystal. However for />4, the sum (6) is
absolutely convergent so the upper limit may be extended to
infinity. Moreover, S(R) = O(R ~'*?), so the sum in (5)
is rapidly convergent.

Any problem then lies in S,(R). To evaluate it first con-
sider the sum between the surface » = R and another spheri-
cal surface inside the crystal at » = R ', where R ' is of macro-
scopic dimensions (Fig. 2). This sum will, in general, be zero
by symmetry of the crystal and the region of summation
(e.g., C, symmetry for a cubic crystal). Therefore the sum
for S, may start at the macroscopic distance R ’, and hence
equals the following integral between » = R’ and Z:

.gm)=mﬂde£&Efl )

'3 ?
where p is the average density of dipoles. The average (i.e.,
coarse-grained) value p may be used because fluctuations in
p give a contribution proportional to the gradient of the inte-
grand, which is of order r—*, integrating to O(1/R '), where
R ' is macroscopic. Use the identity

P,(cos 8) 1(8)21
r oz
to convert (7) to surface integrals

dS n3il

SR———d
2(R) 2p oz r

+L pd.de L (8)

oz r

where d S in each case points away from the origin. The first
term is readily evaluated to be (27/3) pd 2 and we denote the
second term as I,. However, it is not strictly true (as we have
assumed so far) that all changes can be organized into di-
poles. There are “leftover” charges at the surface (Fig. 3),
with surface charge density o' (which consists of two-di-
mensional §-functions representing point charges). They
contribute an extra electric field E ' at the origin:

FIG. 2. The mathematical surfaces R and R’ inside the crystal surface =.
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FIG. 3. Leftover single ions at the surface.

m:jawii
b3 dz r

This then contributes to the potential energy 3 of the dipole
at the origin aterm 8 = E d. Thus a contains an extra term

I,=1Ed, and
a(2) =—+— 2 U(r)
2 r<R
+ z.$M)+——d2+H2L )
I1=4,6,..
where
I =I1,+1,
=—d—de(pd +a’)ii (10)
2 Js r

in which # is the normal to 2, and we emphasize that  and
hence a may depend on the shape of the crystal.

First, ¢’ can be replaced by its average {o’) over several
lattice distances along the surface, since the difference (due
to fluctuations in ¢’) contributes a term proportional to

fa&@i,
p2 r

which is negligible since dS~L? and 3,5 (1/r)~L ~3,
where L> 1 is the size of the crystal. Second, pd - 7 is the
average surface density of (positive) dipole ends on X, while
(0’) is the average surface density of “leftover” charge.
Their sum is the average surface charge o on X. Therefore

I(E)——J dSo (11)

(92 r

Thus I depends only on the macroscopic property of the crys-
tal. Moreover, I is universal in that it does not depend on the
crystal structure.

Finally, I is unchanged if 2 is scaled up keeping o con-
stant. In other words I is independent of size; it is at most
dependent on shape.

The removal of the shape-dependent ambiguity is now
achieved by the physical assumption that o = 0. Incidentally
this condition would not hold if the crystal is polarized.

In evaluating (9), any choice of R > 1 may be used, and
some choice of R will optimize computational efficiency. But
since computational time is now hardly a problem, we may
as well take R — o to obtain the extremely simple algorithm
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1 1 & 2r .,
where the infinite sum is to be performed by expanding
spheres of radii R— 0. Note that U(r) «r~* at large r,
therefore the sum is clearly convergent. Incidentally this jus-
tifies extending the sum to infinity. The rate of convergence
is controlled by the first remainder S, = O(R ~—2). The prac-
tical advantage of (12) is its extremely simple form and its
universal applicability to all crystal types.

Physically this algorithm corresponds to adding up the
dipole—dipole interaction energies. What we have demon-
strated are two features that are nonintuitive: (a) this sum,
which is nominally logarithmic divergent by power count-
ing, is actually convergent; and (b) however, a correction
term (27/3) pd? is necessary. Note the difference between
(12) and (4): the sum in (4) is a finite sum, whereas the one
in (12) is an infinite sum performed by expanding spheres.
The correction term is the difference between the two. Inci-
dentally, this illustrates the difference between convergence
[e.g., (12) without the correction term] and convergence to
the correct value.

As a check, we have evaluated (12) for CsCl-type crys-
tals, for which p =}, d = (1,1,1), and r = (x,y,z), where
x,p,z are even integers (not all zero). We find
SU(r) = —0.69013, so that a =1.0177 = 1.7627/d, in
agreement with the known value.?

(12)

lil. DISCUSSION

We first make explicit the connection between shape
dependence of the finite sum and the conditional conver-
gence of the infinite sum. Consider an infinite crystal and
perform the sum by the method of expanding = shapes,’i.e.,
evaluate  as

a=a_=lim a(kX),

k— .
where k2 denotes the shape = scaled up &k times. Different
choices of = correspond to different ordering of terms, soa
is dependent on the ordering of terms if and only if a(Z) is
dependent on 2.

The above analysis shows that in the method of expand-
ing shapes, only those 2 with o =0 will converge to the
correct physical value. Thus for a NaCl-type crystal, the na-
ive use of expanding spheres is inappropriate, since the aver-
age charge density on a spherical surface is nonzero. [How-
ever, the situation is salvaged if we count dipoles and include
the correction term as in (12).] On the other hand, expand-
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ing cubes will give the correct value, since the average charge
density on a plane is zero.

The comparison between different expanding shapes
has been emphasized,® but there is one slight difference in
detail in the present treatment. We use dipoles as units so o
interacts with the central dipole through the electric field
E « g/r* and the surface contribution is finite as L — oo but
possibly nonunique. If we use single ions as units,? o inter-
acts with the central charge through the potential ® o« 1/7.
The surface contribution therefore scales as L and would
diverge unless o = 0.

An obvious method of direct summation is to group the
ions into cells in such a way as to remove the leading multi-
poles.*’ In this context it has been emphasized (at least for
CsCl-type crystals) that cells must have surface neutrality in
order to guarantee convergence,’ which is of course closely
related to the surface neutrality of the crystal emphasized
here.

Another method of evaluating such lattice sums is to use
a Fourier series,® assuming that the potential has the same
periodicity as the lattice—which would not be true if there is
any surface charge. Thus the correct value is always based on
the same physical condition.

For lattice sums in two dimensions involving 7~7, the
analog of S, would be absolutely convergent and there is no
shape dependence. However, if the two-dimensional Cou-
lomb potential In 7 is used instead, then the situation would
be essentially the same as that discussed here.

In conclusion we have shown how the ambiguity due to
the conditional convergence is related to the macroscopic
boundary condition on the crystal surface and emphasized
how the latter singles out the correct value for such lattice
sums. A simple and universal algorithm based on adding up
dipole—dipole interaction energies—but with a nontrivial
correction term—has been derived.
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Yang-Mills theory and the Batalin-Fradkin-Vilkovisky formalism

David McMullan®

Department of Physics, University of Utah, Salt Lake City, Utah 84112
(Received 19 November 1985; accepted for publication 15 October 1986)

In this paper a generalized dynamical description of classical Yang—Mills theory will be
presented. As a consequence of this work, a firm dynamical underpinning to the Batalin—
Fradkin-Vilkovisky (BFV) formalism will emerge. This in turn will supply a precise
geometric characterization of the ghost and conjugate ghost fields.

I. INTRODUCTION

Local gauge invariance is used to great effect in the at-
tempts to build realistic models of the (nongravitational)
interactions observed in nature. However, there is a techni-
cal price to pay for the usefulness of these theories since a
consequence of the gauge invariance is that the dynamical
content is obscured. Thus, care must be taken in both the
classical and quantum description of such theories.

In order to construct a covariant, unitary path integral
for these theories, one has to use an effective Lagrangian'
composed of the original Yang-Mills Lagrangian, a covar-
iant gauge fixing part, and a term containing ghost and an-
tighost fields (scalar fields with fermionic statistics). The
validity of this construction can be shown in perturbation
theory?? and hence, from a pragmatic point of view, Yang—
Mills theory is well understood.

It was noticed®® that the effective action possessed a
new global symmetry, called Becchi-Rouet—Stora-Tyutin
(BRST) invariance, under which the ghost field had a very
definite transformation property. This lead many people®**
to speculate on the possibility of a nonperturbative under-
standing of this construction. Over the last few years, two
well developed descriptions of the ghost fields have emerged.
In one,® ! the ghosts are identified with Maurer—Cartan
forms on a suitable group, whereas in the other ap-
proach,'?!? a superspace formalism is developed in which
the ghost field is related to a special connection on a super
principle bundle. The usefulness of these interpretations de-
pends very much on the type of problem one wishes to solve.
In particular, the superspace approach is the closest in spirit
to the way ghosts are introduced into the path integral,
whereas the Maurer—Cartan form interpretation leads to a
powerful cohomology construction,”'! which in turn throws
some light on the geometric origins of chiral anomalies (see
also, Refs. 14 and 15). However, both approaches suffer
from the drawbacks that they provide no greater under-
standing of the dynamical role ghosts play in Yang-Mills
theory. Indeed, these constructions are carried out in a pure-
ly classical framework and yet they do not appear to have
any role in our understanding of classical Yang—Mills the-
ory. Also, both approaches have difficulty incorporating the
antighosts in a natural way.

The classical dynamics of Yang-Mills theory is best de-
scribed within the Hamiltonian formulation. One finds that
the local gauge invariance introduces constraints into the
phase space and hence a generalized dynamics'®'” must be

*) Present address: Department of Physics and Astronomy, The University,
Glasgow G12 8QQ, United Kingdom.
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implemented.

Using phase space methods, Batalin, Fradkin, and Vil-
kovisky'®'? (BFV) developed a formalism whereby the ef-
fective Lagrangian for Yang—Mills theory could be derived
from an effective Hamiltonian construction on a super phase
space. There are many intriguing aspects to this work, not
the least of which is the claim that it can be applied to theor-
ies like gravity, where the constraints are not related to any
group action on the phase space.

The aim of this paper is to understand the BFV con-
struction for Yang-Mills theory in terms of the generalized
dynamics formalism developed by Dirac.'® Thus a fully clas-
sical understanding of the phase space ghosts and conjugate
ghosts will emerge and, as a consequence of this construc-
tion, they will automatically be supplied with both a super
space and geometric interpretation. The precise relationship
between these constructions and the fields in the effective
Lagrangian will be presented in a later paper.

The classical observables on the Yang-Mills configura-
tion space correspond to the gauge invariant function, thus
one can use homological methods in a trivial way to describe
them. However, lifting this construction to the phase space is
complicated by the fact that the constraints have the effect of
imposing only weak equations among the smooth functions.
Thus a weak cohomology theory must be developed and we
shall find that this construction supplies the homological
interpretation for the phase space version of the BRST trans-
formation.

The motivation for this work is twofold: First, we want
to understand the content of the BFV construction when
applied to gravity. In this theory it is well known?®?! that the
general coordinate transformations of the space-time have a
complicated relationship with the symmetries generated in
the phase space. Thus, it is important to understand the anal-
ogous problem of relating the phase space BRST invariance
with that constructed from the Hilbert action for gravity,
especially in the light of the nontrivial measures occurring in
the BFV approach. Obviously it is a good idea to start with
the simpler problem found in Yang-Mills theory. Second,
the BRST charge has been used by several authors to give
useful insights into the quantization of constrained sys-
tems.???* However, these discussions have been heuristic in
nature and a more detailed analysis is called for. Hence the
full content of the classical construction must be made clear.
In particular, the weak homological interpretation seems
well suited to the recent work on the deformation approach
to quantization”® and the global, nonlinear quantization
scheme.?

The plan of this paper is as follows: In Sec. II we shall
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present the main ideal of constrained dynamics as it applies
to Yang-Mills theory. This will be followed, in Sec. I1I, with
the weak homology construction alluded to above where the
associated superphase space structure will be made clear. In
the final section the dynamical content of this construction is
presented along with various general ideas on constrained
systems.

Il. YANG-MILLS THEORY AS A CONSTRAINED
DYNAMICAL SYSTEM

Let M be a given space-time with a compact spacelike
Cauchy surface = and G a compact, semisimple Lie group
with (dual) Lie algebra g (g*). Then the Yang-Mills fields
on M, with structure group G, are conveniently described”®
as the space of connections associated with a principle G
bundle over M. For the sake of simplicity, we shall only
consider the trivial principle bundle.

The Hamiltonian description of Yang—Mills theory is
achieved by using the Cauchy surface X to foliate M. Then
the space-time fields are projected onto this foliation in order
to separate the dynamical quantities from the kinematical.
As is well known, the resulting phase space description has
constraints and a generalized dynamics is needed.

If we are given manifolds D and B, we denote by
Q" (D,B) the space of B-valued r forms on D. Then, in this
canonical approach to Yang—Mills theory, the configuration
space is identified with Q'(Z,g), which we denote as /.
Thus, locally A€« can be written as 4 = 4 ? e, dx’ where x’
are local coordinateson 2 (i = 1,2,3) and e, are a basis of g
(a=1,...,k =dim G). ]

Let ¥ = Q°(3,3), then this is a Lie group with Lie
algebra E: = Q°(2,g). Thereis a & action on .« which gen-
erates the spatial gauge transformations. Thus we have a Lie
algebra morphism

y: E-Vect & (Vector fields on &)

A-y(A)
such that acting on e/
Y(A)(A) = (V;ADe, dx'=(Af, + CEL A2 A e, dx',
2.1)

where A =A% x)e, and [e,.e,] =Cg e, with Cg, the
structure constants of g.

Since ¥ acts as a gauge group on 7, we known that the
true configuration space must be identified with the space of
orbits . = &/ % . In order for & to be a manifold one has
to be careful about the choice of functional spaces .o/ and ¥
belong t0*%?” and also (due to the compactness of =) one
needs to restrict & to the irreducible connections and re-
move the center of & .>” We shall assume that all these tech-
nical constructions have been carried out. Thus, ¥ is taken
to have free action on . and & is a smooth Hilbert mani-
fold.

The true phase space is thus 7’ * o7 and, in principle, the
dynamics of Yang-Mills theory takes place on this space.
There are, however, drawbacks to this construction since .27
is an infinite-dimensional manifold and hence T*. is not
uniquely defined. Also .27, and hence T * 7, is topologically
nontrivial?’ and is thus impossible to parametrize with any
physically relevant coordinates. These problems have limit-
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ed the usefulness of this approach.

The most common description of constrained systems
takes place on the phase space associated with the extended
configuration space. So for Yang-Mills theory, we need a
generalized dynamics on 7 *.«/. Again, since .7 is infinite
dimensional, the construction of T *« is not unique. How-
ever, now there is a natural choice of cotangent bundle since
we require the associated Cauchy problem to be well
posed.?® This leads to the use of the L, dual.?® Thus, we
define (7(2,9))": = Q**(Z,a*) as the L, dual of Q°(Z,g).
So Q' (3,q) is the space of smooth g*-valued vector densi-
ties on X. The L,-cotangent bundle of . is then
T*o =of X &, where &: = Q' (Z,q*) can be regarded as
the space of generalized electric fields. Locally 7€& can be
written as 7 = 7, ¢°(J /dx'), where e° is the basis of g* dual
toe,. Here T * o/ comes equipped with a (weak) symplectic
form,?® and we shall regard it as the extended phase space for
Yang-Mills theory.

Using standard phase techniques,*® the action of & on
& can be lifted to a symplectic action on 7 *.&7, where now
thelift of ¥ is a map of # such that 7: E - Ham (T *.&/'), where
Ham(T*.«/) denotes the Hamiltonian vector fields on
T*« . Since the & action on T *.«7 is the lift of an action on
&, an equivariant momentum mapping P can be construct-
ed3® We recall that PeQ(T*«,E*), where E*:

= °(3,g*) is the L, dual of E, is such that given A, and
A,€E we have that ($,1,)eQ°(T *o/) generates the Hamil-
tonian vector field #(4,) and

{(Cl),ﬂ,l),((I),ﬂz)}T.d = <q>)[/1|9/12]> s

where
NNT*): = Q(T*A,R),

{, }r.. isthe Poisson bracketon T*.«, { , ) denotes the
L, pairing between E *and E,and [ , ] isthe Liebracket on
E. Locally we have that

(®UMAY = f o1,
]

where

@, (A7) =7, +C A7l . (2.2)

The momentum map @ is central to the description of
the constrained dynamics on T *.o/. The physically allowed
dynamics is restricted to ®~'(0) which (with the restric-
tions on & and ¥ discussed above) is a first class*® subman-
ifold of 7T*.«7. The true degrees of freedom can thus be for-
mally identified with ®~'(0)/%. As before, this reduction
formalism has limited use and thus we must construct a gen-
eralized dynamics on T *.o¢ that faithfully describes the true
dynamics on ~'(0)/ 9.

On the extended configuration space .7, the observables
correspond to the gauge invariant functions. This is because
such functions are compatible with the reduction procedure
to the true configuration space .. Likewise, the observables
on T*«/ are identified with the functions compatible with
the projection to ®~1(0)/¥, i.e., those functions that are
gauge invariant when restricted to ®~1(0)/¥. It is tradi-
tional to call such functions weakly gauge invariant.'® We
consider this characterization of observables as the minimal
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conditions compatible with the constraint formalism. The
physical imput will often impose a richer structure on the
observables.

As it stands, the concept of weak invariance is too nebu-
lous to be of any practical use in developing a generalized
dynamics on T *«/. We need a more concrete realization of
it.

Let us consider a finite-dimensional analogy of the sym-
plectic structure associated with Yang—Mills theory. So let P
be a finite-dimensional phase space and F a Lie group with a
free symplectic action on P, with momentum map J. Then
J ~1(0)/F is the analogy of the Yang-Mills true degrees of
freedom. We can write J = ¢,/ %, where f* is a basis of
£ (F)* (the dual to the Lie algebra of F) and ¢, €, (P) are
the constraint functions.

The constraints impose an equivalence class structure
on Q°(P) via equality when restricted to ¢, =0, so if
8&heQ’(P), then g~h(g weakly equivalent to k) if
(& — 1))y, =0 = 0. In this finite dimension situation we have
the following result: if g~ 4 then there exists v*eQ°(P) such
thatg = 4 + v°¢, [sketch proof: F has free action on P=>0
isaregular value of J ~! (see Ref. 30) = the constraints are a
regular sequence (see Ref. 31) in the ring Q°(P) => they gen-
erate the ideal of functions vanishing on J ~!(0) (see Ref.
32)]. Hence if g is weakly invariant then we can write
{@a:g} =V g, for some 2 €Q°(P).

This description of weak equivalence in terms of the
constraints is central to the Dirac analysis of constrained
systems. For the Yang-Mills case it is not known whether
one can always replace a weak equality with the constraints,
due to the infinite dimensions involved. However, it is al-
ways assumed to be the case'®'” and thus we shall require the
observable to be those HeQ’(T *«') such that

{¢a(x))H}Ttd = V: d)b(x) )
for some V2 eQ®(T*o). (2.3)

If H, and H, are weakly invariant then {H,,H,} .,  is
also weakly invariant and thus we have an algebra of obser-
vables. This algebra projects down to the Poisson algebra on
d-1(0)/ 9.

It must be kept in mind that we are trying to develop a
generalized dynamics on T *./ and hence we do not actually
want to implement the reduction to ®~'(0)/%. So the de-
finition of observable is only useful if it can be made compati-
ble with the dynamical description on 7' *.«/. In particular,
we need to understand the allowed values an observable can
have, that is, we must specify the states of the system. We
shall return to a discussion of the states and how they effect
the definition of observables in the final part of this paper.

lil. OBSERVABLES AND COHOMOLOGY

A. The construction

We shall now develop an alternative description of the
observables in Yang—Mills theory. We start by characteriz-
ing the gauge invariant functions on .

Let us first introduce some notation: Given a vector
space ¥ and a smooth manifold W, we define I'* (V, W) as
the space of p-linear, continuous, skew mappings from
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KxgV to Q(W). We write T (V,W) = 3, T°(V,W).

Consider T''(E,«), we can define an operator
&8:TP(E,«)-TF*(E,) by

(8'0) Ay 1)
p+1

=3 (= D"*'y(A)o@Ayediedy 1)

i=1

+ z( - 1)i+jw( [/1,'/1]' ]/11,...,2,.,...,2].,...,/{1,+ 1)

i<y

3.1

where wel'*(E, ), 4,...,4, , ,€E and A, indicates omission
of A;.

It is straightforward to show that §>=0 and thus
(F‘(E,d ),6') is a complex. The associated cohomology
groups H (E, <) can be identified with the Lie algebra co-
homology of E taking values on Q°(.2/).3?

The gauge invariant functions can now be identified
with H°(E, /') and we see that we have developed a coho-
mological description of the observables on 7. This is a
rather trivial use of cohomology since the rest of the complex
has no obvious dynamical significance (at least in the classi-
cal theory). However, let us push on and try to extend this
analysis to the phase space observables.

The naive thing to do would be to replace & by T*.o/
and y by # in the above construction. Thus we shall end up
with H (E,T*« ), the cohomology of E taking values in
Q°(T*«). However, H°(E,T*/) only characterizes the
invariant functions on T *.«Z and thus misses the full set of
phase space observables.

How should one lift this configuration space cohomo-
logy so as to get a useful construction on the phase space? We
know that if there is a vector field on a manifold, then it can
be lifted to a Hamiltonian vector field on the cotangent bun-
dle. In other words, given a derivation on the ring of func-
tions on a manifold, we can lift it to a derivation on the
Poisson algebra of functions on the cotangent bundle. This
construction is very simple to implement: Let x* be local
coordinates on our manifold and consider the vector field
X:=X%3d/x" Then X*P, is a function on the cotangent
bundle (with P, the conjugate momentum to x*) whose
Hamiltonian vector field generates the lift of X. We shall
now show that it is possible to view 8’ as a derivation in this
sense and hence lift its action to a suitable phase space in a
nontrivial way.

Given w,€I'? (E,«/') and w,€l'? (E, /), we can define
@, 0, * 9 (E, o) by using the wedge product on A E*
and the ring structure on Q°(.«7'). In particular, if we take
the case p = 1, then @, w,cl*+ '(E, o) with

(0, @7) (Ayyeeshy 1)
g+ 1 . n
=3 (- D" o(4) @(Apesdipndg 1) - (3.2)
i=1
Thus I'' (E,.«/) can be given the structure of a Grassman
algebra over E * with Q°(.7) coefficients. Note that formula
(3.2) also makes sense if w,(A4;) is an element of Vect /.
If reA*E*®E, then we can define a derivation
i: T°(E,of)->T?**~Y(E,of) (p>0) as the composition
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of the normal inner product between E and E * plus the prod-
uct structure on I''(E,«). In particular, if 7eA’E*QE,
theni : I?’(E,o)-T?*1(E,o) is given by

(1,0) Aoy 4 1)

=3 (= D olr(Ad) Apeireigrp 1) -
i<y 3.3)

Formulas (3.2) and (3.3) suggest that we can construct
the mapping &' if we can choose an w,€E * @ Vect & and a
1€A’E * ® E such that

(i) @,(4) =y(A) for all AeE,

(ii) 7(4;4;) = [4iA;] forall 4,,4,€E .
Such objects are uniquely constructed by using the Maurer—
Cartan form G on 9.

Recall, feE * ® E is defined as the identity homomor-
phism from E to E, thus 8(1) = A for all A€E. Let us define
7: E*X®@E-E*®Vect o by ¥-8(1) =y(B(1)), where
PBeE*@E and AcE. Thus if we put w,=7%-6, then
@,(A) =7-8(A) = y(0(A)) = y(4) as required.

The Lie algebra structure on E is such that

[, IAPE*QE XAE*@E-ANtIE*QE.
Therefore [0,0]eA2E* ® E and we have the result that
1[6,61(A;4;) = [A:,4;]. Thus we take 7 = 1[6,0].

This analysis shows that we can consider 8’ as a deriva-
tion on the Grassman algebra I''(E, /') where &' is repre-
sented by

5 =70+i (3.4)

5[8,9 1°
It is useful to introduce a basis for E and E *. Since E
represents the space of all mappings from = (three-dimen-
sional manifold) to & (k-dimensional vector space), we
write a basis of E as p,, (x) (a = 1,...,k ,x€Z ). From Ref. 26,
we know that the Lie algebra structure of E is pointwise that
of g, thus we define Lie brackets by

[Pa (X)) (X')] = Cgp p. (x)8(xx") . (3.5)
The L,-dual basis of E * is written 1° (x), where
(M (x)ypy (X)) = 8556(x,x") . (3.6)

In terms of this basis, we can write &' in the suggestive form
! a 1 [+ a, a
6 =f["7 V(Pa)—"‘cab"lﬂb ], 3.7
2 an°

where d /d7° is defined symbolically by its action on E and
hence A E * via

(7°(x)): = (*(x") p. (%)) =82 8(x'x) .

d
an(x) (3.8)
]

Thus, if » = w_, 7" n°el*(E, ) ,

a b
9 @ = Wgp @—””b - wabna 877 .
anc on° a°

Although we shall not use this basis in the construction
of the homological description of the Yang—Mills dynamics,
it will be found useful for motivating some of the analysis.
Also the connection with the BFV formalism is easiest when
using a basis. We call 7 the ghost field and, for reasons that
will become apparent later, p, the conjugate ghost field.

Before we get too engrossed in the homological algebra,
let us again recall the motivation for this description of &'.
We wanted to analyze the action of §' on the (Grassmann)
algebra of functions I''(E,.«/) in order to construct an asso-
ciated (graded) Poisson algebra and hence to lift the §' ac-
tion. So what is the Poisson algebra related to I''(E,.&7')?
Normally, if we are given a ring of functions which we could
identify with Q°(N), for some manifold N, then the Poisson
algebra would be (Q°(T*N), { , }), where{ , }isthe Pois-
son bracket defined by the canonical symplectic form on
T *N. However, in our case we need to take into account the
Grassmann structure to I''(E,.«/') and hence, the standard
phase space methods do not, at first sight, seem appropriate.

We now present an algebraic construction of the re-
quired Poisson algebra. The symplectic underpinning to this
will be discussed later in this paper.

The algebra I'' (E,.«7') is modeled on the exterior alge-
bra of E with Q°(.#) coefficients. Thus, using the L,-duality
philosophy we expect the associated Poisson algebra to be
based on I'' (T *E,T * &), the Grassmann algebra modeled
on the exterior algebra over T*E with Q%(T*«/) coeffi-
cients. As usual, we can decompose this into homogeneous
partsasI' (T*E,T*«') = 2, I'"(T*E,T * ) withmultipli-
cation defined by the wedge product. However, under the
identification T*E ~E X E *,wecaninduceafinerdecompo-
sition of " (T*E,T*2/) via

(3.9)

I'(T*E,T*o ) =T"(E XE*T*)

= o IPUEE%T*Y),

p+gq=r

where I'™(E,E *;T *.«/) is the space of (p + ¢)-linear, con-
tinuous, skew mappings from E X+ XE XE*X - XE*

p times q times

toN°( T *.o/ ). Weshalloftenwrite '?forI""4(E,E *;T* </ ).

Given »,el’™" and w,el’?*" we define the product
@, @,€'P T Pr91 + % a5 that derived from the product struc-
ture on ' (T*E,T*«). Thus, given 1,€E and py'cE * we
have

. P+ 1 + +p g+ 1 +pt @+
(wl (‘)2)(/11’-"/1;’,’#1' ,".,#Pi ql’/lp|+q.+1""’/1p|+P;+q| ,#Pl b2 1 ,.“,#PI P2 1 qz)

€S v pt e+ a

.wz(/{”(Pl +q+ 1D ""’/lo'(Pl +Pt+ 4

where %, |, 1o i is the subset of the permutation group
g, +prt gt g consisting of those permutations which leave
invariant the sets
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opi+p+q+ 1) o(py+p2+a,+q2)
)"u PL+p+q yererfd pt+p2ta+q: )’

1
(Sgn a)wl(/ia(l)""’A’a(p,)’lt‘r(m_k ),'"’ﬂa(P|+q|))

(3.10)

{1"-'rp1’p1 + 9 + 1’-"1P1 +P2 + ql}

and
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.+ 1,00, + 4P + P2+ g1+ Lopy +pr+a;+ a2}, 0@y =(—1)PTWEraly, g (3.11)

and are such that as expected from the product structure on I’ (T*E, T *«/ ).
o)< <a(py), If 0, and 0,eT'™', then we define w, J w,e° by
oo+ + < <o(p+9,+p2), o, d oy =0,(0,) = (0, )w,()) . (3.12)

opi+ 1)< <o(p,+4p), .
@y P +40) Then 0, 1w, = w, 1 w,. We now extend this construction:
o+ttt < <o +p+q1+q2) . Given @,eI'”*? and w,el** (with p,,p,.q,,9, not equal to
From this definition one can easily show that | zero) wedefine o, J w,el™ 7~ Lai+a:—1yig

1 + +p+ +p2+ —2
(lewZ)(Z'l""’A’pl’#Pl"- ,."’#Pl ql’/lp|+ql+1""’A'p|+Pz+q|—l’ltpl P2 ‘h’.“,ﬂpl P2+q +4q )

= > (380 0) (@1 (Ag(1y soesop, - 1y 7P F D seru®r ¥ 007,

€S (o — Dt pta+@—1

~ o(py + p + 1) opy+p+ 4 +9.—2)
2T A ooy Aoip, +au+ 13 ooy 40yt gy — 1yl L TR BT P T =Dy )

+ 2 (Sgn 0.) (wl(/{a(l)7""/10'(p,)7)u'a(m+1)’/‘ta(Pl+q'—l),A)’

0CF =D+ (@—D g

~
o(py +p2) 4,000+ P2+ q0) P +Pr+ @+ —2)
602( ’A"(Pl‘*“lﬁ'”""’Aa(p,+p;+q,—l)sﬂ 1 2 ’# 1 2 1 ’---’ﬂ P+ P2 1+ g2 )> . (313)

If p, or g, is zero, then there is only the second term and similarly if p, or g, is zero then only the first term survives.

One can derive the following properties of I : Consider w,€I"*** and define r, = p, + g;, then

i) oydo,= - (—1)Y"w,Jo,,

(i) (v, +wy)doy=0,do;+w,do;,

(iii) (@,'w,) Jo;=w(w,dw;) + (= 1) (0, d ®3) w,,

(iv) (= D)o, d(w;do,) + (—1D)"w,d (03dw) + (—1)"0;1 (0, dw,) =0.

This last relation is called the super Jacobi identity. The proof of these results are not very illuminating and will be omitted. In
terms of the basis #°(x),0,(x) introduced above, we sec that the fundamental relation is %°(x) dp,(x")

=p, (x') 1 9°(x) = 6;8(x,x"), and all other expressions can be built up from repeated use of the properties (i) to (iv) stated
above.

It is clear that {4 imposes a graded-Poisson algebra on I'' (T *E, T *.«/ ). However, it is only responding to the duality
properties of E and E *, and is trivial on the Q°(T*%) coefficients. But on Q°(7T*.«') we already have a Poisson bracket
{, }r+. derived from the symplectic structure on T */. This bracket can easily be extended to I'' (T *E,T * /). Thus we
define

{ml’QZ}T‘derpl + P2y + Qz’
with

{wpo} e, = — (= D" {w0,} .,
via

+1 + prt+pr+a+1 Ph+pt+ 4 t+a
{010, oy Ay P e P T A 1y gireeihip, gy g g T BT P TR

— 2 (Sgn 0){01(10(1) ,."’la(‘,‘) ’#0(1’1 + 1),“.’#0(Pl +Q|))’

ae‘yp,+Pz+q|+42
3o, 41+ a0 Ao, + g gD TEFEED, e ")} e - (3.149)
r A
Combining { },._ and J, we define a graded Poisson (4 [6,8] 1 @) (1,,4,) = (@,3[6,01( A14,))
bracket { , }on ' (T*E,T*/) via =1[6,0] (A,,A,0)
{(01,602} = {a)l,wz}rnd +o,do,. (3.15) == <w’[/11"12]> by (3.16)

We now consider some examples of this bracket action. = —o([4A,]) = —w(ad, 4,) .

The Maurer—Cartan form 6 is an element of ' and  Similarly, if @€

thus [8,0]€I'>!. With our conventions we find that 316,811 w)(Ay,...A, 4 1)
106,014 4,) = — (u,[A14,]) (3.16) =3 (= D'*o([AA ] ApeAisegrdy 1) -
Let us investigate [6,0] J o, where wel'°, “ ' (3.17)

432 J. Math. Phys., Vol. 28, No. 2, February 1987 David McMullan 432



Acting on wel'®' we have
(116,01 &) (Ap) = (316,010, ).0)
= — 416,61 (Laou)
= u,[40])
= w(ad®y). (3.18)

We note that {4(6,01], },., =0. So, acting on wel”,
{1[6,6],0} = 1[6,0] J wel?* 2.

From the definition of the momentum mapping ¥, we
see that it is an element of I"'°. So given wel*? we have

{®,0} ={®0},,, +PJoel?* 14 TP,
where
{q)’w}T‘.n( ('11’---/1;; +1 »ﬂl"--,uq)
P+1

— 2 (_1)i+l

i=1

RS G T B WETV B S SN L) ) S

p+1 ]
=3 (- D)

i=1

'a)(ﬁ.l,...,;l,.,...,/l‘,+1,/.1,‘,...,#") ,

(3.19)
and
(Pd@) Apedpptlyp?™h)
= (<I>,a)( jlr--»ﬂvpa)ul’"-,ﬂq_l))
= a)(CD,/l,,...,/lp,y‘,...,y"‘ . (3.20)
Thus we can define Swel?+ 7 + T'P4~ ! via
bw: ={® +1[6,0,0}. 3.21)

From this definition we see that é can be decomposed into
8, + 8,, where 8,: T#?—I"”?~ ! is given by (3.20) and §,:
79— 7+ 19 s given by {®,0} ., +1[6,0] Jw.

We claim that & is the desired lift of & to
I (T*E, T*«). Indeed, § induces (odd) symplectic trans-
formations on I'' (T *E,T *.«/') with generator ® + 1[6,6].
Written in terms of the basis 7°(x) and p, (x') we see that
this generator can be written as

@ +1[6,0] =L[q>,,17a_;cg,, utp.].  (3.22)

This is as expected from (3.7) if we interpret p. as the conju-
gate variable to 7°. Acting on I'”°, we see from (3.17) and
(3.19) that 8 incorporates the natural extension of §', (3.1),
with 7 replacing y. However, to be acceptable we must be
able to develop a cohomology theory from &, and hence it
must be nilpotent. From the super Jacobi identity we see that
it is sufficient to check the following:

Now
{®, +1[6,61,® +1[6,01}
= {00}, er®
+ & 16,6 ]1er?°
+1[6,6114[6,0 Jer>,

(3.23)
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where we note from (3.20) that ® 1$ =0, i.e., 8§ =0;
(5[0:9 14 5[&0 DA A2A0)
= Q"[Al’[lz,i:o]] + [/12: [/13/11]] + ['13’ [/11»/12]])
=0 by the Jacobi identity on E;
{¢,¢}T.d (/11:12) = 2{(1)('7'1),4)(;*2)}
=20([4,4,]),
by equivariance of P;

(@1[6,01)(Ads) = (2,160,601 Ad,))
= [esel (’11)2'2)4))
= —20([A,4,]) from (3.16).

Combining these results we find that 5> = 0. In terms of &,
and 6, this is

(3.24)

8 =0, (3.25a)
55, +6,8,=0, (3.25b)
8 =0. (3.25¢)

In order to discuss the cohomology associated with § we
need to construct the complex upon which it acts. Define the
p-ghost number cochain I'? as

I''= o ™,

r-s=p
then §: I">I”*! and hence we can define cohomology
groups in the normal fashion. In the next section we shall
analyze these objects and relate them to a dynamical descrip-
tion of Yang-Mills theory. We conclude this section with a
brief discussion about the geometry of this construction.

The arguments leading up to formula (3.21) comprise a
liberal use of the L,-duality philosophy in conjunction with
various ideas from a graded version of symplectic geometry.
Thus one would like to know whether it is actually possible
to give this construction a firm geometric underpinning by
using the graded (or super) manifold techniques from the
start. There are several reasons for doing this: First, we are
ultimately going to want to quantize this classical system
and in this context we expect the homological arguments to
take a secondary role to the (super) phase space ones. Sec-
ond, we will want to apply this type of analysis of con-
strained systems whose constraints are not related to the
action of any group (e.g., gravity, supergravity, strings,...).
In these cases the geometric input to the homological con-
struction may be lost, yet we can still hope for a (super)
manifold analysis.

There are various ways of extending the standard mani-
fold theory to include graded elements, for a good review see
Ref. 34. By far the most attractive approach is that of Rog-
ers, since it is closest in spirit to the familiar Banach mani-
fold techniques and yet allows for the possibility of nontri-
vial structure in the odd directions. However, direct
application of her construction to the case at hand is prob-
lematic. There are two reasons for this: (i) Our manifolds
are infinite dimensional and thus one needs to extend the
model space B™™ to some suitable graded version of the
model space for T*« and E. It has proven to be difficult to
achieve this and retain a G « structure as one would like. (ii)
Even if one considers finite-dimensional situations, as we did

(3.26)
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above, then one must ensure that the supermanifold version
of the homology theory (as constructed by an odd vector
field) is equivalent to the standard Lie algebra cohomology
theory. There is a standard way of comparing such struc-
tures (introduce G chain maps, chain homotopies, etc.)
but again, one finds that the full G* structure can obstruct

such constructions.
The conclusion of this is that one must use a much more

restrictive class of supermanifolds, namely the Batchelor®®
supermanifolds. This might almost be expected since we
know?* that any such Batchelor supermanifold can be relat-
ed to a Kostant*’ graded manifold, which in turn can be
related to the sheaf of sections of an exterior vector bundle
over a normal manifold. Their analysis can be extended to
the situation found in this paper and we find that I'' (E, &)
can be given a graded manifold structure. The L,-cotangent
bundle is then precisely the graded manifold based on
I''(T*E,T*</) with the Poisson bracket given by (3.15).%’

Thus, our construction can be given a graded manifold
structure. However, it is of a trivial nature and thus does not
warrant any separate development, at least for the classical
Yang-Mills situation.

B. Weak cohomology and the BFV formalism

In the previous subsection we developed a method for
extending the Lie algebra cohomology theory into a phase
space situation. We now show how this construction can be
used in a generalized dynamics and thus in what sense it can
be viewed as a weak cohomology theory.

Cohomology groups are notoriously difficult to calcu-
late, especially when infinite-dimensional spaces are being
used. Thus all we can hope to do in this section is point out
various aspects of this theory and motivate some of the as-
sumptions needed. We start by analyzing the §, map intro-
duced via Eq. (3.20).

From its definition, 8,: I'*7—T'»?~! and, without loss
of generality, let us putp = 0. Now ' = Q%(T*«) @ A’E,
and thus we have a complex
- QUT*A)@ANE->QUT*L )@ AT 'E: -+

=20 T*o )@ E~>0(T*) . (3.27)
We recognize this as the Koszul complex®! associated with
the momentum map ®: T*.«& —E *. Let us investigate the
final term in this complex:

Q(T*o ) E-%Q%T* ),

o—{D,w) .

So if
@ =f V,, then Sy =f Vib,, VeQ (T*).
b p )

(3.28)

Thus we see that the image of 8, is precisely those functions
which we have assumed as weakly equivalent to the zero
function.

Let us return to the finite-dimensional model intro-
duced in the first section. Using the momentum map J:
P 7 (F)* one can construct a Koszul complex as in (3.7)
and there we have the following result: If we know that A ~0
implies that # = V¢, for some V *€Q°(P), then the Kos-
zul complex is a resolution of 09%¢( p)/ ~. That is, all the ho-
mology groups are zero (see Ref. 38). Soif Facts freely on P
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then we have the result that the Koszul complex is a resolu-
tion.

. How this result can be extended to the infinite-dimen-
sional situation is not clear. One would like to be able to say
that our original assumption that in Yang-Mills theory
weak equivalence can be described in terms of the momen-
tum map, ensures the resolution property of (3.7). How-
ever, until such a result can be shown we shall have to take it
as an additional assumption on the class of observables we
are allowing. Let us now investigate the consequences of this
assumption.

Acting on Fel'®°, §F = 6,Fe®'® is given by (3.19),
ie., (6,F)(1) ={®(1),F},. . Thus we can characterize
the weakly invariant functions, (2.3), as those FeI'®° such
that there exists an w,eI’""! with

8,F + S, =0. (3.29)

Suppose now that §,w, =0. Then F: = F + w,eI® [ie,
has zero ghost number, cf. (3.26)] and 6% = 0. So in this
situation we have been able to relate a 5-closed zero ghost
number function with the weakly invariant function F. What
happens when 6,w,5#0? From (3.25) we know that
8o, = —8,8yw, =82 F=0 and hence from our as-
sumption above, there exists ,e[** such that
6,0, + 8y, =0. If 5,0, =0, then we can relate F with
F' = F+ o, + @,eI'° such that §.7 " = 0. If §,w,#0, then
repeating the argument will produce an w,eI">?, etc.

Thus the ability to accommodate weakly invariant func-
tions into the homology structure of § requires that (3.27) be
aresolution of °(T *.«' )/ ~. When this is the case we shall
describe & as producing a weak cohomology for the Lie alge-
bra E acting on T*.«/.

It is important not to get too carried away with the gen-
eral mathematical formalism at the expense of physical ne-
cessity. Indeed for the observables known in Yang-Mills
theory (essentially just the Hamiltonian) one has that
8,0, = 0, and the Koszul complex (3.27) is not used. This
may not be the situation for all useful observables; however,
it does point out that we will always use a much richer struc-
ture for the observables than simply being elements of
Q(T*o).

Suppose F,€Q°(T *«/ ) is weakly invariant and % | the
corresponding S-closed element of I'°. If F,eQ%(T*«/) is
such that F, ~F,, then F, is weakly invariant and one can
construct an % ,€I'° as above. Now it is easy to show that
there exists yeI' ~' such that ¥, = %, + 8y. Hence, if we
require that % | and % , describe the same observables, then
we must identify the observables with

ker §: I'°-T!
image5: I~'-T°"
By using the resolution property of (3.27) one can see that
each nontrivial element of H°(8) is constructed from a
weakly gauge invariant function on T*.«7.

This relationship between weak invariance and §-closed
zero ghost number functions is the basis of the BFV formal-
ism. In their approach to the construction of the S matrix for
Yang-Mills theory they first had to build an odd, Abelian
function Q out of the constraints and fermionic degrees of
freedom. The weakly invariant Hamiltonian is then used to

H%8): =
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construct a zero ghost number function 5, which is invar-
iant under the (nilpotent) transformations generated by Q.
They then consider the S matrix constructed from the effec-
tive Hamiltonian H, defined by

sz=y+{Q9X}1 (3'30)

where y is an arbitrary odd function with ghost number — 1.
Their main theorem is that the S matrix is independent of y
(see Ref. 39 for a more detailed presentation).

The analysis of this paper is very close to the BFV for-
malism with Q = ® + 1{6,6]. However, there are two im-
portant points where this presentation does not cover the
BFV work.

(i) BFV wanted to relate the phase space construction
with the effective Lagrangian for a constrained system. In
order to build the Lagrangian one must first extend the
phase space by the inclusion of the primary constraints'®!?
and their associated ghosts and conjugate ghosts. In this way
one can relate the new Q with the phase space version of the
BRST charge. In a separate paper we shall discuss the exten-
sion procedure in detail.

(ii) BFYV justified their method by constructing a path
integral expression which agreed with the accepted .S matrix
for Yang-Mills theory. However, we are not discussing the
quantization of Yang—Mills theory in this paper. Rather, we
have presented this work as an example of a generalized dy-
namics. Thus, in order to justify the characterization of ob-
servables presented here we must show that it can be related
to the standard Dirac analysis. This will be discussed in the
next section.

IV. CLASSICAL STATES AND OBSERVABLES

A full description of a classical dynamical system is
comprised of an algebra of physical observables, including
the Hamiltonian, plus a rule for determining the allowed
values the observables can take. This involves knowledge of
the states of the system. There are two ways of viewing the
states; on the one hand we think of them geometrically as the
points of the phase space, but more generally, they can be
viewed as normalized, positive elements of a suitable dual
space to the algebra of observables.*°

The geometric characterization of states has limited val-
ue, when we have constraints, because it assumes the reduc-
tion to the true degrees of freedom has been implemented. So
we shall take the view that states assign expectation values to
observables. In order to understand how this is to be
achieved in constrained systems we first discuss the standard
phase space approach.

On an unconstrained phase space P we identify the ob-
servables with Q°(P). Thus a state ¢ is an element of Q°(P)’,
the dual space to Q°(P), such that (i) ¥>0 and (ii)
($,1) =1, where ( , ) implements the duality between
Q°(P)’ and Q°(P). Given a state ¢, the expectation value
(F) of an observable FeQ°(P) is given by

(F) = (,F) =f¢de-

The measured du on P is the Liouville measure. In the field
theory situation where Pis infinite dimensional, and possibly
not a linear space, great care must be taken in defining the

(4.1)
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dual space and the measure involved*' (see also Ref. 25). We
shall not dwell on these important points here, but rather we
shall investigate the formal extension of these ideas to con-
strained systems.

For Yang-Mills theory a state will give the allowed val-
ues of physical observables. We do not attach any signifi-
cance to the pairing between a state and an unphysical ob-
servable. The constraints impose an equivalence class
structure on the observable where we say two weakly invar-
iant functions F, and F, are equivalent if they are weakly
equal to each other, ie., F,~F, if there exists V°
eQ%(T*«) such that

F,=F, +f Ved, . 4.2)
b

For this equivalence relation to have any physical signifi-
cance, we must require that (¥;) = (F,). In other words, if
F~0, then (F) = 0. Thus we require that our states ¥ are
normalized, positive elements of the dual to Q°(T* <) such
that

([or)-o.

for all ¥ °e1®( T * </ ). We shall write this condition on states
as

4.3)

(®,)=0. (44)

This definition of states can be thought of as the minimal
requirement that we can impose. If we want to relate states
on T *o with states on the true degrees of freedom, then we
must impose stronger conditions on ¢. In particular, we
would require it to be gauge invariant or at least show that it
can be decomposed into an invariant part. However, asa rule
for assigning values to physical observables, formula (3.3)
suffices. It is straightforward to show that this definition of
states is compatible with the dynamical evolution of the sys-
tem.

We now investigate the introduction of classical states
into the BFV formalism. The observables are now elements
of H°(8) so in order to introduce states we must first con-
struct a dual space to I'°, and then pick out the positive,
normalized elements compatible with the equivalence class
structure found in H °(8).

Define I''%? as the space of (g + p)-linear, continuous,
skew mappings from E X' -*XEXE*X:-*XE* to

times times
Q°(T*o/), the dual space toqﬂ"( T*A). Thgn T'’%? can be
considered the dual to I'”?; we shall denote this duality by
the bracket ( , ). The dual to I'? is then I'" —?, where
r'#»= e I"™,
r—s= —p
Given wel'®, then Swel”* ! and we can define the adjoint
§%: "=, LT ~Pby

(§bw) = (675w), (4.6)

for all §eI'” =2~ !, Since § = §, + 8,, we can decompose 5*
into6* = 85" + 6 _,, where 85" and &_, are the adjoints to
8o and &,, respectively. The adjoint &+ also satisfies
(%)% =0and hence§; and §_, obey the adjoint version of
the relations (3.25). We denote the cohomology groups as-
sociated with the complex (I'*2,6%) by H (6+).

4.5)
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The states must be elements of I'’°, and we write yel""°
as

v=v+¢+¢,+ ", (4.7)

where ¢,€I"**", The equivalence class structure on H °(8) re-
quires that the states must be such that

(by) =0, (4.8)
for all yeI' ~". In terms of the adjoint 5, we can write (4.8)

By) = 6y ¥) = (.6 ¢) =0. (4.9)

Since (4.9) must hold for all y, we have that the states ¢
must satisfy

5ty =0. (4.10)

If we put ¢ = 6+¢, for some {eI'” ~ !, then (4.10) holds
since (6%)% = 0. However, if we use such a state then the
observables . €H °(8) will all have zero expectation value
since

(F)=(F b)) =(6F,£)=0. (4.11)

We shall consider such states as trivial ones, and thus we are
led to the conclusion that the states are elements of H°(5™).
Notall elementsof H °(8* ) will correspond to states though,
since we must require that we can recover the standard de-
scription presented above.

It is not clear how much of the full structure of H °(6),
for observables, and H°(8™), for states, can be accommo-
dated in a generalized dynamical description of Yang-Mills
theory. What we shall do is look at a restricted class of obser-
vables and construct the states for these.

A b-closed element % eI'® will in general have terms
containing ghosts and conjugate ghosts. Since these fer-
mionic components have nothing to do with the true dynam-
ics, we might expect that a representative f can be chosen
from the equivalence class [ |eH °(8) such that feI*°,
i.e., f has no ghosts and conjugate ghosts. If &I'®® and
8f = 0, thenf is gauge invariant. So we are asking whether it
is possible to construct a yeI' ™' such that ¥ = f+ 8y.
Equivalently, in terms of the Dirac analysis, we would like to
know that if F is weakly gauge invariant, then F is weakly
equivalent to a gauge invariant function. A local version of
this theorem has become part of the folklore of constrained
dynamics (at least in the situation where the constraints are
associated with a group action on a phase space). However,
we can see that in general there might be global obstructions.
These would be measured by H'(E,Q%(T*«) o A'E)
(r>0), and it is difficult to determine when this is zero. All
one can say is that for the known observables in Yang—Mills
theory one does not hit any obstruction. We now take this as
a property of the observables in our theory.

Given this decomposition of the d-closed functions it
now becomes simple to describe the states. Let ¢I"'° be such
that

(i) 6y =0,

(i) ¥y =9, +61L, forsome el
If F el is such that

(i) 6F =0,

(i) & =f+8y, forsomeyel ',
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then
(FY=(f+80)=(f) =S
and 679, = 0 implies that 55" ¢, = 0, i.e.,

CDa Va'pO:O’ (4.12)

T*o
for all VeQ’(T*</).

Thus, as long as ¥, satisfies the positivity and normali-
zation conditions introduced at the beginning of this section,
we see that we have recovered the expected values the obser-
vables f can have and hence, we have shown that the BFV
construction is a generalized dynamical description of
Yang-Mills theory.

The decomposition of F €I'? into an invariant part plus
a coboundary is an important technical step in relating the
BFV analysis with the work of Dirac. One would like to
understand the associated decomposition of states as a con-
sequence of this decomposition of observables, since then the
states will simply correspond to the dual space of the obser-
vables.

The extension of these ideas to theories, like gravity,
whose constraints are not described in terms of a momentum
map is highly nontrivial. The main problem is that one can-
not then decompose a generic observable into an invariant
part, and thus extracting the dynamical content is much
harder. The analysis needed for such a situation will be pre-
sented in a later publication.

V. CONCLUSIONS

In this paper a generalized dynamical description of
classical Yang-Mills theory has ben presented. Various
technical assumptions have been needed in order to carry
out this construction: however, we have seen that these are
closely related to the assumptions inherent in setting up the
Dirac analysis of such a field theory. A consequence of this
work is that it supplies a firm dynamical underpinning to the
BFYV formalism and thus gives a precise geometric charac-
terization of the ghost and conjugate ghost fields.

In this classical analysis we have shown the equivalence
between the BFV and the Dirac description of Yang-Mills
theory. The BFV approach is distinguished by the use of
homological methods both in the description of the observa-
bles and the states. This is very reminiscent of the important
work by Kugo and Ojima?®* on the use of the BRST charge in
the quantization of gauge theories. This suggests that many
of the ideas developed here will have a counterpart in the
quantum description of these constrained theories. Indeed,
one finds that in many respects the BFV analysis of the quan-
tum theory is much richer than the classical one presented
here, and has several advantages over the Dirac quantization
methods. In particular, the structure of the Hilbert space of
states can encode global aspects of the true degrees of free-
dom.*? This has important consequences for theories con-
taining anomalies and, more generally, for a deeper under-
standing of the quantization of constrained systems. This
will be discussed in a later publication.
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The generalized Batalin, Fradkin, and Vilkovisky (BFV) formalism was developed as a
method for determining the ghost structure for theories, such as gravity and supergravity,
whose Hamiltonian formalism has constraints not related to a Lie algebra action. Previously,
the classical dynamical content of the BFV description of Yang-Mills theory was investigated.
There it was found that this approach had a homological interpretation, derived from the Lie
algebra cohomology of the gauge group, which allowed one to understand the construction in
terms of the Dirac approach to constrained systems. In this paper the dynamical consequences
of the generalized BFV formalism are investigated. It is found that even though one no longer
has a Lie algebra structure associated with the constraints, one can still develop a homology
theory that reproduces the Dirac analysis and from which the generalized BFV formalism can

be derived. Some of the consequences of this approach are discussed.

1. INTRODUCTION

In Ref. 1, the BFV formulation of Yang-Mills theory
was shown to have a useful cohomological interpretation.
The main ingredient to that analysis was the ghost number
complex (£2,8), where ) = 20" with elements of 0" hav-
ing ghost number n, and 8: 2" - Q" * ! was such that §> = 0.
Up to this point, the BFV approach seemed identical to the
standard discussions of Becchi, Rouet, Stora, and Tyutin
(BRST) symmetry; however, as a consequence of working
in the canonical formalism, it was found that ({2,6) could be
written as a double complex. This in turn supplied a rich
geometric input which provided a dynamical understanding
to the whole construction.

Let us recall the salient points of the above analysis. We
started with a phase space .% and a set of first class con-
straints ¢,. So for Yang-Mills theory ¥ = & X & where
&/ is the space of connections, & the space of generalized
electric fields, and the constraints are the non-Abelian ver-
sion of Gauss’ law. It was crucial for the whole construction
that the constraints were of the first order, i.e., {¢,,@s}
= Clz ¢, where the coefficients C; are constants. This
was the case for Yang-Mills theory since the constraints
could be identified with the momentum map for the gauge
group action on .#.

For each constraint ¢, a ghost 7°, and conjugate ghost
pp were added to the phase space in order to construct a
graded phase space ®. The ring of all smooth functions on
was identified with €} and § was the (weak) coboundary
operator constructed from the constraints. Writing

a-yo-3 3 o
where an we()™* can be written as

BBy ay. . @ ...
O =y ... N P, Pa,

with coefficients being smooth functions on %, one found
that § = 8, + &,, where

) Present address: Department of Physics and Astronomy, The University
of Glasgow, Glasgow G128QQ, Scotland.
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8y A1 (1.1)
and

S5 QP (1.2)

This decomposition of § allowed us to compare the co-
homology associated with § to the Dirac analysis of such a
constrained system. The antiderivation §, was related to the
symplectic action of the constraints, whereas &, induced a
“weak equivalence’ on this action. A basic result needed for
this analysis was that §, is a resolution of the §, action, i.e., §,
is an exact operator. This requirement was equivalent to the
statement that the constraints were independent, i.e., if we
have k constraints ¢, and .¥ has dimension 2n (n > k), then
¢, = 0is a 2n — k dimensional submanifold of .%.

So for Yang-Mills theory we found that & produced a
weak Lie-algebra cohomology for the gauge group action,
and in particular, the zeroth cohomology group correctly
characterized the equivalence classes of weakly gauge invar-
iant functions one usually associates with the observables of
the constrained theory.

The conclusion from this work was that one could un-
derstand the introduction of ghosts into gauge theories in a
classical way: They are simply introduced in order to give an
alternative characterization of the constrained dynamics.
However, there is a sense in which such an approach seems
at odds with the way we normally view constrained systems.

The standard classification of constraints is motivated
from symplectic geometry and is in terms of first or second
class constraints. Thus, a first class system is one for which
the constrained surface is coisotropic and, for suitably cho-
sen constraints ¢, , this means that

{¢a’¢ﬁ} = UZﬁ ¢‘y’ (1.3)
where the coefficients U, are now “structure functions.”
For a second class system the constrained surface is itself a
phase space, and in terms of constraints 1, we have

det({¢,,¥,}) #0. (1.4)
So, for a first class system the form of the structure func-
tions in (1.3) plays no role in our understanding of the dy-
namics. Indeed, for Yang-Mills theory we could replace the
structure constants C?, with C%g + ¢sH 3}, where HZ},
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= H%J,, and not change the dynamical content of the the-
ory at all. However, the cohomological analysis presented
above only worked for the structure constant case.

We also know that there are many important systems
where the constraints are not associated with a group action
on a phase space, i.e., gravity, supergravity, and string the-
ory. Thus, any new method for dealing with constraints is
limited if it cannot cope with such theories.

In Ref. 2, the BFV formalism was formally extended to
accommodate systems with structure functions. The basic
idea of this extension was quite simple: For a system with
structure constants, one could construct a charge Q which
has ghost number one and is Abelian, i.e., {Q,0} = 0. Expli-
citly one finds that

Q=4¢.1"~4p, ULen™n’. (15)
To generalize this to the structure function situation one
writes the required charge as a power series in the conjugate
ghosts, i.e.,

Q=01 +p, F7 +po pgF + - (1.6)
and then impose the condition {Q,Q} = 0 in order to deter-
mine the coefficients F ¢, F°f. - It is a remarkable fact that
such a procedure works (for a careful discussion see Ref. 3)
and a charge Q can be constructed. However, one finds that
such a @ is not unique and has no obvious geometric signifi-
cance. These facts combine to obscure any dynamical con-
tent to this construction. Indeed it is difficult to see whether
this analysis has any physical justification at all, since the
types of theories it is attempting to describe are notoriously
hard to analyze and thus it has been virtually impossible to
trace the consequences of such a formalism.

It is the aim of this paper to present a new approach to
the extension of the BFV formalism outlined above. The
physical content, and the effect of the various ambiguities,
will be made clear. Again, we shall be able to relate this
analysis to the standard Dirac approach to such systems.
The homological aspects of this construction will be empha-
sized in this paper. |
) gw

WI

6°w—-——)(8°81 + 816°)w

!

2
),(6062 + 61 + 626°)w

il. THE CONSTRUCTION

We recall that for a first-order theory, i.e., when the
structure functions are constants, the operator é could be
written as § = 8, + §,. Then 8% = 0 implied the following
relations:

8 =0, (2.1a)
5(ﬁ1 + 6160 = 0, (2. lb)
5 =o. 2.10)

The action of 8, and §, on the basic variables were defined as
follows:

8.f ={da Y07, Q% (22)

8= —1Us, 71", (2.3)

81pa = — UlgPp,, (2.4)
and

8,/ =0, 6m*:=0, Syp,:=0¢,. (2.5)

It is straightforward to check that these definitions satisfy
(2.1). Let us now investigate what happens when the struc-
ture functions are no longer constant.

From the definitions of §, and &,, we find that we can
still maintain relations (2.1a) and (2.1b). However, acting
on feQ%°,

521’ f= £¢7{Uzﬂ’f}77a77ﬁ’ (2.6)
which is not identically zero.

Let us define §,: %% 0> by

8,f= —HU%, fIn°vPp,, (2.7)
then we see that

(81 + 8¢8,)f = 0. (2.8)

This suggests that instead of writing 8 = §, 4+ §,, we
should write § =8, + &8, + 8,, where 8,: Q™ Q" +2s+1
and require that §* = 0. (Note that 5,7 and &, p are, as yet,
undetermined. )

Consider an arbitrary element o)™ then the action of
6% on @ decomposes as

(2.9)
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From this diagram we see that the required properties are

82 =0, (2.10a)
8,80 + 8,8, =0, (2.10b)
8,80 + 8% + 8,8, =0, (2.10c)
8,8, + 6,8, =0, (2.10d)
52 =0. (2.10e)

We have already seen that (2.10c) is true when acting
on functions. Before verifying it on ghosts and conjugate
ghosts we need to reconsider Jacobi’s identity,

0= (. {¢56,}} = {0, US, 65}

= {4 U5, )} ~ UsuUg, )05 (2.11)

As was the case in the first-order theory, we assume that
8, is exact, thus we can deduce that

{816, Up} —U2uUg, =¢.US, (2.12)
Usmg (2 12), we find
— B Ugs™n™n’. (2.13)
Thus we take
8.1 = YU gsmPnn’p.. (2.14)
Similarly, one can show that
52pa = - %Uieﬁyﬂﬂﬂrpdps' (215)

If we define §, by (2.7), (2.14), and (2.15) and extend it
by requiring it to be an antiderivation, then it is clear that
(2.10c) is true. With this example in mind, we proceed to the
general case.

We are given a theory with first-class constraints ¢,
satisfying (1.3), and we have extended the phase space by
the addition of anticommuting variables (%%p, ). (The in-
dex a is only used to keep track of algebraic manipulations
and thus, unless we say otherwise, can be thought of as an
abstract index labeling both discrete and continuous sets of
constraints.)

As before we define an antiderivation &§,: Q™ — Q" !
by (2.5) and we assume the constraints are such that this
operator is exact. We define the action of 8, on feQ%° by
(2.2). We then require the existence of antiderivations
81seeerBsy..., Where 8,: QP QI+ 5+~ 1 which satisfy the
following relationships:

8 =0,

8180 + 6,8, =0,

855, + 8% +8,8,=0, (2.16)

J

m

Z m+1—lf 28({Q

i=1 i=1

Bm+l

o PP

= 3 5,(Q5 L f ey,

i=1

+ S Qg fYm— i+ DGy P,

i=1

+ 3 AQa i L PP m = D (= DS, o, VP,

i=1
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803 + 616, + 8,6, + 8;6, =0,
8004 + 6,65 + 85 + 8,61+ 8,6, =0,

In order to prove the existence of these antiderivations
we need the followng lemma.

Lemma: Given a set of constraints {¢,}, which are
closed under the Poisson bracket, one can define the nth

order (n> 0) structure functions Qg'.g" | by the formula

[al"'an— 1]

”Q ﬂ,,+,¢a [ﬂ,-~-ﬁ”+1]; (2.17)
where
1 & . . @y an
B Bn+2 =7‘,§0( D p+l{Q B Bp+l’QB:+2l"'B"+2}

— E (— 1)"(P+1)(p+ 1)(n —p+1)
p=0
XQ Bp+2Q;:I;"'g:+z,k’ (2-18)

and we take 0, = ¢,,.

Proof: See Ref. 3. Using the higher-order structure func-
tions we assert that (2.16) is satisfied when

b, f= {Qa.:::a:_ n’f}nﬁ.. . 'ﬂﬁ’Pa, P (2.19)
6577a = ( 1):+ lSQaazﬁ;Tl”ﬂ 773!+1pa2 'pa,’
(2.20)
8, Po = (s+ DQ s S5 1P 00" po.  (221)
We prove this by induction.
Fromthelemmawehave 0, =4, andQ3, = —iU3,.

Therefore the definitions of §, agree with (2.2)~(2.4), and
hence satisfy 82 = 0, 8,5, + 6,5, = 0. We assume now that
we have §; defined according to (2.19)-(2.21) for 0<s<m,
and that identities

8 =0,
6150 -+ 5051 - O,

606171 +616m—1 +
are true. We now define §,, | ; and show that
860m 11+ 610, + 681+ 8,160 =0.

To do this we evaluate (6,6, + - +6,,6, +6,, . 16,) on
each of the functions, ghosts, and conjugate ghosts. Note
that for functions and ghosts the term §,, , ; 8, drops out, so
that there is no difficulty here:

+6m—-161 +6m60=0

(2.22)

pe - pe )
-
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Where we have used the antisymmetry in ¢, **a,,_; and
B Bm_i+1,and the properties of the antiderivation. Sub-
stituting from (2.19)—(2.21) and simplifying gives

26i6m+l—if
i=1
—[{ B §:+ll’f}
-+{¢ﬂf?nu-—1)m+‘g’5'::,1
KT,
Then, using the lemma we get
256m+l—tf
i=1
= 6o —{QE T P AP o P,
Hence, if we define
81 f=1QG 5n P 1™ py s, (2.23)

then we have shown that (2.22) is true when applied to func-
tions.
Similarly one can show

m

z 8:6pm 1"

i=1

= (= D"mB P g, p,
= =8l(—DH™(m+1)
X Qg pom pfregPrip, -oop, ).
Then we can take
8" =(—D"(m+1)

Em+2

XQENFom pp i p, | (2.24)

When considering conjugate ghosts, we notice that the
6., + 10 term in (2.22) is not zero. However 8,, , ,8,p,
=96,, .1 ¢, for which we have an expression from (2.23).
Thus

m+1

z 86m+1—1pa

i=1

(m+ 2)Baﬁ;'

B i1

X;”ﬂl...nﬂm+ Ipa .o 'pa,,,
= —8((m+2)Q55, 73],

X7 g pa, )

Thus we choose

5m+1pa (m+2)Qa,ﬁ. %:l,ﬂﬂ ﬂﬁm+l Pa,,,H

(2.25)
So, if we define §,,, , | by (2.23)-(2.25) and extend it as
an antiderivation to all elements in , then (2.22) will be
true. This completes the induction step.
If there exists an integer k such that §,, =0 for all
m > k, then we say that we have a k th-order theory and we
can define §: 07— Q7+ ! by

6=6,+6,+" " +6, (2.26)

and 6% = 0. Thus Yang-Mills theory is of the first order, and
one can show that gravity is of the second order.
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It is possible that no finite k exists and hence we have a
theory of infinite order. Indeed, this could well be an inter-
pretation of the results in Ref. 4 where a gauge theory of self-
interacting massless spin-3 particles was shown to be unob-
tainable. Such infinite-order theories will be excluded in
what follows.

The order of a theory is a useful concept, but it is not well
defined since in the above proof we have simply found a
choice for the {8,,}, which satisfies (2.16): As mentioned
for the first-order theories, there is an arbitrariness in the
definitions of the structure functions and hence in the order
of the theory. We now discuss what is well defined in this
formalism.

1ll. THE AMBIGUITIES

In the Introduction we saw that one can always replace
UZg by Uly + ¢sH 2 in (1.3) without changing the dy-
namics of the system. Clearly such a possibility can occur for
each order of structure functions, and we need to investigate
how the dynamical content of the generalized BFV formal-
ism is effected by such variations.

Under the replacement U, U Ye + @5 H U,
the definition of 8, (2.5) and 5 JC 2 2) are unchanged.
However both 8,7 and 8, p will pick up an additional 8, ( )
term. Thus, given a derivation x,;: Q*/-Q'*1/+! with
k1 f=0, the most general change in §,, due to the above
ambiguity in the structure functions, is to replace §, by 3,
where

8, =68, — by, 3.1)

However as it stands, (3.1) is not satisfactory since it is
not necessarily an antiderivation and it no longer satisfies
(2.1b). Both of these problems are resolved by writing

8, =6, + K8, — 8o, = 8, + [K1,8,], (3.2)

since the commutator of a derivation and an antiderivation is
always an antiderivation and clearly (2.1) holds.
This argument can be repeated for 8,,85,... and one finds
that the possible changes in such maps are given by
8, =05, + [K,80] + [k1,8,] + Yy, [6,,85]1,
03 =63 + [x3,00] + [%2,6,] + [41,6,]
+ 5["1»["1:51]] + i[x,, [#,,651]
+ A1, [x2,8011 + (1/3D) (14K, [51,80111,

where «;: Q- Q"+ s+ are derivations. While writing the
general form of 6 like this is easy, we shall need to express
them in a form more amenable to calculation.

Lemma: If we are given § and & on , both of which
satisfy (2.16), and are such that

@) So = 50,

(ii) 31 =6, + K80 — 8Ky
Then the general form for 3,,, is
1)*

550,150 S!t !

3.3)

l, Ki 6 Ku ©oK; ’ (34)

x+1 Isve

where the sum is over all s and #, and all indices that satisfy
2;11i, + a=m. In the expression the «; are derivations
with k;: Q- Q7 +4s+,
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Before sketching the proof of this lemma we first make a
few comments.

(a) The statement of the lemma is slightly stronger than
needed for the ambiguity discussed above, since we do not
require that acting on f£Q°%°, «, f= 0.

{b) It can be shown directly that a 3,,, defined by (3.4)
will satist;y (2.16).

(¢) &, constructed as shown can be written in the

[x:lx; - [x1,6, ]]] form and hence it is an antiderivation.

Proof: We use induction, so by (ii), we can assume that,

for all m<s, (3.4) holds. Acting on f (or 77%)

506s+1f 255s+1 jf

ji=1
However, we can now use the induction hypothesis to re-
write the right-hand side of (3.5) in terms of §, and «;,

R — 1)
6B, S =b0(6.0+ 3 LD

s>0 >0 S!t !

3.5)

Xk K 6 aKi K,
— 1)
+ (u'ul) Ki'.”Ki“‘soK'."-i—lK'.u+v f;
u>00>0

where in the first sum ¢ 7#0. Using the resolution property of
8, the 5,0, +1 action on p,, and the requirement that 65 +118
an antiderivation then gives the required result.

So we can now construct two ghost number complexes,
(Q,6) and (Q, 6), and we need to understand the relation-
ship between them. We know that it is the cohomology of the
complex that has dynamical significance, thus what we want
to show is that these complexes have the same cohomology.

There is a standard way to compare two complexes; we

need chain mappings x: (02,8)—-(Q8) and «:
(Q,6) - (,8) such that

K6 = SK, (363)

K'S = 6k’ (3.6b)
and

k' = idg = KK, (3.60)
We now prove that

=1+ Z «, (3.7)

r>0 .

and

=143 121 (=17, (3.8)

r>0 r
are the required mappings. In (3.7) and (3. 8) the sum is
over all 7> 0, and all values of i, - i,.
The typical term on the left-hand side of (3.6a) will be

1
—K; K O, (3.9)
2
The typical term on the right-hand side is
C(s,t)k;, " K; 8,K;  * Ky (3.10)
5»0,t>0

where c(s,t)eR. To prove the equality of these expressions
we separate the cases: (i) ¢ #0, (il) r=0.
We fix values of 7, i, - *i; , , and a. For case (i), ¢ #0,
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t (_l)u 1
C(s,t) = z o

u=0 S!u!

-Ly (’)(_1)"=o.

st o \u

To see this, one looks at the possible contributions to a par-
ticular term in (3.10),

(Leons) (oo, )
s! 1 5 t! s+ 1 S+
.'K, 6aK'5+l)

1
(s ) e

For case (ii), t = 0, the contribution must come from 51
Thus C(s,0) = 1/s!.

This proves that « is a chain mapping between the two
complexes. Similarly one can show (3.6b) and (3.6c). Now,
using standard homological methods® we can deduce that
the two complexes above have isomorphic cohomology.

We already know that for a first-order theory H °(8), the
zeroth cohomology group, characterizes the physical obser-
vables of the constrained system. Thus, we have now shown
that for any higher-order formulation 5 of this theory, where
& is related to & via (3.4),H °(6 ) still describes the physical
observables.

This result is all well and good, however, it falls short of
giving us a complete understanding of the dynamical content
of a general higher-order theory since it is not at all clear that
one can always relate such a theory to a first-order one via
relations of the form (3.4).

IV. THE DYNAMICAL CONTENT

We have shown that for a given set of first class con-
straints ¢,, we can construct a ghost number complex
(0,8). For a first-order theory we know that H °(8) charac-
terizes the observables, and we now extend this result to
higher-order theories.

Recall that a function feQ%? is said to be weakly invar-
iant if

{¢a’f} = Vg ¢ﬁ’

for some ¥ £e0°°. We now show that given such anf, we can
construct F =f+ v, + @, + - -€f’, with w,eQ*, such
that 5# = 0. Rather than prove this in general for a theory
of order n, we prove it only for n = 2. The general case is
similar.

(4.1)

Define
o = VEnpeQ™, 4.2)
then
6, [+ 6w =0. (4.3)
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Consider the following diagram:

£ ~» 61f + 8°w1
el + 82f + Slwl
!
Then, Uty = ALASUZ(A™DE + {A],AS 36, (AN
80(8, [+ 8,@,) = 88, f — 6,802, + AZ{¢”A§}(A_1),’; - AE{¢T’A2}(A—1)Z'
= — 81 f— 8,6, 4.7
=0, using (4.3). Thus we would expect that any formulation of the con-

So, by the exactness of &, there exists an ,€Q*? such that
6, f+ 6,0, + 6w, = 0. (4.4)
Now, let us look at the Q! terms in §( f+ @, + @,):
80(8,0, + 8,w,) = — 8,600, — 81w, — 8,50,
= 8,8, — 6,(8,@, + S,)
=6,6,f+6,6,f, from (44)
=0.
Therefore, there exists w,€Q*> such that
8,0, + 6w, + 8, =0. 4.5)

It is easy to see that this argument can be continued and
8(f+ w,+w,+ ) =0. For a generic field theory, one
might have to worry about a finite termination to this pro-
cess; however, we shall not concern ourselves with this point
here.

Thus to each weakly invariant function we can associate
an equivalence class in H °(8). For a first-order theory, one
could show that if e is such that 8w = 0, then there exists
(at least locally in the phase space) a ¥e2™! such that
o — 8YeN®, i.e., in each equivalence class there exists an
invariant function. This allowed us to relate H °(8) with the
Dirac prescription for observables. However, for a higher-
order theory we do not expect such a decomposition of we)°
and thus it is not clear how H °(8) will relate to the standard
class of observables. In order to analyze H °(5) we first dis-
cuss another amibiguity in the formulation of constrained
dynamics.

The first-class characterization of a constrained system
is a statement about the symplectic structure of the con-
strained surface. As such, the constraints used to describe
this surface play a minor role in the dynamical understand-
ing of the system. So consider a new set of constraints @,
where

b = Aods, (4.6)

and A% is a (locally) invertible transformation acting on the
old constraints. Then ¢, are also first class with

{aa ,ap } = v‘};ﬂay’

where
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strained dynamics should be invariant under transforma-
tions of the form (4.6). A problem with the Dirac analysis is
that (4.6) is not a canonical transformation on the extended
phase space .#°, and thus one has to explicitly show the rela-
tionship between the two formulations of the same theory.
This introduces several undesirable aspects to the Dirac for-
malism, some of which we shall discuss later.

One can show, at least for finite dimensional systems,
that locally the ¢, can be constructed such that -(7;3 =0.
Thus all first-class theories have a first-order formulation.
This is a well known result, but has had little use in our
understanding of constrained systems, since there are usual-
ly many other physical reasons for not changing the con-
straints, i.e., physical interpretation and locality. However,
we shall find that (4.6) provides us with a method for ana-
lyzing H°(6) and will ultimately lead to a deeper under-
standing of the central role fermionic methods can play in
constrained dynamics.

For the constraints ¢,, we introduce the ghosts #* and
conjugate ghosts p,,, and construct the ghost number com-
plex (0,8). Similarly, for ¢, we introduce 7* and j, and
build the complex (£,8). In order to study the relationship
between these objects, we need to understand the 6 action on
Q.

We know that 8,p, = ¢, and 8,5, = ., therefore
So(A8 pg) = 8, p.. This suggests that we should take

ija =A5pﬁ’

since then &, = &, 3 5
Let us now investigate 8, f; feQ%° = Q°°,

8,f = 1{0o, FYi1* = B0, FINGTH + $o{AL, F 1o~

If we let

(4.8)

7= (A", (4.9)
then
51f= 8, f— b\ f,
where
ke f= (A"DS{AL, fIy'pge™!
= (A~N5{AL, fYi"pseitl. (4.10)
Similarly, one can show that
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8.m* =8,(AgH°)
5

=6n" — 811",
where
K= — J(ATOZ(ATE{AL A Py s,
(4.11)
Using (4.10), one finds that
Slpa = 61pa +K160pa “50“1Pa9
where
KiPg= — ;(A“)‘z(A“);{A'g,A;}nTpK pre (412)

Thus, by using the transformations (4.6), (4.8), and
(4.9), we have been able to show that 30 =4, and
8, =6, + [x1,0,]. Hence, we can use the results of Sec. III
to deduce that H°(8) = H°(5).

As we have already pointed out, one can choose a first-
order 8, where we already know that H °(5) corresponds to
the observables. So we can deduce that, at least locally in the
phase space, H °(8) will correctly characterize the observ-
able in a constrained theory of any order.

V. CONCLUSION

We have presented a homological description of first
class constrained systems. The relationship between this
construction and the generalized BFV formalism is accom-
plished by substituting the higher-order structure functions
(smeared with the ghost fields) for the coefficients in (1.6),
then 8.7 : = {Q,.¥ }, where the super-Poisson bracket is
used. These methods have been shown to supply the same
dynamical information as the standard Dirac analysis of
such systems.

It might be felt that, even if this is a novel and possibly
unexpected result, all we have really achieved is an unneces-
sary complication of what was basically a simple way to un-
derstand constrained dynamics. In order to answer this criti-
cism let us discuss the motivation for this work.

Ghosts were originally introduced into quantum field
theory in order to construct a unitary expression for the §
matrix of Yang-Mills theory. It was clear that the break-
down of unitarity was related to the existence of constraints
in the classical formulation of these theories; however, the
ghosts, and associated BRST symmetry, were taken to be
purely quantum constructions, with no classical dynamical
significance. In recent years, the homological background to
these quantum techniques have taken on a central role in our
understanding of such theories. One finds that even if the
quantization procedure is incompatible with the gauge in-
variant structure of the system, it still respects the cohomo-
logical structure of the gauge theory.®

Thus, it is natural to ask whether the central role played
by homological methods in the quantum theory is an artifact
of quantization or a reflection of a more fundamental de-
scription of such constrained systems. This question takes on
a new significance when one is dealing with theories like
gravity, where a perturbative understanding of the quantum
field theory does not exist, so that we would like to introduce
the homological structure as a consequence of some classical
analysis.
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We have shown that the use of homological methods is
not an artifact of quantization, and indeed, the use of ghosts
and their symmetries translates directly into the classical
vocabulary. However, there is a surprising bonus to this ap-
proach which we have not discussed in this paper. The addi-
tional odd variables in this construction introduce a graded
symplectic structure into the classical formalism. This struc-
ture has an unexpected interplay with the homological
methods introduced in this paper. One finds that § induces
(odd) canonical transformations on this space. This could
be understood for the BFV formulation for Yang—Milis the-
ory, since there the odd generator @, (1.5), could be de-
scribed as the momentum map for the lift of the configura-
tion space Lie algebra cohomology.! However, that such a
result holds for an arbitrary order theory is far from obvious
and suggests that the full significance of the (graded) sym-
plectic structure should be investigated.

One finds’ that the additional odd degrees of freedom
have subtly changed the structure of the allowed canonical
transformations. In particular, one finds that the chain map-
pings « and «’ (3.7) and (3.8) are actually (even) canonical
transformations. So, in the formalism, the replacement of ¢,,
by &a [cf. (4.6)] is an allowed invariance of the theory, in
contrast to the Dirac approach. This allows us a greater
flexibility in describing constrained systems, and in particu-
lar, allows for a much deeper insight into how one should
construct polarizations for constrained systems.’

One can view the introduction of an odd variable into
constrained dynamics as analogous to the introduction of a
complex number into the study of polynomials. Indeed we
propose that the methods presented in this paper are a natu-
ral and useful description of first class constrained systems.
The full consequences of this approach are presently under
investigation.
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The radiative correction of nonlinear sigma models on supermanifolds that have invertible
metrics is investigated. It will be shown that the equation of motion for Riemannian
supergravity (nonstandard supergravity) is derived from a consistency condition. This
condition can be satisfied in the case of supergroup manifolds. We shall explicitly construct the
model following the methods of Braaten, Curtright, and Zachos [E. Braaten, T. L. Curtright,
and C. K. Zachos, Nucl. Phys. B 260, 630 (1985)] and of Witten [ E. Witten, Commun. Math.
Phys. 92, 455 (1984)]. Finally, super-Kac-Moody algebras of these models are derived.

I. INTRODUCTION

There has been much interest in two-dimensional non-
linear sigma models with the Wess—Zumino term.' It is
shown that they have nontrivial infrared fixed points and, on
these fixed points, its light-cone currents realize the Kac—
Moody algebra.” Witten has used this algebra for bosoniza-
tion, that is, to show the equivalence of free fermionic theor-
ies and nonlinear sigma models.

These models were extended to supersymmetric models,
which have supersymmetry in two dimensions.® This is an
interesting extension because they have the super-Kac-
Moody algebra and the super-Virasoro algebra. In this paper
we investigate another type of supersymmetric extension.
For that purpose we introduce Grassmannian fields in addi-
tion to bosonic fields (which are often called coordinates of
target space). This means that we construct supersymmetry
in target space.

In the following we adopt a formulation of geometry of a
superspace following Ref. 4. But here we shall use the word
geometry in a restricted sense; we are not concerned with
global or topological structure in this paper. The formula-
tion presented below is only a formal description. The reader
who is interested in a more rigorous treatment of supermani-
folds is referred to Refs. 4 and 5, for example.

We shall investigate the nonlinear sigma model in that
formalism, restricting ourselves to the case where the metric
of target space is invertible. This is necessary for Riemannian
geometry and background field expansion. This assumption
leads to the equation of motion of nonstandard supergravity
as a consistency condition. For that reason our model does
not seem relevant to the string model. But we think that
these models are interesting by themselves, because of their
Riemannian structure and current algebra, which we shall
see in the following.

In the bosonic case, the parallelism of group manifolds
plays an important role.®* We can use the parallelism of su-
pergroup manifolds to show the one-loop finiteness and con-
struct the super-Kac-Moody algebra as an extension of
Refs. 6 and 2.
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II. RIEMANNIAN GEOMETRY OF THE NONLINEAR
SIGMA MODEL ON A SUPERMANIFOLD

We consider the nonlinear sigma model described by the
following Lagrangian:

£ =d8,Z° 8,3,Z"+3€*3,Z° ,¢,3,Z°, (n
where u represents the suffix of the two-dimensional coordi-
nate, Z “is the coordinate of the target space, and ,g, and ,e,
are the metric and antisymmetric tensors. [They have the
following  symmetries: ,g, = (— 1)®*°+? g  .e,

= — (= 1)®+2** ¢,.] Webriefly summarize the geom-

etry of the superspace in the Appendix. In this formulation,
the equation of the motion from the above Lagrangian is
given by
3,8,Z°+1%.9,2°9,Z*— 5°%,€,,3,Z°9,Z°=0,
Sabc — ( _ 1)agad e(db,c)_,! (2)
where

[ABC], = §4BC + ( — 1)*®+©BC4
+ (= 1)CU4+BCYB),

and where I'?,. and 5%, are the Christoffel symbol and the
torsion.

We shall investigate the radiative correction to this
model in the background field method. If we expand Z°
around the classical value Z'¢, in terms of the normal coordi-
nate £ “ as

Z0=ZH =5+ T%EE + (3)
then the action is written as follows:

I=I(O)+I(l)+1(2)+ e,

19=KZ%),

1(1>=fd2x{—2(a,,2“5,,agb 3413 4

1O J' d*x{(£°D,).8, €*D,)

- a,ngl a8 R bcdege avzgl gc(ayv - e;.w )}’

where
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VD, = V6% 3, + (— 1)k
X(rabc pwv _Sabce,uv)avzzl}

and R “,, is the generalized Riemannian tensor given by the
connection F%,, =T°, —S%,..

If we define the fluctuating quantum field on the tangent
space using the vierbeing,, = V,V, "5, ( — 1)* by

$i=V5.E" (5)
then the vacuum function (¢ ‘(x)£ /( y)) is proportional to
n? [n?is the inverse of ,; and satisfies n” = ( — 1)%p%,itisa
generalization of 87 in the bosonic case]. Then the on-shell
one-loop divergence in {(¢” ) is proportional to

R, =Repug(— ™ (6)
So the one-loop finiteness of this model is equivalent to the
generalized Ricci flatness (R°, = 0) of the target space in
the Riemannian formalism. This is the equation of motion of
nonstandard supergravity, i.e., the Riemannian supergra-
vity.” The Riemannian supergravity chooses the supergroup
as a tangent group. This corresponds to our assumption of
the invertibility of ,g,. (Although we can interpret the new
superstring action of Green and Schwarz as a nonlinear sig-
ma model on a supermanifold,® its metric does not have the
inverse.)

I1l. NONLINEAR SIGMA MODEL ON SUPERGROUP
MANIFOLD

If we construct the nonlinear sigma model on a super-
group manifold, this model satisfies the generalized Ricci
flatness condition, more precisely R4, =0 in this case,
when the coefficient of the Wess—Zumino term is properly
chosen as in the bosonic case.

A super Lie algebra is characterized by the following
commutation relation®:

[‘01%,‘: ij/z'j] = iwlinjf;'jk’{ks N
where the ' are parameters. Here we asume /i +j + k=0
(mod 2) for a physical application. In the following we use
matrix representation of this algebra, so we regard A; as ma-
trices which satisfy
[i+j=0(mod?2)], (8)
where str is supertrace and we assume the invertibility of 77,;
for further construction of g,,. The f}; defined by f;'n, is
fully antisymmetric in /j,k with an extra factor, i.e.,

foe=— (=D fa= — (= D*fy €))
For a given superalgebra, we can parametrize the group ele-
ment as

U =exp(i6S)exp(ixT), (10)
where S; and T, are the fermionic and bosonic generators,
respectively. Hence Cartan’s left invariant one-form is given
using the inverse of 77, by

DZ'= —istr(U ~'dUA)y" (11)
[ These one-forms are invariant under right transformations
0-0', x-x', where

gU =exp(i8'S)exp(ix'T),

str A, 4; =9y
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and are transformed as adjoint representations under left
transformations 6—8', x —»x’', where

Ug = exp(if 'S)exp(ix"T).]

This one-form satisfies the following Maurer—Cartan
equation, which is important in the following discussions:

d(DZ'y=4DZ'DZ™f,,". (12)
The vierbein V,’, which is defined by DZ* = V% dZ°, satis-
fies

I/irz;b= —%(—l)amVIanbflmi (13)
as aresult of the Maurer—Cartan equation and the symmetry
of I'?,, and covariant constantness of ,g,. (See the Appen-
dix.)

The kinematic term and the Wess-Zumino term are con-
structed as

I,= ——fdzxstr(U‘laﬂUU_'a”U),

Iy, =§nf str(U ~1dU)3, (14)
MJ

where we omitted the overall coefficient of the action for

simplicity. (The discussion about quantization of coefficient

of the WZ term is found in Ref. 10.) The Iy,, can be written

as

Twz =§ﬂfd2"‘"“3uz“ae,, 3,2", (15)

where
Claner, = 3 V'V Vi (= DT rerirar,
(16)

After these, the Riemannian tensor R °,., is easily calculated
as follows. The curvature two-form

R, =yVR%,dZ?dZ°V®,

(V4 is the inverse of ¥*,), (17
is written as
R, =do'; — o 0",
o', =V, DVe, (18)
o'y=4 (1 —-n)DZ"f, ",
R',=1(1-9*)DZ'DZ*f,, f,™ (19)

Therefore R %, ., =0 whenn = + 1.

An example in the case of U(1/1) is given in Ref. 11.
(The notations of Ref. 11 are a little different from those of
this paper.) The Lagrangian is given by

L = 2a,‘x,{a,‘x2 — (i/4)($,8,%, + 3,d,9,)}
+id, %, d,%
+ (i72)e,, d,x,(#, 0,8, + 3,d,4,). (20)
We notice that this model has the WZ term although the
bosonic part is a trivial U(1) ® U(1).

IV. LIGHT-CONE CURRENT ALGEBRA

It has been shown that the above model is (one-loop)
finite. Next we investigate the current algebra following Ref.
2.
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It is easy to show that these models have conserved cur-
rents (light-cone currents)
a_J, =0 J,=U"'4.U,
when 7 =1,
4, J_=0, J_=3_UU},
where r=x%=(1/2)(x°+x!), o=x"=(1/42)
X (x° — x"). Algebras of these currents are constructed by
the canonical quantization model. In the following we fix

n=1
Our Lagrangian is written as

I=Jd'rAa a.4°%

where A4, is independent of 3 ¢°. The (super-) Poisson
bracket is defined as
dA\( 3B
- r(B8)32)
PB a ¢b a ¢a
where F° is the inverse of
Fo=4,— 42
ag* o¢°

If we choose target space vectors i6Z ' = str(U ~'dU A,)n"
as variables instead of the coordinates Z“, then ,F; is easily
obtained from a variation of action 7,

(21)

(22)

(23)

6I=derdastr(U”l6Udi—(U“'LU)),

o dr
(24)
comparing with
6I=Jd1'6¢",-Fjﬂ, (25)
dr
where KX is a normalization constant. This leads to
d
F;=Kn, 86—,
do (26)
Fi=(1/K)nied(o— o).
As a result, the Poisson bracket of
X=str(A 4y U") and Y = str(Bfi—g U”‘)
o do
is
{X,Y}pg = ~ l6(0 — o')str{4,B} av U-!
K do
! @7

~—&(0c—0')str AB,
K

where 4 and B are elements of the super-Lie algebra. Then
the quantum mechanical commutation relations of J_,
=Kstr(d_UU ~'A,) are

[J-i(a)»,_j(a")} =iijk-’_k(0’)6(0'—0")

+ iKn;6' (0 — ') (28)

The above current algebra is a superversion of the Kac—
Moody algebra. We must notice that this “super” corre-
sponds to the supersymmetry of target space and not to that
of two dimensions.
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V. CONCLUDING REMARKS

We have investigated the nonlinear sigma model on a
supermanifold. The finiteness condition of the nonlinear sig-
ma model leads to the equation R ¢, = 0, which corresponds
to the Riemannian supergravity. The nonlinear sigma model
on the supergroup manifold can satisfy this condition and
have light-cone currents that realize the Kac-Moody alge-
bra.
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APPENDIX: CONVENTIONS
De Witt has introduced four types of vectors,
Ve Ve Vs oV,

where V¢ and ¥V, are contravariant and covariant vectors,
respectively, and °V and .V are defined as ‘V'=V¥V¢
V= (—1)°V,. We use conventional ( — 1)% thatis, + 1
corresponds to bosonic or fermionic properties of index a.
The above formulation is free from troublesome factor
( — 1)% in many cases. The contraction is written as

Ve 8, V=V, V=V,,

where , g, is the metric tensor. There are two types of deriva-
tives, right and left ones. We define right derivatives as

d
f,a_fdza‘

And covariant derivatives are defined with Christoffel sym-
bols I'’,, as

Va;b = Va,b - Vc rcab’
Ve, =V, + (= ey,

The Christoffel symbols I'?,, are defined to have the symme-
try I'%,, = ( — 1)*T“,,, and are written in consequence of
this symmetry and covariant constantness of g, as follows:

Fabc = i( - l)agda(gab.c + ( - l)bcgac,b
- ( - l)a(c+b)gbc,a)'
Here, g* is the inverse of metric . g,, i.e.,

agcg‘b=6ba’ gac 8b =6ab'
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Systematics of arbitrary-helicity Lagrangian wave equations
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The nontrivially gauge-invariant Lagrangian field equations of arbitrary helicity are
constructed directly by integration of the corresponding non-Lagrangian Poincaré field
strengths based on the Lorentz irreps of unmixed spin. All the details of the gauge properties of
the Lagrangian formulation of the free massless Poincaré irrep fields are derived systematically
and uniformly for arbitrary spin from the very simple field-strength formulation as a direct
consequence of an integration process. The gauge transformations, including the tracelessness
of the gauge parameters, the form of the fermionic and bosonic potential field equations (first-,
and second-order, respectively), and the vanishing double trace of the higher-spin (>])
potentials are all seen to be natural consequences of the integration of the classical equations
for the field strengths without need for appeal to other requirements such as those of quantum
field theory. Thus the equivalence (modulo gauge freedom and derivability from a
Lagrangian) of the field strength and standard potential formulations of classical free fields are
demonstrated explicitly, and uniformly for arbitrary helicity.

I. INTRODUCTION

The study of the Lagrangian formulation for arbitrary
spin, in which all field equations and subsidiary conditions
should be derived from an action principle, was started in
1939 by Fierz and Pauli." Their classical approach began the
now well-established ‘‘Fierz—Pauli program” for the setting
up of interacting field theories free of certain algebraic path-
ologies such as the loss or gain of degrees of freedom on
interaction. However, the technique was exceedingly diffi-
cult to extend beyond spin-2 even for the free fields and in-
volved increasingly large numbers of auxiliary parameters.
The well-known Lagrangian forms of the Poincaré fields of
spin-1 (Maxwell or Proca?) and spin-2 (linearized Ein-
stein' or massive gravity?) were first supplemented to in-
clude the spin-; fields by Rarita and Schwinger’ in 1941. The
spin-§ Lagrangian was formulated by Kawakami and Kame-
fuchi® in 1967 while Chang,’ also in 1967, extended the La-
grangian formulation of bosonic fields to spins-3, -], and -4.
The culmination of efforts to extend the formulation to arbi-
trarily high spins came with the work of Singh and Hagen® in
1974, who completed the massive formulation for both bo-
sonic and fermionic fields. The corresponding massless La-
grangian fields for arbitrary spin j were then obtained by
Fronsdal and Fang®'° in 1978. Many of these developments
in the theory of higher-spin fields, especially those up to
spin-2, are reviewed in the early chapters of Wiltshire."!

A further major step in the analysis of the massless fields
was the analysis by de Wit and Freedman'? in 1980 where
the equations of higher-spin massless fields were very ele-
gantly based on a hierarchy of generalized Christoffel sym-
bols with simple gauge properties. The highest-order Chris-
toffel symbol is a gauge-invariant generalized Weyl
(vacuum Riemann) tensor which plays the role of a higher-
spin field strength.

A feature common to many treatments of massless high-

*) Present address: Department of Physics, State University of New York at
Stony Brook, Stony Brook, New York 11794-3800.
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er-spin theories has been the extensive a priori use made of
gauge principles. Appeal is also made to other techniques
and results that may ultimately have their basis in physical
principles arising either from quantum field theory or from
the theory of interacting fields rather than solely from classi-
cal free field theory. Some of these gauge properties, in parti-
cular, have been derived, ab initio, only for certain lower-
spin cases. Quite often the form of the gauge transformations
of the spin-j Lagrangian potentials are assumed at the outset
by plausible generalization of these well-known lower-spin
cases. These forms are then validated by demonstrating,
with the use, for example, of projection operator techniques,
or by counting components, that the equations to which they
apply are indeed those of Poincaré irreps of spin-j, free of
lower-spin contributions. In the process of demonstrating
that this is the case, one may also demand, as is well known
to be necessary for lower spin, that bosonic field equations be
of second order and the fermionic of first order. These re-
quirements are, of course, closely related to energy positivity
and the existence of a positive-definite probability density as
demanded by the eventual desire to quantize the field theory
being constructed.

It is our contention that some of these assumptions and
techniques are unnecessary in the context of classical free
field theory and that the form of the gauge-invariant Lagran-
gian fields of arbitrary spin may be obtained, by an essential-
ly algebraic analysis, from the much simpler features of the
field-strength Poincaré irreps. For this to be so, the analysis
should supply, as a consequence of the field strengths and the
equations they satisfy, all the details of the gauge properties
of the standard completely symmetric Lagrangian poten-
tials. We shall denote the latter by ¢ = (@,,,...,,, ) for bosonic
fields and ¥ = (¢,,..., ) = (¥,,...,, ) for fermionic fields,
where a is a Dirac index (which we shall almost always
suppress).

To achieve this goal in a systematic, uniform manner we
shall, in essence, reverse the technique of de Wit and Freed-
man,'? Burgers,'* and Berends, Burgers, and van Dam,™
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who begin with Lagrangian potentials (satisfying relatively
involved field equations), from which they define field
strengths in terms of derivatives. We show that the field
strengths of arbitrary spin, based on unmixed-spin Lorentz
irreps which satisfy such simple differential equations that
they can be considered almost trivial, may be systematically
integrated to obtain correctly constrained Lagrangian po-
tentials satisfying the appropriate gauge-invariant field
equations. The nontrivial gauge invariance of the Lagran-
gian potential formulation arises naturally from the arbitrar-
iness necessarily introduced with each integration. Much of
that arbitrariness can be removed by taking advantage of the
evident freedom to select the higher-spin potentials to be in
their standard symmetric and, for higher spin, zero double
trace form. There is, in fact, no freedom of choice in the
symmetry type of the potentials for spins-1 and -}. Various
choices of symmetries are possible for spin-2 and -§ but these
ultimately lead to equivalent potential formalisms. For spin
>3 the choice of symmetries made here may be necessary in
order to apply the Poincaré Lemma (Appendix B) suffi-
ciently often (see Secs. IV and V) to reach the Lagrangian
potentials from the field strengths.

One of the effects of our analysis is thus to demonstrate
the equivalence, for arbitrary spin, between the non-Lagran-
gian Poincaré formulation based on the unmixed Lorentz
irreps, ( /,0) ® (0, j), and the corresponding Lagrangian for-
mulations based on the mixed-spin Lorentz irreps (j/2,
j/2), of Fierz and Pauli,' and ((n+ 1)/2, n/2)e(n/2,
(n + 1)/2), where n =j — }, of Rarita and Schwinger.® The
principal results of this paper have been reported briefly in
Doughty and Collins.'*

We shall introduce the arbitrary-spin field strengths in
Sec. II, outline the lower-spin potential results in general
terms in Sec. III, and establish the arbitrary integer-spin re-
sult in Sec. IV. The minor modifications required for the
half-odd-integer case are provided in Sec. V. Section VI dis-
cusses the possibility of arriving at potentials with nonstan-
dard symmetries. Our main conventions are set out briefly in
Appendix A. The Poincaré Lemma is described in Appendix
B and three extensions to it are established in Appendices C,
D, and E for use in Secs. IV-VI.

Il. ARBITRARY-SPIN FIELD STRENGTHS

The symmetries of the arbitrary-helicity tensor and ten-
sor-spinor field strengths are discussed by Weinberg'® and
Rodriguez and Lorente'” in Dirac notation. Wiltshire!! and
Doughty and Wiltshire'® used a Weyl spinor analysis to sys-
tematically set out these and other symmetries.

For any spin-j we begin, as in Collins'® and Doughty and
Collins,?® with a totally symmetric 2(2j + 1)-component
Dirac multispinor ¢ = (¢,,....,) (where @, =1,2,3,4),
obeying the very simple massless Bargmann-Wigner equa-
tion,' 182! @y = 0, and the ¥, condition appropriate to zero
mass. These provide the unique, linear, parity-covariant,
zero-mass Poincaré irrep equations of lowest possible order.
Using the Bargmann—-Wigner equation as a starting point
has the enormous advantage of providing the same almost
trivial structure for all nonzero spins. For spin-} this equa-
tion is simply the massless Dirac equation. For spin j> 1 we
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define, ' from v, a field strength F by
Fl‘lvl"'l"nvn = (i)” Tr(’ ) ‘Tr(¢c _lrl"lvl ) C _lrl‘nvn)’

(1a)
where C is the charge-conjugation matrix, y,,, = (7,7,
~— 7, 7. is the generator of Lorentz transformations in the
Dirac irrep, and F is a tensor for integer spinj=n and a
tensor—spinor with one free Dirac index (suppressed) for
half-odd-integer spin j = n + 4. Construction of the inverse
relation

v=W"F,, . ., ¥*"Ce- - 0y""0), (1b)

shows that F and ¢ contain the same information. A Major-
ana ¢ corresponds’®?° to a real tensor or a Majorana tensor—
spinor F,and F, , ..., , is equivalent to the corresponding
quantity of Burgers'* and Berends et al."* The following
symmetries and field equations''~?° are deducible from the
complete symmetry on all indices of ¢ and from the proper-
ties of the Bargmann-Wigner equation it satisfies:

Fuoprnv, =F,,|VI...[,,,,,,]...#",,", 2)
v vt = vy v e va? (3)
st s [vn— v ] = O (4)

Fi,,{v,-'-u,,vn =0, (5)

Bt ot 1= O (6)

0 F vy, =05 (7N

OF,. . uv, =0 (8)

For the fermionic case, F also satisfies
YFaipy, =0, OF, .., =0. 9)

For both cases these equations have no gauge freedom and
ensure '’ that F describes a massless Poincaré field of spin .
Forn =1, Eq. (3), (4), and (5) are clearly vacuous and the
rest of this section is then trivial. We define an associated
field strength, F=T"", by

A
P Pn — P P2 Pn
Fo o =F P

(10)

[The index levels used in (10) were chosen to ease display of
the index ordering and symmetrizing. ] The field strength F
corresponds to the generalized Riemann tensor or tensor—
spinor of de Wit and Freedman'? and has the following sym-
metries:

~
— —- n
Fp."'ﬂ,.ﬂ."'#,. Covpn) Cpeeopg) = (=D Fu."'#np."'pn’

(11)
Fp-"'P,._l(p..u.“'u,,) =0, (12)
Flips"-p,.#-"'#.. =O=F'{P2"'Pn}~l‘2"‘l‘n’ (13)
¥*Fopp -, =0 (fermionic case). (14)
Furthermore, F may be recovered from Fvia
Fpll“Pg#z"'Pni‘n = [2"/(n + 1)] f‘p-lpz__[Pn“" '“ﬂzllh’
(15)

showing that F and F contain the same information. We
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apply the Poincaré Lemma repeatedly to F to obtain the
same hierarchy of generalized Christoffel symbols I'*?
(i=n—1,n—2,.,1) used by de Wit and Frggdman.” Ul-
timately we demonstrate that, associated with F, there exists
a nontrivially gauge-invariant Lagrangian potential I'"‘®
(=@ or ¥ for the bosonic or fermionic cases, respectively)
which obeys the standard arbitrary-spin, classical free field
equation.

Ilil. LOWER-SPIN POTENTIALS

The analysis is well known, and almost trivial, for the
Maxwell field and was demonstrated for the massless spin-2
(linearized Einstein) field by, for example, Pirani.?? Wilt-
shire'' and Doughty and Wiltshire'® show that the spin-j
gauge-invariant Lagrangian equations may be constructed
directly by integration from the field strengths paralleling
the spin-1 and -2 results. Collins'® and Doughty and Col-
lins?® note that the integration method may easily be ex-
tended to spin-; which has many features in common with
the spin-2 case. The general method presented below in Secs.
IV and V is essentially uniform for all values of spin, apart
from some of the steps or conditions being vacuous in lower-
spin cases corresponding to a lack of sufficient indices. There
are also, of course, minor differences between the integer
(bosonic) and half-odd-integer (fermionic) spin cases.

For spin-1, F,, is simply the Maxwell field strength and
one of its field equations, d,, F,, ; = 0, constitutes an inte-
grability condition on F,,, so that the Poincaré Lemma (Ap-
pendix B) guarantees the existence of the electromagnetic
potential 4, satisfying F,, =3, 4, —d, 4,,. It arises di-
rectly from this integration that F,, is invariant under
64, =d, £ (with{ an arbitrary scalar field) and hence that
the first-order field equation, d, F#" =0 (which becomes
Maxwell’s equation for the potential, 04 # — d#3-4 = Q) is
nontrivially gauge invariant.

For spin-3 the steps are almost identical. The equations,
dy, F,; | =0, satisfied by the tensor-spinor field strength ¥
imply the existence of a vector-spinor potential ¥ = (¢, )
(it should not be confused with the multispinor ) satisfying
FE,, =4, ¢, —d, ¢,, which is invariant under 6y, =d, €
(with € an arbitrary spin-} Dirac spinor). The vanishing ¥
trace of the field strength, y* F,,, =0, yields the simplest
form, 8y, —3, v =0, of the gauge-invariant Rarita-
Schwinger equation,>'" while d, F** = 0 yields differential
identities on the potentials also derivable directly from the
field equation for the potential. It should be noted that these
procedures are automatically and naturalily supplying equa-
tions that are already of the standard type for each statistics,
namely equations of second order for bosonic fields and of
first order for the fermionic. Any second-order differential
equation may, of course, be rewritten in first-order form by
the introduction of auxiliary variables. However, we disre-
gard such a recasting as it obscures rather than clarifies the
structures involved.

For spin-2, the Poincaré Lemma must be applied twice
to obtain®!118-20-22 the symmetric massless Fierz-Pauli or
linearized gravity potential 4,, =g, . The first application
of the Poincaré Lemma yields a tensor I',.. which has a
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freedom (partly gauge) that is largely (but not entirely)
fixed by selecting specific symmetries for I' ,,. There are
several alternative ways to do this but each choice of symme-
tries is essentially equivalent in that each leads ultimately to
the same potential 4,,,, and the differences amount only to
redefinitions of the intermediate I',, . After setting out the
general arbitrary-spin derivation in Secs. IV and V, we com-
ment briefly on these alternatives in Sec. VI. An algebraic
equation obeyed by F ,,, induces the necessary I,,,, differ-
ential equation, which permits the Poincaré Lemma to be
applied the second time, guaranteeing the existence of the
potential 4,,. The residual arbitrariness in I',,,, leaves 4,
with the gauge freedom, 8h,, =d, §, + J, §,. The mass-
less Fierz—Pauli or linearized gravity field equations (in non-
Lagrangian  Ricci  form),  Oh,, —29%9, h,,,
+d, d, h =0 (where h = h*,), arise from the zero trace,
F* ., =0, of the field strength. Combining this equation
with a multiple of its own trace gives the Einstein Lagran-
gian form, which is suitable, by its identically divergence-
free left-hand side, for coupling to a conserved source.'®
The spin-§ steps are essentially the same as for spin-2
except that it is possible to fix T',,, so that it obeys
¥*T4,, = Oand this algebraic condition supplies'**° the de-
sired first-order differential field equation for the potential
¥, For spin-3, the Poincaré Lemma is applied to the field
strength F, _ ., . ., threetimes, yielding the two interme-
diate tensors of de Wit and Freedman,'? T'®, . . ..,
TV . 4> and the completely symmetric Lagrangian po-
tential @, ,,_ ,. (=I'?). The Lemma also allows one to im-
pose the condition, [®*, =0, which yields the ap-
propriate second-order field equation.'? Indeed, for
arbitrary spin>3, second-order bosonic field equations are
supplied by the zero trace of I'® and first-order fermionic
field equations are supplied by the vanishing y trace of I'*".
The only remaining new feature for spin;] is the zero
double-trace condition on the higher-spin potentials, namely
Y*¥1"pur -, = Ofor fermionic fieldsand %, ..., = Ofor
bosonic fields. As will be seen in the following section, this is
closely related to the Bianchi identity of de Wit and Freed-
man'? also referred to as a source constraint (Burgers'? and
Berends et al.'*).

IV. ARBITRARY INTEGER-SPIN POTENTIALS

All the lower-spin results summarized in the previous
section are implicitly included in our derivation here of the
arbitrary-spin case although, in practice, each of the cases
with spin-1, -3, -2, and -§ can be treated individually some-
what more simply. We shall omit explicit mention of the
spin<3} cases in order to avoid repeated qualification.

Equation (6) and the Poincaré Lemma ensure the exis-
tence of a tensor field 4 such that

F i p b1 Pt =Ap-"'p,._.u."'nn_:[/t,..p,.]‘ (16)
This A is free to be varied according to
84 =B (17)

Py P 1My ) By PP 1 B By
with B arbitrary, without affecting the value of F. By (5) we
could take A to be traceless across any pair of indices in

{LP1sees P 19 Bireeostin — 1 }. However, since it will turn out
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to be possible to ensure zero trace only on the p indices of the
generalized Christoffel tensor, '~ ", this is all that we
shall impose on 4, namely

np'ppr,...p,...pj..‘p"_‘,,l...,,n =0 (n33). (18)
This condition partially fixes the freedom (17). The tensor
field A may still be freely varied according to (17) with B
restricted to be traceless on its p indices. We define

C =A

P Pat By B,

Then by (10)

(19)

(P Pre YK 1) By

~
Py Pn—1Pn
F [T T o]

" Pn— Pn
=cP| Pn—l(,‘l.”‘un_l“") _Cp P ‘(ul...“”_l ) ?
(20)
and
6CP|"'P.|_1I‘|”'I‘n—I/‘n =B(p,"'p,,._1)(#1"'/‘:-—1)‘"»’ (21)

is allowed. Thus C, like 4, is traceless across any pair of p
indices
c* =0 (n>3), (22)

and B in (21) must be similarly restricted to preserve this
condition. Equation (4) implies

AD3 P\ 1B

Aprpy st albn i) = O (23)
and similarly
AP'.UP""“"“[MM“"—l#mP..] =0 (i=1,.,n—1).
(24)
Hence
CP.“'F.._n#--"#.._z[u.._uun-/l 1= 0. (25)

Results (19) and (25) allow an extension of the Poincaré
Lemma (PLX1, Appendix C) to be applied, yielding the
existence of a tensor B, as in (21), such that

(n—1)
F P18y 1 By

ECP.'"F.._W.'-%._I#.,—Bp-"'m_m.'“#,._n,#n (26)
satisfies

(n——l) (n—1)

LV E MR TPy (27)
andhence
A
FP- Pn_1Pnlbi’ B | Ha

— (n-—l) _Tr:n-n

F Pr— 1 By 1 B P Fpr“p.._m..(ur"un_.-u,.)'
(28)

PLX1 allows B to be chosen to be traceless on its p indices.
Hence one may restrict I'* — 1’ to satisfy

DO o, =0 (13>3). (29)
Even if C were traceless across any pair in { p;,"*"p,_,,
Ly " e —1 1 Eq. (29) would still be the maximum restric-
tion that could be imposed on I'” — V. The restrictions (27)
and (29) eliminate all those freedoms in I'* — !’ that may be
fixed solely by choosing the algebraic symmetry of I'* — 1,

Nevertheless, Eq. (22) does not exhaust all the freedom
of (17). Consider the variation

)yt =7

P Pr— 1B B PP 18 s Byt

(30)
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To preserve the symmetries of I'” ~ !’ the tensor ¥ can, with-
out loss of generality, be restricted to obey

Yo it = Yo pn )i 0 (31)

YAAP:"'Pn—I/‘I"'l‘n—l =0 (n33), (32)
and, furthermore, ¥ must obey

) SRRTRE LD SN R (33)
This implies

Y =0, (34)

Pr P e 2 B 1 ]
and hence, by our second extension to the Poincaré Lemma
(PLX2, Appendix D), there exists a field £ such that

Y bty = Spipu 1 (35)
Sorpus =8prpu_ir (36)
E oy, =0 (n33). (37)
In other words, ['" ~ " has the residual gauge freedom
6r/(?:l_111,.) LB H =§p."'p,.—p#n'“u,.’ (38)

with £ satisfying (36) and (37). This freedom is the most
general variation of ' — ’ that maintains the symmetries of
T~V and the value of F but it is insufficient to impose
further covariant symmetries on I'” — U, In fact, (38) is the
gauge freedom of I'” — 1) corresponding to the usual gauge
freedom 2 that will be deduced below for the spin » potential
which corresponds to it.

A further n — 1 essentially identical integrations with
the Poincaré Lemma can now be used to recreate the hierar-
chy of generalized Christoffel symbols and potential, "~ 2

[V, I'® =g, of de Wit and Freedman.'? These can be
carried out by induction using the above derivation of
=D from T™=F as the initial step. Given m>1, we
suppose that

Lt i = Do o e (39)
I“(’:n)pm“l T F(’;. P (B the) ? (40)
LU oo, =0 (M>2), (41)
FI(’:"+P'1»-)Pm+1#| My B
r;(z:n)p,..u. B 1 B Pm 1
[n/(m + 1)] Py Pmpmﬂ(m P 1 #a) ?
(42)
and the freedom
BT = b syt r (43)
where g, =(—)""""! (n— 1DV (n—m—1)Im!. We

then deduce the existence of '™~ !’ satisfying the corre-

sponding relations for m — 1.
Equations (39), (40), and (42) imply

(m+D [T
0=r"* P Pm—1[ PP+ 1#41]
m M2l
=T )p."'Pm_llpm#n |
— [1/(”1 + 1)] F(m) BBy 9 (44)
P Pm i PmPm 1
and therefore
m HaBn —
e )p-"'P,.._llp,..#n Pm+1l T 0. (45)
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Hence by the Poincaré Lemma,

F(m)pm [ Bmta] i b _Gp."'pm_luz"'#n[u..pm]’ (46)
for some tensor G such that

G opm v ttn = Gl o pm )t Opin? (47)

GA/IP{"Pm—l.“l"'Fn =0 (m—132). (48)
Furthermore,

6Gp."'pm_a#.'“n,.= CovmPm— Dt B 1)s Ba? (49)
with

H oo it =0 (m—132), (50)

leaves T'{™. invariant. Equations (40) and

Pm 1] Pmits |t thp

(46) imply
GPI"'va1#:"'!‘"_2[/-‘;.—1/‘::/1 ] =0. (51)

This equation with (47), (48), and PLX1, imply the exi§\-
tence of a tensor H, as in Eqs. (49) and (50), so that G
defined by

?; . =G

P Pm— 10y P17 Pm 1 B My,

_Hp-'“pm_lm--'p,._p#n’ (52)

satisfies
Govsom sy ta = Cpivspm vy (53)
G'lpa Pm— 1M Hy =0 (m - 1>2)’ (54)
rl(’:")l’m [ Pmir]ppy _Gp-"'ﬂm_1#2"'#"[#147,..]' (53)

It is not necessarily the case that

G =G

PuU T Pm— 1 My o Pm— 1) 1y)

or even that the two are proportional. The maximal residual
freedom of G which preserves the symmetries of G and leaves
'™ invariant can be deduced exactly as for the sequence
(30)—(38) and has the form

‘SGp."'p,,.*lur-'#,. —P CPm— v M H? (56)
where

Bovipms =Ploypp_r (57)

Phy =0 (m—152). (58)

On the other hand, (43) allows a freedom 5
proportional to £, ..
r(l P 1 Pmtti] p2 Hn

(43) which leaves F invariant. Symmetry (39) and equa-
tions (42) and (55) imply

Pl Pm— 1817 By
s Gt v i iy - THIS  CAUSES

to vary but only within the freedom

0= F(m+I)P""Pm—l[pmpm“]ur“u,.
=T )
— [n/(m+1)] F('")”""”MHIPMPMH](ﬂn'“#n_l.u,.)
=I"(m)”""Pmﬂl[Pm#n"'ﬂ,. o]
+In/(m 4 1)) GP o
(59)

Therefore the Poincaré Lemma implies that there exists a
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tensor J such that

Ff»:"’ Pm bt + [n/(m + D] ap.'"pm(ur“#.._p#n)

"'J P 1 B o P (60)
Jp.---p,.._lu.~~;4,. =T oo M) s (61)
I son o e, =0 (m—132). (62)
Equations (59), (53), and (55) imply
JPI"'Pm~lF'2"'I‘n[,uhpm]

_ r(m)pl"‘pm_l[pm”l ]l‘z"'l“n
+V/(m 4+ DG,
= [m/(m 4 1)] GPPn=r it (63)
Hence J,., ... —Im/(m+1)] ap.'“p..._.ur'w..

obeys all the conditions of PLX2 which ensures the existence
of a tensor P, as in (57) and (58), satisfying

... oty [m/(m+1)]G

P Pm L Hy Pm— 1By

=P, . g (64)

P Pm— 1 BTy
We use freedom (56) and rescale to define

roD =[m/(m+1)] G

Pm— 1Bt P1° P 1 BBy

—[m/(tm+n)] P

PU T P 1 B e ?

or, equivalently, (65)
F(m.p,l..) R i R
—[n/m+n)1P, .., -
(66)

Clearly, Tt — " satisfies (40) and (41) for m — 1. Further-
more, by (52)

g

P 1 Pmbr] B2ty

=[(m+1)/m] LD

P — 1 B2 B B Pm ]’ (67)

and by (65), (66), and (60) one can readily verify (42) for
m — 1. Varying "~V according to

sTim b =a

Pm_ 1y M m—lgp."'pm_.(#m+|"'u,.,ﬂ."'#m)’

(68)

varies I' in accordance with (43) and leaves Finvariant.

The final result of carrying out all the above steps, for
m = n — 1 downtom = 1, is to establish the existence of the
completely symmetric potential I'?, ., =g, .., . The

Hn
trace condition W, .., =T, . =0, constitutes the
field equation'? for @

U, o, = ”ala(#. Pur--para
+ [r(n—1)/2]8,, 3

s, Py 2 =0 (69)
This equation is not itself derivable from a Lagrangian'? but
combined with a multiple of its own trace gives the equiva-
lent standard bosonic spin » Lagrangian equation.'*"*

The source constraint of Burgers'> and Berends,
Burgers and van Dam'* is, for spin >3, precisely the zero

double trace of I'®, namely
roLe, . =0,

A Py,

(70)
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which implies
aiW/{l‘z"'l"n = [(rn—1)72] WA"'(FZ"'Pn—lv/‘n) =0,
(71)

where W is the left-hand side of the field equation. Expand-
ing (71) in terms of the potential @,, ., yields, for n>4,

¢l{/1pp( B3 B fh3 phe) =02 (72)
and three successive applications of our third extension of
the Poincaré Lemma (PLX3, Appendix E) yield the double-
traceless condition'? for the potential @y, -, NAMely

P iy =0 (J=n>4). (73)

We note that the requirement (E3) of Appendix E is sup-
plied by the vanishing of our physical fields at infinity. With
the potential obeying the symmetry (73) the source con-
straint is identically satisfied. The vanishing divergence of
the trace of F for spin-2 and the antisymmetry of F=F for
spin-1 yield the lower-spin source constraints.

V. ARBITRARY HALF-ODD-INTEGER SPIN

The half-odd-integer spin analysis closely resembles the
integer spin case. The hierarchy of generalized tensor—spinor
Christoffel symbols of de Wit and Freedman'? can be re-
created exactly as for integer spin. However, in addition to
the traceless condition (41) for ' (m>2) one can im-
pose, by (14), a y-traceless condition:

VI ion, =0 (m>1).
The '™ have a gauge freedom of the same form as (43)
with the tensor £ replaced by a tensor—spinor, which we de-
note by €, obeying y*e, ..., , =0 (j=n+1}>3). This
condition, (74), supplies the appropriate first-order field
equation for the potential ¢, namely

‘9'/’#."'#,. — Y'Y iz o i) = O- (75)

Again, this is equivalent, though not identical, to the stan-
dard Lagrangian field equation.'>'*

For spin j = n + 1>7 the combination

347"1 F(Z)APPM'“M +3 Yol 4t 7’/1 F'(ii’zfﬂz“"‘n =0, (76)

yields the appropriate source-constraint equation and also

(74)

44 ¢plﬂ~( et 1) = O (77)
and hence, via PLX3, the zero double trace of ¢, ...,
VoW ey =0 (G=n+13D). (78)

For spin-3 and -} the source constraint arises from the equa-
tions satisfied by F.

It is worth emphasizing that, for all spins, the sets of
equations obeyed by the potentials @ or ¢ are equivalent to
the sets of equations obeyed by the field strengths. No equa-
tions have been especially selected or discarded in order to
obtain the standard Lagrangian field equations and source
constraints for arbitrary spin.

Vi. ALTERNATIVE SYMMETRIES FOR THE
LAGRANGIAN POTENTIALS

For spins-1 and -3 the integration from F to ¢ or ¢ is
completed in a single step and all the freedom arising from
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the integration corresponds to the usual gauge invariance of
@ or ¥. For spins >2, most of the freedom arising from each
integration was used to fix the symmetries of the fields '™
(m =0,...,, n — 1) in a conventional manner. Clearly, it is
desirable that alternative choices of potential symmetries
lead to equivalent dynamical equations. We will demon-
strate here that this is the case for spins-2 and -3. Another
desirable possibility would be for only one choice of symme-
tries to allow the series of integrations to be completed. This
may be the case for spin >3 though it seems likely that alter-
native integration schemes exist for higher spin as well.

For spin-2 we work directly with the original field
strength F, . As before, there must exist a field 4 such
that

Foupy =4 (79)
However, this time we use the antisymmetry of F to directly
impose

Apuv =A[pu]v' (80)
These equations are preserved if 4 is varied by an arbitrary
antisymmetric field B

64,,,=B,,,, B, =B, (81)

Equation (4) implies 4,,, ; , = 0 and hence there exists a
field C such that

11 P2 U2

pulv.d 1°

Aot = Copv - (82)
By (80) we can write
Ap;w = “pluv] — C#[pwl —Clipur (83)

Varying Caccording to 6C,, = D, , with D arbitrary leaves
A invariant. By splitting C into its antisymmetric and sym-
metric parts

Co = E#v + G;w = E[/JV] + Guys (84)
we find that

Ap#v = ZGv[#,pl + Ep/m" (85)
Hence we may use (81) to redefine

4, =4, —E,.. (86)

All of the equations (79)-(83) hold for,? replacing 4 and, in
addition, one has

A =26

puv vipp ]2 (87)
with G symmetric. N

The only variation of G which leaves 4 fixed is 5G,,,
= H,, and to preserve the symmetry of G, PLX2 allows
this to be expressed as 6G,, = J,, where J is an arbitrary
scalar. However, this variation can be incorporated into the

more general variation

6G,, =K (88)
which varies 4 according to 84,,,, = K, ,,.,, which is con-
sistent with (81) and leaves F invariant.

The relation between Fand } G is precisely that between
F and ¢ obtained by the formalism of Sec. IV. Therefore the
field equations for ¢ and G are identical and (88) is just the
appropriate spin-2 gauge invariance. Identifying } G=¢ we
find that A is just a (scaled) redefinition of I'*"

Apy = 2(1";:‘2, + Ppur )-

(p,v) ?

(89)

G. P. Collins and N. A. Doughty 453



For spin-] there is a similar alternative. However, the
derivation of the field equation is slightly less straightfor-
ward. For spin-3, the tensors 4, B,..., K become tensor—spin-
ors and, in addition to Egs. (79)—(88), we may impose

}/AAA’", = 0, ?/ABA“ = 0, YACA” = 0, ?’ADA =0.

(90)
We cannot require that both G and E be y traceless but we do
have

}/AAAMV = VAA/I;W - VAE/W,V = YAGAM,W (91)
which implies
27’le[,‘,/1 1 — VAGA,;.V =0, (92)

and hence the field equation for G is the same as that for the
spin-; field ¢. Again, | G can be identified with . The vari-
ation 6G,, =€, ,, with y*¢; = 0 preserves the value of F
and the symmetries of 4.

It is probable that similar alternative methods can be
applied to spin >3. In each case we expect that alternative
choices of symmetries will correspond to redefinitions of the
intermediate fields so that the physically relevant quantities,
the trivially invariant Fand the nontrivially invariant g or %,
are unaltered.

VII. CONCLUSION

Berends et al.'* show that interacting quantum field the-
ories involving fields of helicity > 2 encounter consistency
problems. Berends et al. also note, however, that consistent
higher-spin interaction may be possible with the inclusion of
an infinite number of participating higher-spin fields.

The current importance of superstring theories?* in uni-
fication studies of all the known interactions, including grav-
ity, is closely related to the consistency with which they may
be formulated. The close relationship between string states
and those of an infinite sequence of particles of various spins
points to the continued importance of higher-spin studies.

APPENDIX A: CONVENTIONS

Dirac algebra:
Minknowski metric:
partial derivatives:

complete symmetrization: 1

vyt =29",
n= (77/.w) =dlag( + 1’ - 1’ - 1; - 1)’
A,,=d,4, é=y"3,

However, analyses of arbitrary spin fields can be exceed-
ingly complex, if only because of the notational difficulties
involved. This can be especially true when different higher-
spin cases are considered individually and without full use of
the systematic relationships that must tie together fields
which are all irreps of the Poincaré group differing only in
their irrep labels. Indeed, failure to capitalize on the system-
atic relationships can easily lead to misunderstandings of the
origins of specific properties of higher-spin fields, especially
in the highly nontrivial Lagrangian potential formulation
which is routinely used for consideration of their mutual
interactions.

In this paper, we have further developed the systematic
study of arbitrary helicity fields by deriving the elegant rela-
tionships of de Wit and Freedman'? from the exceedingly
simple multispinor field strengths satisfying the equally sim-
ple Bargmann—Wigner equations. We have shown, by a di-
rect method, which is, however, unlikely to be the most ele-
gant available, that these simple equations may be
systematically integrated, uniformly for arbitrary spin, to
obtain all the properties of the Lagrangian potentials, their
field equations, gauge freedoms, and source constraints (or
Bianchi identities) without recourse to assumptions besides
those of relativistic classical free fields.

This derivation of the Lagrangian formulation for arbi-
trary helicity explicitly confirms the equivalence (modulo
gauge freedom and derivability from an action principle) of
the massless unmixed spin irreps and the nontrivially gauge-
invariant Lagrangian irreps of the Poincaré group.
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Ty = oy > Tu,,"'u,,,,’
m. “»

complete antisymmetrization: Tj, ..., ;= —nl—zl_ Y (— 1)”T,,"I...,‘"m,

w

where each sum is taken over all permutations, 7
= (my** 7, ), of thenumbers 1,...,mand ( — 1)7is + 1 or
— 1 for 7 even and odd, respectively.

APPENDIX B: POINCARE LEMMA

Completely antisymmetric tensors of rank » are essen-
tially equivalent to n-forms and a very concise expression of
the Poincaré Lemma makes use of the language of differen-
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'

tial forms (Misner, Thorne, and Wheeler,> and Choquet-
Bruhat, deWitt-Morette, and Dillard-Bleick®*). For the
purposes of this paper only the following two tensor expres-
sions of the Poincaré Lemma®’® are needed. Both cases (and
all their extensions) apply on a domain homeomorhic to R?
(with d = 4 used here).

Case 1: An arbitrary vector T, satisfying

3[” Tv]=0’ (Bl)
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can always be expressed in terms of a scalar S
T,=4,58,
and the only variation of S allowed is by a constant R.

Case 2: The antisymmetric part of an arbitrary tensor
T,, obeying

0, T2, =0, (B3)
can always be expressed in terms of a tensor S such that

T[#V] =a[ﬂ S, (B4)
and S may be varied by the gradient of an arbitrary tensor R

88, =d, R. (BS)

For each of these cases we may append any number of
free indices simultaneously on T, S, and R and any symme-
tries possessed by 7 on these indices may also be imposed on
the tensors .S and R. It is also possible to apply the Poincaré
Lemma to Majorana tensor-spinors (which have four real
spinor components in an appropriately chosen representa-
tion: see, for example, Doughty and Collins*®). As with sym-
metries on the free space-time indices, symmetries involving
the spinor indices may also be transferred to the tensor—
spinors corresponding to S and R above.

The following three appendices extend the Poincaré
Lemma for specialized cases, required in Secs. IV-VI, in-
volving highly symmetric tensors.

(B2)

M

APPENDIX C: POINCARE LEMMA EXTENSION 1 (PLX1)
Suppose that #>2 and the tensor A4 satisfies

Aoty = Ay (Ch

A#n"'#n_z[u.._nu,..l 15 0. (C2)
Then there exists a tensor B such that

Bty =By (€C3)

r,u.“-u.._lu.. EA#:"'#.._H‘;. _Bu."'n,._l-m.’ (c4)

Ty =Ty (C5)

Proof: (by induction) n = 2: The Poincaré Lemma and
(C2) implies there exists a vector B satisfying 4, , ;

=B, ., with T, , =4, —B, , clearly satisfying

By f2 = r(#ll‘z): . . .
n>3: Equation (C2) implies there exists a tensor C such

that

Aﬂr"#.._z[ﬂ.._m,.] = Cur"un_z[u,._p#n]’ (C6)
and by (C1) we may take

Cn."'u,._zﬂ.._. =Clu bt b1 (C7)
Using (C6) and (C1) yields

i _3[Bn— 280 1 Bn
These last two equations are just the assumptions (C1) and
(C2) for n — 1 so that by induction there exists a tensor D
such that

Dl‘u"'l-‘n-z =D(/“l“'“n—2)’ (C9)

Bt st = C i zpin s T Doyt _pitn_ 0
(C10)

By stins =Bty _qpin_ - (C11)
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By (C6) and (C10)
B

[TIRRSTTR (TR | =An."'ﬂ,._1[u.._ L (C12)

and I defined in (C4), using the B of (C10), satisfies (C5).
QE.D.

APPENDIX D: POINCARE LEMMA EXTENSION 2 (PLX2)
Suppose the tensor T satisfies

Ty, = T onys (DI1)

Tty st 1=0 (D2)
Then there exists a scalar P such that

T, .. =0, 0d,P (D3)

Proof: (By induction) n=1: T, =0 implies 7,
=d, P directly by the Poincaré Lemma.
n>2: Equation (D2) implies

Dt = Rttt sin (D4)
Equation (D1) implies we may take

R, p_ =Reup,_p> (D5)
and, in addition, (D1) and (D4) imply

Ryt sl in] =O- (D6)
Hence, by the inductive assumption,

R,. ., ,=0,"d, P (D7)
or

T, . =20,"d,nP (D8)

APPENDIX E: POINCARE LEMMA EXTENSION 3 (PLX3)
Suppose the tensor T satisfies

Tl‘l"'l‘n = T(Fl"'i‘n)’ (El)
T ity =0 (E2)

and suppose that 7"and its first » gradients vanish at infinity,
namely

Ty, =0 Ty 2, »00es Ty o2, — 0. (E3)
Then

T, . =0 (E4)

Proof: (by induction) n=1: T, ,, =0 implies 7, ;
=—=T,,=Ty,. Therefore 0= T,‘MP] = — T4l

which implies T}, ,, is constant. Thus by (E3) one has
0= T, ,, =T, , and hence T, isalso constant and similar-
ly vanishes by (E3).

n3»2: (El) and (E2) imply

Ty.ﬂ'p",l = = nTA(Mz"'l‘n'l"l)’ (ES)
and
T 2 (E6)

= T,. ... .
Bt A n+lj§1 AN TN M [ |

Where the caret indicates an omitted index, Eq. (E5) im-
plies
0= T“'.“l‘n,[lp] — _nT'“ (I‘z"'l‘ml‘l)’p]. (E7)

This (and the induction) allows the theory for n — 1 (with
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two extra free indices, kp) to be applied to the tensor
S, T, 1 to deduce

Kopy ey A

T,

[N Y [
By (E6), TM.,.#W,1 =0 so that T, ..
(E3) must vanish everywhere.
Remark: As with the Poincaré Lemma, the three exten-
sions above generalize to tensors 4 or T with extra free space-
time or spinorial indices and any symmetries involving only
the free indices can be imposed on the tensors B, I', and T.
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It is supposed that a single fermion with Hamiltonian H = a'p + Bu(r) + ¢(r), where u(r)
and ¢(7) are central potentials, obeys the Dirac equation. If ¢, (7) and ¥,(r) are the radial
factors in the Dirac spinor, then the graph {¢,(r), ¥,(r)} for re(0, ) is called a spinor orbit.
In cases where discrete eigenvalues exist, the corresponding spinor orbit eventually returns to
the origin. However, if there is a constant a0 such that, for 7> a, the three functions ¢(r),
é(r)/u(r), and ru(r) increase monotonically without bound, then it is proved that the spinor
orbit must eventually be confined to an annular region excluding the origin. Consequently, the

spinor orbit approaches a “spinor circle,” the spinor is not L %, and there are no eigenvalues.
This happens, for example, if x is constant and ¢(r) is any monotone increasing and
unbounded potential. In such cases the radius of the spinor circle is sensitive to the energy, and
instead of eigenvalues one finds a sequence of resonant energies for which the radii of the

spinor circles are local minima.

I. INTRODUCTION

We consider a single spin-} fermion moving in a static
central field ¢ (). This potential is actually the time compo-
nent of a four-vector, just like the Coulomb potential of the
hydrogen atom. We also allow for a central scalar potential
by writing the mass as m = u(r). Thus the Dirac Hamilto-
nian has the form:

H=qap+ Bu(r) + ¢(r), (1.1)

where a = (a,,a,,a;) and S are the usual Dirac operators
defined, for example, in the book by Messiah.! The main
result of this paper (which we prove in Sec. IV) is to estab-
lish sufficient conditions on unbounded potentials which im-
ply that the Hamiltonian H has no eigenvalues. We suppose
that there is a distance a >0, such that for r > a the following
three conditions hold:

#(r), ¢(r)/u(r), and ru(r) are positive

monotone increasing without bound. (1.2)

These conditions describe a competition between the
scalar and vector potentials. The conditions are satisfied if
the vector component ¢(7) dominates the scalar potential
u(r) sufficiently strongly. For example, if () is constant
and ¢(r) increases without bound, then the three conditions
are met and we know that there are no eigenvalues.

There is extensive literature on the Dirac equation going
back to 1928. Interest in the nature of the spectrum when the
potentials are unbounded has emerged in recent years main-
ly because of the importance of the problem for applications
to quark physics. Specific results, which we have to date,>™
are consistent with the present work, in the general sense
that bound states are found not to exist whenever an un-
bounded vector potential dominates the scalar potential.
The purpose of this article is to treat this question more gen-
erally, and by a new method that may also prove to be useful
as a tool for treating other aspects of the Dirac problem.
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Our technique is to study what we call Dirac spinor
orbits. These were first introduced in Ref. 5 as a method for
finding Dirac eigenvalues with the aid of a microcomputer.
For central potentials, we can choose the total angular mo-
mentum and the parity and then solve the Dirac equation for
agiven value E of the energy. The Dirac spinors so generated
can be constructed (more details will be given in the next
section) with the aid of just two radial functions ¥,(r) and
¥,(r), which are sometimes called the large and small radial
functions. With the initial conditions

%,(0) = 4,(0) =0, (1.3)

the energy E is an eigenvalue of H if the boundary condition

Jm{tﬁi(r) + Y3 (r)}dr< o, (1.4)
0

that is to say, if the spinor is L 2. A Dirac spinor orbit is the
graph {¢,(7), ¥,(r)} for re(0,). In Fig. 1 we show the
spinor orbit for the hydrogenic atom with u(r) =1,
#(r)= —02/r, J=3, parity= +1, and the energy
E = 0.999 591 308, which is (approximately) the energy of
the fifth excited radial state. It is, of course, not clear from
such a figure whether or not the orbit is L % because we have
no idea how fast the orbit returns to the origin. However, if
the orbit never returned to the origin, we would certainly
know that the spinor was not L 2 and that £ was not an eigen-
value.

This is how we prove our result. We prove that for the
class of potentials satisfying ( 1.2) the Dirac spinor orbit nev-
er returns to the origin; in fact, in those cases we shall prove
that, for any choice of E, the orbit is eventually confined to
an annular region excluding the origin. Such orbits approach
a circular orbit we call a spinor circle. Our proof depends on
the convergence properties of some delicate conditionally
convergent integrals. These integrals are discussed in Sec.
IIL

®© 1987 American Institute of Physics 457



: e
i

-12 ¥ 12

FIG. 1. The spinor orbit for the hydrogenlike problem p =1,
#(r) = —0.2/r, and the eigenvalue El =E{, =099951308

Some illustrations of spinor orbits with spinor circles
and a discussion of the resonancelike properties of the orbits
when no eigenvalues exist are presented in Sec.V.

Il. THE ORBIT EQUATIONS

We are concerned with central potentials and it is there-
fore possible to work entirely in a subspace labeled by the
total angular momentum quantum numbers JM and the par-
ity P. It is very convenient to follow the exposition of Mes-
siah! and introduce two new quantum numbers 7 and k de-
fined by

P=(— 1)J+(l/2)‘r’ k=J—|—;_, (21)

where 7 (called @ by Messiah) takesthetwo values 7 = + 1.
The spinor can be constructed with the aid of just two radial
functions, which we write in the form ¢~ %,(t) and
t ~'y,(t), along with spherical harmonics and spin func-
tions. We now use ¢ instead of 7 for the radial variable in
order to suggest the idea that the orbit is generated by an
abstract dynamical system in the plane. The coupled radial
equations for the central field problem may then be written
as the dynamical system

{:_d + ltk_] 0,(8) ={E —pu(t) — ¢}, (1),

dt
2.2)
d Tk
(2 + 2L o) = B+ 0 — g0},
with the initial conditions
¥,(0) = ¢,(0) =0. (2.3)

The dynamical system (2.2) can also be written in the vector
form

W'(t) = S()W(2), where W(1) = [¢,(1)h (D)1,
(2.4)
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and S(z) is given by

— kt/t
(u—E+¢)

The singularity in the differential operator S(z) at # = 0 al-
lows this system to move away from the origin.

We now introduce an important argument. We suppose
that the potentials 12 (¢) and () are such that there are no
singularities in S(z) for #> 0. In this case, if ¥(z) is zero
(that is to say, the orbit is at the origin) for = ¢, > 0, then
we can run the system both forwards and backwards from ¢,,
and, since (2.4) is linear and homogenous, we conclude that
Y(¢t) is zero for all . Hence, nontrivial solutions cannot re-
turn to the origin for finite positive 2.

Now we look at an argument concerning the asymptotic
behavior of a particular class of potentials. Much of the rest
of this paper is directed towards making this kind of argu-
ment secure. Suppose #(¢) is non-negative, increases with-
out bound, and dominates 4 (¢) in the sense that ¢(z)/u(t)
also increases without bound. Then, for large ¢, S(¢) has the
asymptotic form

-2 =4

We can therefore immediately write down an asymptotic
solution to the system equations in the form

¥, (1) =R cosU ¢(t)dt),

(U+E—9¢)

S = [ kr/t

(2.5)

(2.6)

2.7
¥,(t) =R sin(f ¢(t)dt) ,

where R is a constant which, for a nontrivial solution, cannot
be zero. The graph of this asymptotic solution is a spinor
circle and the spinor is therefore not L ? and there can be no
eigenvalues. The weak point of this argument is that, al-
though in the above asymptotic solution R cannot be zero, in
the (unknown) exact solution a corresponding time-depen-
dent radial factor may approach zero sufficiently fast for the
orbit to be L 2. This possibility must be ruled out.

We shall continue the discussion of the orbits by using
the polar variables:

r(t) = {3 (1) + V3 ()}'3
0(t) = arctan{y,(2) /¢, (1) }.

In terms of these polar variables the system equations (2.2)
become

(2.8)

P (8)/r(t) = p(2)sin(20(2)) — (kr/t)cos(26(1)), (2.9)
0'(t) = (¢(2) — E) + pu(t)cos(26(1))
+ (k7/t)sin(260(2)). (2.10)

These equations are valid for ¢>0. The initial condition
(2.3) becomes 7(0) = 0. The initial angle (0) depends on
the form of ¢ () and u(#) and can usually be calculated by
using a series approximation about ¢ = 0.

We now start the work towards the proof of our main
result. We observe that (2.10) does not involve 7(¢). By us-
ing our hypotheses (1.2) in the 6 equation (2.10) we see that
a positive number a exists such that for ¢ > a, 8 (¢) > 0; also,
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6'(t) increases without bound as r— «. Moreover, if we
choose a sufficiently large, we also have 8(¢) > 0 and there-
fore, on the patch (a,0), 6(¢) is positive and monotone
increasing without bound. We may therefore change vari-
ables and work with @ instead of 2. If we let 8, = 6(a), wecan
now formally integrate Eq. (2.9) and write r in the form

r=r(a)exp(/(9)), (2.11)
where (with s = 260) we have
20 .
J(0) = _1_ sin(s) — o(s)cos(s) ds, (2.12)

2 Jas, g(s) + cos(s) + o(s)sin(s)
and we define g(s) and o(s) by the expressions

8(20) = {¢(t) — EY/u(t), o(26) =krlu()]~".
(2.13)

The direction of our argument now is as follows. If we can
show that J(8) is bounded, say |J(89)| < B, for 6e(8,,),
then (2.12) implies that the spinor orbit lies inside an annu-
lar region with boundary radii r(a)exp( —B) and
r(a)exp(B). Meanwhile, as we showed above, r(a) cannot
be zero. Hence, such an orbit will not be L 2 and there can be
no eigenvalues.

Since, by hypothesis (for ¢ sufficiently large), both ¢(2)
and the ratio ¢(#)/u(t) increase monotonically without
bound, and since weknow that 8 ‘(¢) > 0,and @’ (¢) increases
without bound as 7— «, we can easily prove from (2.13)
that g(s) is positive and monotone increasing without bound
for s sufficiently large. Similarly, our hypotheses (1.2) guar-
antee that |o(s)| decreases monotonically to zero as s— oo
(i.e., = o ). We shall assume that properties of g(s) and
o(s) for the remainder of the paper.

If g(s) were to increase, for example, like 5%, for a > 1,
then J( o0 ) would be absolutely convergent. However, this
only happens for potentials which increase faster than expo-
nential. The power-law potentials, for example, cannot be
accommodated this way. We can see this by the following
argument: suppose ¢ = const, and ¢(¢) = ¢7, then, for large
t, O()~tit', and ¢~0%9+D;  consequently,
g(s) ~s7 9+ 1 increases too slowly. Therefore in order to
handle such potentials as the linear potential, we must treat
the integral J(@) as a conditionally convergent integral as
O 0.

Since g(s) increases monotonically without bound,
comparison of J(@) with the well-known convergent im-
proper integral

sin(s) ds
20, 2(5)
would appear to settle the issue immediately in favor of all
increasing potentials. However, it turns out that the conver-
gence of X is easily disturbed by small perturbations such as
we have in J(8). These convergence questions are treated in
Sec. III and we return to complete the proof of our main
result in Sec. IV.

K= (2.14)

lii. SOME INTEGRALS

Throughout this section we shall assume that the con-
stant 6, > 0 and that the function g(8) is defined and positive
and differentiable on (6,,% ). In addition we shall assume
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that g(6) is monotone increasing without bound as §— o.
The monotone behavior is essential whereas the differentia-
bility is merely an analytical convenience.
The first result is the well-known convergent integral.
Theorem 3.1:

J = sin(8)
o, £(6)
Proof of Theorem 3. 1: See, for example, the text by Wid-
der,S p. 331.
We now demonstrate that the convergence of (3.1) can
be upset by a periodic perturbation of the denominator.
Theorem 3.2:
_ ® sin(8)

o, {g(6) —sin()}
diverges if the integral £ {g(6)}~2 d6 diverges. In particu-
lar, the case g(8) = 8 '/* diverges.

Proof of Theorem 3.2: We construct a lower bound. Let

K, be the integral in (3.2) from @=1¢, =2n7 to

6 =2(n+ 1)m, where n is a positive integer. Then, by

change of variables, we may write this integral in the form:
K - J” sin(){g(#, +7+1) —g(t, +1¢) + 2sin(1)}

" Jo {8t +0) —sin(OHg(t, + 7+ ) +sin()}

(3.3)

de. 3.1

J (3.2)

Since g is monotone increasing, we therefore have
K,>m{g(t, +2m) +1}72

This inequality establishes Theorem (3.2). We note that the
changes of variables -6 + 7 and 66 + } 7 leave the
proof unchanged so that the sin functions can both be
changed to cos, and the sign in the denominator can be
changed from — to + without altering the divergence
properties of the integral.

Before considering the next integral, we first prove a
lemma that is really a mean-value theorem for the type of
integral we are discussing.

Lemma 3.1: Suppose that the functions p(8) and ¢(8)
are continuous and suppose that g(8) + p(8)5£0 for
fe[a,b], where b>a>0, then there exists a constant
0.,€[a,b] such that the integral

I A 1C)
« {2(0) +4(6)}
has the representation P = G(8,) where G(x) is defined by

" p®)
« {8(x) +49(0)}

Proof of Lemma 3.1: The function G(x) is continuous.
Because g(8) is monotone, we see that, as x varies between a
and b G(x) varies monotonically, assuming all values
between G(a) and G(b). Meanwhile, the integral P lies
between G(a) and G(b). This establishes Lemma 3.1.

Theorem 3.3: The following integral is convergent:

Y sin(8)
o, {8(6) + cos(6)}
Proofof Theorem 3.3: We let K, represent the integral in

(3.4) between the limits t, = nmand (n + 1)7, wherenisa
positive integer. We may now employ the mean-value

G(x) =

Js (34)
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Lemma (3.1) along with the appropriate changes of vari-
ables to write K, in the form

K,=(—1)"*YG(t, +1,), (3.5)
where the function G(x) is given by
G(x) =In|(g(x) + 1)/(g(x) - 1)|, (3.6)

and 1,€[0,7]. Since g is monotone increasing to infinity, it
follows that the function G(x) in (3.6) is monotone decreas-
ing to zero. Meanwhile, the sequence {z, + 7, } is monotone
increasing to infinity. Consequently a sum of terms of the
form K, is a convergent alternating series and we have
proved that the integral (3.4) converges. We note that by
making the changes of variable, 6~60 + 1 7 and 0—-0 + 7,
the proof again goes through and we can conclude that the
convergence is unaltered if the sin and cos are interchanged
and also if the sign in the denominator is reversed.

IV. THE SPINOR CIRCLE THEOREM

We now continue the proof of our main result, which we
began in Sec. II. We need to show that for the class of poten-
tials (1.2) the integral J(&) given in (2.12) is bounded for
6e(8,, ). We shall prove this by showing that, by a suitable
change of variables, we can write J=J() as the sum
J=J, + J, of two integrals, where J; is the conditionally
convergent integral of Theorem 3.3 and J, is absolutely con-
vergent. We begin by defining the angle y(s), —in
<y(s)<} m, and the quantity p(s) as follows:

y(s) =arctan(o(s)), p(s) ={1+ 2O}  (4.1)
We recall that g(s) is monotone increasing without bound
and o2 (s) is monotone decreasing to zero as s— co [the sign
of o'(s) itself is the same as 7]. The integral J now takes the
form

1 (~ sin(s — y(s)) d
=— s.
2 )20, {g(s)/p(s) + cosls — y(s))}

It is natural at this point to make the change of variables

u=s—y(s), flu)=g(s)/p(s). (4.3)

It follows from (4.1) and our hypotheses (1.2) and the re-
sult from Sec. II that 8 ’(¢) > 0, that

J (4.2)

Y'(s) =1 0(s)o'(s)p~*(s) <0. (4.4)
Hence we have the differential relation
ds=du + y'(s)ds. (4.5)

Meanwhile, because ¥(s) is bounded and s increases without
bound, we conclude that the variable # increases monotoni-
cally without bound as s — . The integral now has the form
J =J; + J,, where J, is given by

1 (™ sin(u)
Iy =— du, (4~6)
72 ) {fw) +cos(u)}
where u, = 26, — 7(20,), and J, is given by
= i sin(u)y' (s) 4.7

2 Jas, {f(u) + cos(u)} >

The function f(u) = g(s)/p(s) is an increasing function of u
for we have
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df _ d{e/p}

— ’ -1
ds ds g$)p~ ()

—g(s)o(s)o' (s)p™3(s) >0, (4.8)

and therefore, sincedu/ds > 0, it follows that /' (z) > 0. Also,
since # — oo =>5— w0, we know also that f(u) increases with-
out bound as ¥ — « . Consequently, the integral in (4.6) has
exactly the form of the conditionally convergent integral J,
in Theorem 3.3.

The integral J, is absolutely convergent because the fac-
tor ¥'(s) in the integrand decreases to zero sufficiently fast
and the other factor is bounded. In fact we have

|12741<| 7(26,)|(8(26,)/p(26,) —1]7". (4.9)

Thus the integral J( « ) is bounded and so therefore is
J(8) for 6e(6,, ). Hence there exists a positive number B
such that |J(8)|<B for 8e(8,,0). Consequently, from
(2.11) we have that the spinor orbit is confined for > a to
the annulus bounded by r = r(a)exp( + B). Since the orbit
is confined to an annular region excluding the origin, we can
now rely on the argument we introduce in Sec. II that shows
that the orbit approaches a circle as #— .

This completes our proof that no eigenvalues exist and
the orbit is asymptotically circular if the potentials satisfy
the conditions (1.2).

V. AN EXAMPLE

We now consider an illustration of the circle phenome-
non which we have thus far characterized in general math-
ematically. We consider the case of a harmonic oscillator
with constant mass u(#) =1 and vector potential
& () = (0.02) £, We first suppose that in all innocence we
were to look for an “eigenvalue” withJ = }, parity P= — 1,
and the fourth radial state (counting the bottom as the first),
that is to say n = 4, where # is a radial quantum number.
First, from (2.1) we see that 7 = k = 1. Examination of the
orbit equations near r = 0 leads us to the conclusion that the
orbit should start from the origin initially along the ¥, axis.
The absolute size of the orbit is not significant in this discus-
sion, but all the orbits we show are drawn to the same scale.
As we shall see, the relative sizes are important.

In order to find the energy E§, = E [ ,, e therefore
integrate the Dirac equations (2.2) and try to find a value for
E which causes the orbit to have three nodes in #,(¢) and
after this the orbit should (for the n = 4 eigenvalue) ap-
proach the origin. If we arrange for a microcomputer to per-
form this search automatically we get the Dirac spinor orbit
shown in Fig. 2(a) which was obtained with E = 2.385 28.

However, although all seems well at first glance, diffi-
culties are encountered with the algorithm that searches for
that energy which would allow the orbit to approach the
origin after the required number of nodes. In fact, as we
know, no such approach is possible. Figure 2(b) shows the
central part of the orbit and it is the best we could do in
choosing £ to minimize the size of the spinor circle. The
radius of this circle is about 1% of the overall size of the
complete orbit. The T inscribed next to the orbit indicates
the point at which the equation

E=¢(t) —u(1) (5.1)
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FIG. 2. (a) The spinor orbit for the harmonic-oscillator potential 2 = 1, #(r) = 0.02 7, and the resonance E ;7 ,, = 2.382 58. (b) The central part of the
spinor orbit in Fig. 2(a) for the harmonic oscillator, showing the approach to the minimal spinor circle. (c) The central part of the spinor orbit for the
harmonic-oscillator potential u = 1, $(r) = 0.02 7 of Fig. 2(a), but with the energy value E = E [, ,, — 10™*. (d) The central part of the spinor orbit for the
harmonic-oscillator potential z = 1, #(r) = 0.02 7 of Fig. 2(a), but with the energy value E=E ,, + 107*.

is satisfied. After this point, the initial clockwise direction of
the orbit is reversed and the orbit now assumes the anticlock-
wise direction of the spinor circle according to the matrix
(2.5).

In Figs. 2(c) and 2(d) we show what happens to the
spinor circle if the energy E is, respectively, decreased and
increased by only 10™*, in both cases the circle radius in-
creases by a factor of about 10. What we have here is a phe-
nomenon exactly analogous to resonance in scattering. One
can define resonance energies in scattering to be precisely
those values for which, for a given ingoing probability cur-
rent, the outgoing probability current is minimized. In the
present problem, the Dirac particle therefore “sees’ (in the
Schrddinger sense) not an unbounded confining oscillator
potential 7 but something (qualitatively) more like 72 — #*:
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the spinor circle is simply a representation for the outgoing
wave after tunneling through the barrier.

We note that the same phenomena as we have seen with
the oscillator are found with other examples that meet the
hypotheses of the circle theorem. For example, we have
found similar graphs for the very slowly increasing un-
bounded potential ¢ (¢) = In(In(z + 3)) withu(z) = 1. Inall
cases one can find a sequence of resonance energies that lo-
cally minimize the radius of the spinor circle.

V1. CONCLUSION

We have proved that there are no eigenvalues to the one-
particle Dirac problem if the vector potential #(r) increases
without bound and dominates the scalar potential z(r) in
the sense that ¢ (7)/u(r) increases without bound as r— .
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We also require that the scalar potential does not diminish
with distance too fast, that is to say, that ru(r) increases
without bound. For potentials satisfying these hypotheses,
we have proved that the spinor orbit eventually lies inside an
annular region excluding the origin and it approaches a
spinor circle asymptotically as 7— co.

In certain special cases it has been argued by Su and Ma’
that, if the vector and scalar potentials are equal, then there
are no eigenvalues. It does not seem possible to prove this
result in general by our method.

There may be another class of potentials for which the
orbit can eventually approach the origin but not sufficiently
fast for the spinor to be square integrable. We do not know
what such potentials might look like except that they would
have to be bounded.
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In the context of quaternion valued fields spontaneous symmetry breaking and the Higgs
mechanism are investigated. In particular, for the potential — (u?/2)d¢ — (A /4) (#¢)?,
Goldstone’s theorem is studied and, for the gauge theory of automorphisms of the quaternions,

a Higgs mechanism investigated.

I. INTRODUCTION

The fact that the Birkhoff and von Neumann' formula-
tion of quantum mechanics admits quaternionic scalars has
invited study of so-called “quaternionic quantum mechan-
ics” (QQM) by a number of authors.>”® Independently,
Kaneno? and Finkelstein et al.? first looked at QQM in the
early 1960s. Finkelstein ef a/. and Rembielinski’ have inves-
tigated the quaternionic quantum Hilbert space.

This interest in QQM began concurrently with interest
in gauge theories; not surprisingly, gauge theory was incor-
porated in QQM at the beginning. As a result, several gauge
symmetries have been proposed.*>3? Since we do not find
these symmetries exactly reflected in nature, we must find a
mechanism by which to break them. Spontaneous symmetry
breaking (SSB) and the Higgs mechanism are successful in
breaking gauge symmetries in the complex theory.'®

In a quaternionic theory the classical fields are quater-
nion valued functions of space time. The Lagrangian will be
a function of these quaternionic fields and so the form of it
will be restricted by quaternionic multiplication. There will,
however, be no restriction on the nature of the fields like
those on Chkareuli’s® “quasireal” fields. Equally, the deriva-
tive will not be restricted as Morita’s® is; this can be done
without losing the association between infinitisimal changes
and derivatives.

We will produce SSB and the Higgs mechanism for qua-
ternionic valued fields, though it is not the case that we give a
physical interpretation of the full quaternionic field apart
from its components. That is, we wish to consider the phys-
ical fields as the components of the quaternionic fields.

The plan of this paper is as follows: in Sec. III, a quater-
nionic SSB will be investigated and a quaternionic Gold-
stone’s theorem produced for the potential — (u?/2)dé

— (A /4)(#4)2 In Sec. IV, quaternionic gauge theory is dis-
cussed and the preferred example of an automorphic gauge
theory examined. In Sec. V a quaternionic Higgs mechanism
is produced in the context of automorphic gauge theory.* In
Sec. VI a simple Lagrangian is expanded in terms of quater-
nionic components for a general vacuum vector and possible
decompositions of the gauge boson & /a Finkelstein ez al.* are
investigated.

Il. NOTATION

We will use Einstein summation notation. Greek indices
will take the values O, 1, 2, and 3 and Latin indices will take
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the values 1, 2, and 3 unless otherwise specified.

Let the quaternions Q be the noncommutative algebra
{q.¢.: g,€R} where addition is defined by gq,e,
+p.e, = (q, + P, )e, and multiplication is defined by

Gu€, " Tgeg =q,rg(e, * €g),

where
€ "€ =¢€y €;°€=¢eye =¢,
ee; = — 8 e0 + €ey,

with €, the alternating symbol with €,,; = 1.
Let ¢(x) be a quaternion valued field and define

$(x) = ¢, (x)e, =(x)eo + ¢; (x)e;
= ¢0(x)e0 + Q(x) )

where an underbar indicates the vector component. Note
that ¢, (x) is a real function R* - R. Let

P(x) = ¢, (x)e,,

where

e,=¢, and € = —e,.
Let

d,8(x) =3d,4,(x)e,.
Let

S() =4 (§+6) = doto.
Let

lg| =gq for geQ.

This is a norm on the quaternions and g¢ = q.¢,¢,. It is
noteworthy that |¢,9,| = |q,| |¢.|-

lll. QUATERNIONIC SPONTANEOUS SYMMETRY
BREAKING

We begin by looking at the classical nongauge invariant
case of SSB for quaternion valued fields. Variations §Vin the
potential ¥ (¢4) due to variations in ¢ are approximated by
3V /3¢,)6¢,. So for symmetries which rotate the ¢,
amongst themselves SSB and Goldstone’s theorem follow
that of four real fields.

The following shows what happens in quaternion lan-
guage. Remembering that multiplication is quaternionic we
consider the Lagrangian

&L =38,43,¢6—V(g), (3.1a)
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V($) = (u*/2)9¢ + (A /4)(44)2,
u:<0, A>0. (3.1b)

For future use we note the action of the derivative on the
function V: @—-R s

dV($,ds) = (u* + Add)S(¢ dP), (3.2)
d(dv)(4,ds)
=24S(¢ d)*+ (u* +Ad$)S(dd dp). (3.3)

We now consider an infinitesimal variation 8¢ of ¢ with
8¢ = 'R g, ¢,e5, (3.4)
where o' is infinitesimal and real, R , is real, and i takes the

values 1,2,...,n. The variationin V to first order (see Refs. 11,
12,and 13) is

8V = (u* +Ad$)S(¢ 54). (3.5)
Differentiating (3.5) we find
d(8V) = (u* + 14¢)d [S(¢ 5)]
+248(¢ dp)S($ 6¢). (3.6)

The vacuum state is the state of minimum energy and
can be found by minimizing the potential. So the vacuum
state satisfies

dV(v,d$) =0, (3.7

for all d¢eQ, where v is the value of the field in the vacuum
state. From (3.2) and (3.7) we have either v = — u/A or
S(v,d¢) = 0for all dpeQ, and S(v,dg) = O for all dpeQ im-
plies v = 0. So as ¥(v) is a minimum of ¥, and u? <0 and
A >0 implies ¥(v) <0, we have

(3.8)

Such a vacuum state is in general not invariant under varia-
tions (3.4).

We now assume that the Lagrangian and the potential
are invariant under variations (3.4). That is that ¥ = O for
all w', i = 1,...,n. Therefore

d(6W)|4-, =0, (3.9)
for alldpeQand forall @', i = 1,...,n. Nowasv#0,S(v d¢)
can be made to take any real value by suitable choice of d¢.
So using (3.8) and (3.6) we have

S(vR p,v,€5) =0,
foralli=1,...,n.

A real valued function ¥ of a quaternionic variable ¢ has
the following “Taylor” series expansion'%:

Vig)=V() +dV|,_, +3ddV|,_, +
dp=¢ dg, = dp, = ¢
(3.11)

where we have expanded V(¢) about v with ¢’ = ¢ — v.
For the potential (3.1b) using (3.2), (3.3), and (3.8)
we find that its series expansion to second order is

V(g) = V(v) + AS(vg")2 (3.12)

Alternatively by straight substitution of ¢’ + v for ¢ in
(3.1b) we find using (3.8) that

V(g) =V(v) +AS(W )2+ (A /4)( §'¢')?
+ (A/2)(¢'¢") (¢'v +Bg').

= —pu*/A.

(3.10)

(3.13)
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Thus if ¢’ is a linear combination of the R .;uze,, then by
(3.10) there are no second-order terms in ¢’ in the potential.
Consider the subspace G (the quaternions may be consid-
ered as a four-dimensional real vector space with the unit
vectors €,, e,, e,, e;) of the quaternions spanned by
{R i gv,eq: i=1,..,n}. As we physically interpret ¢’ at the
component level, and as any component of ¢’ in G will have
no second-order term in the Lagrangian, then any compo-
nent of ¢' in G will correspond to a massless particle. Now
the dimension of G is the same as the number of independent
components of ¢’, which can be massless, and this is equal to
the number of independent quaternions R | zvze,,, with J tak-
ing values 1, 2,...,n. This is Goldstone’s theorem.

IV. QUATERNIONIC GAUGE THEORY

We now examine the rudiments of quaternionic gauge
theory for classical scalar fields. Take a field ¢(x)eQ and
assume that the Lagrangian governing the motion is invar-
iant under transformations ¢ — ¢ -+ 64, where

6¢ = 'R pdge, 4.1)
for infinitesimal w'eR, i = 1,2,...,n. Note that we are consid-
ering rotations within a quaternion value field, that is, rota-
tions between the components of a field not rotations
between quaternion valued fields. However, with the inter-
pretation that the quaternion components are the physical
fields then we are still rotating the particles amongst them-

selves.

If we allow @ to depend upon the space-time coordinate
x then to ensure the invariance of the Lagrangian under
these “local” transformations we need to introduce a covar-
iant derivative. We require any gauge field introduced in the
covariant derivative to be quaternion valued and that it ap-
pears in the Lagrangian as a quaternion and not in compo-
nents. As a result, although we introduce several gauge bo-
sons at a component level, we can only produce the
interaction terms by a combination of quaternion multipli-
cation and quaternion addition of the gauge boson field and
the other particle fields, so the quaternionic form of the co-
variant derivative is dependent on the R ’s.

In a quantum theory, the field and the canonical mo-
mentum will satisfy some (anti)commutation relations. For
complex theories U(1) symmetry is guaranteed to leave the
(anti)commutation relations alone as exp(if) commutes
with all the operators.!* However, not all of the R ’s above
generate transformations that leave the form of the
(anti)commutation relations of the quaternionic field alone.
One transformation that does not have this problem is ¢
going to gég ', where q is a quaternion. Since 7, the conju-
gate momentum is a function of ¢ and d, ¢ then 7, goes to
qﬂ#q_‘ and so the form of the (anti) commutation relations
is unchanged.

So we will follow Finkelstein ef al.* and consider the
automorphisms of the quaternions as the symmetry of the
Lagrangian. This means that the physics described by the
Lagrangian does not vary with changes in the quaternions
that leave the algebra invariant.

These automorphisms form the group O(3) acting on
the vector part of the quaternions. That is that every auto-
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morphic gauge transformation leaves ¢, alone and trans-
forms ¢ by an O(3) gauge transformation.

As a global symmetry of the Lagrangian, we have that
the Lagrangian is invariant under the transformation

$(x)—~gp(x)g~", (4.2)
for geQ. In infinitesimal form this transformation is
$(x) > (14g +26,Z [5)Pge0s (4.3)
where i = 1,2,3, and can be written
$(x) = d(x) + [¢(x),E], (4.4)
with
=0

fora =0o0r =0, and

a8 = €iap>
for a0 and B #0. Here, € is the totally antisymmetric
symbol with €,,; = 1, E is defined as ¢,¢;, and ¢; is an infini-
tesimal. As a local symmetry, we have that the Lagrangian is
invariant under transformations

d(x) »g(x)$(x)g(x)"", (4.5)

for any function ¢: R*— Q such that dg(x,dx) exists for all x
and dx. In infinitesimal form this is

P(x) > (log + 26,(X)Z (5 )d5e, - (4.6)
This can be written
d(x)>dx + [#(x),E(x)] 4.7

with Z as above and with ¢, (x) infinitesimal and differen-
tiable for all x, while E(x) is still ¢, (x)e; and dE(x,dx)
exists.

The requirement of local symmetry of the Lagrangian
is, as such, not satisfied by all Lagrangians that satisfy the
global symmetry. The problem lies with the derivatives of
the fields. Assuming that the Lagrangian has no derivative of
greater than first order then local symmetry is satisfied by a
Lagrangian that satisfies global symmetry if we replace the
derivative, d,, by a covariant derivative, D,,, such that

g(x)(D,$)q(x) "' =D (g(x)d(x)g(x)~").  (4.8)
We let D, have the form
D,¢=3,4+q[4,.4], (4.9)

where A4, is a quaternionic vector field with 4, =4, ¢,.
The requirement that D, ¢ transforms as in (4.8) is a neces-
sary and sufficient condition for 4,,, defined in (4.9), to
transform

A, (x)->q(x)4, (x)g(x) " + (1/8)(3,9(x))g(x) ",
(4.10)

which has the infinitesimal form

A, (x) A4, (x) + [4,(x),E(x)] + (1/8)3,E(x),
(4.11)
where E is defined above.
A kinetic energy term for the gauge field 4, must be
gauge invariant and involve first derivatives of 4,,. Such a

termis K, K,,,, where
K, =d,4,—-3d, A, —g[A,A4,].

Explicitly, we have

(4.12)
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I—(l“’Kl“' =2( a,uAvauAv - auAvavA;u)
—28(3d,4,[4,.4,] + [A”,Av]a#Av)
+&[4,4,][4,.4,]- (4.13)

V. THE HIGGS MECHANISM FOR A QUATERNIONIC
GAUGE THEORY

If there are to exist gauge symmetries apart from elec-
tromagnetism and color, then the zero mass Goldstone bo-
sons that are predicted are phenomenologically unaccepta-
ble. The Higgs mechanism transforms the fields to a gauge—
the unitary gauge—in which the offending fields no longer
lie in the space of massless particles that Goldstone’s
theorem provided, thus avoiding unknown massless parti-
cles. In complex theories it is fortuitous that in the unitary
gauge not only is Goldstone’s theorem a null result but that
the gauge bosons decouple from the scalar field to first order
and that some gauge bosons acquire mass.

To look at the Higgs mechanism quaternionically we
combine the two examples already used. When local auto-
morphic gauge invariance, of Sec. IV, is required of the La-
grangian (3.1a), it becomes

£ = D,¢D,¢— V() + K, K,.. (5.1)

where V() isdefined in (3.1b), D, ¢ is defined in (4.9), and
the kinetic term of (4.13) has been added.

Goldstone’s theorem is—in this language—for a vacu-
um quaternion v satisfying v = — u?/A4 thatifacomponent
of ¢’ =¢ — v is in the space G generated by {Z/ve,:
i =1,2,3}, then that component has no second-order terms
in V. The Higgs mechanism becomes finding a gauge—the
unitary gauge—such that in this gauge the shifted field has
no components in G. That is, if the unitary gauge is the phys-
ical gauge then none of the physical Higgs bosons may be
forced to be massless through Goldstone’s theorem.

Now writing gauge transformations as ¢ —O(¢), the
transformation to the unitary gauge is required by the last
paragraph in Sec. III to satisfy “O(¢) — v hasno component
in G.” This means that

(O(¢) — V) Z opv5 =0, (5.2)
for i=1,2,3. By the definition of Z,; we see that

VaZhpgVp = O for i = 1,2,3. Therefore the unitary gauge con-
dition becomes

O(¢);€5 b =0. (5.3)
Remember that the gauge transformations act as O(3) on ¢
and leave ¢, alone. It is the case that for every gauge transfor-

mation there is an O(3) transformation and vice versa such
that

M'e = Ogauge (Q : g) = 00(3) (Q) ce. (5.4)
This along with (5.3) and the fact that €., / = 1,2,3, are the
generators of O(3) allows us, following Weinberg,'> to con-
clude that a transformation O satisfying (5.3) exists. The
expression (5.3) may also be written [O(¢),v] =0 and is
equivalent to “O(¢) is parallel to v.”

Wenow expand D, @D, ¢ in the unitary gauge in terms
of the shifted fields. Remember that D, ¢ is designed that
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under gauge transformations D, ¢ —q(x)D,¢q(x)~ !, Thus
hDM ¢D, ¢ is invariant under gauge transformations. So we
ave

D,¢ D,¢= D,¢° D ¢°
= D) (4% +v) D) (4% +0), (3.5)
where the © denotes the transformation to the unitary gauge,
so that ¢° is parallel to v, ¢° is defined as ¢° — v. Now we

drop the s and leave the unitary gauge as implicit in what
follows. We have

D, (¢ +v) D, (¢'+v)
= 3.8 9,8 +8 3,8 [48' +V]
+g[ 4.6 +0]0.¢
+&[ 4,87+ 0] [4,.8 +0].

As ¢ = ¢' + vis parallel tov then sois ¢'. As v is a constant,
and as ¢’ is parallel to v, d, ¢’ is parallel to v and therefore to
Q’ +v. That §L¢’ is parallel to Q’ + v mean§, as the reader
can verify, that the second and third terms in (5.6) cancel
each other. In the analogous complex theory these terms
both vanish independently. This difference results from us-
ing quaternions explicitly rather than using the components.
The terms vanish independently if we write

(5.6)

D,(¢'+v)D, (¢ +v)
as

(D, (¢ + 1))y (D, (¢ + V))abo
In either case we have that

D, (¢ +v) D, (¢ +)
= W&uqi’ +g2[ 2:5] [An’v]
+28°S([ 4,8 ] [4,.0]) +&[ 4,.6'] [A,ur{;];)

where first order 4,,, ¢ cross terms have disappeared as well
as this a second-order “mass” term for 4, has appeared.
Then the Lagrangian in the unitary gauge using (3.13),
(4.13), and (5.7) can be written

# = D,(F+0ID, (¢ +v) = V(¢ +v) + K. K,
= 3,6'9,¢ +&[ 4,v][4,.0] —AS($v)?

+2(9,4, 3,4, — d,4,9,4,)

+2825([ 4,8 ] [4,0]) +&[ 4.8 [4,8]

~ V(v) —A/4(§'¢)? — A($'$))S(8')

—4S( T, A, [4,4,]) +&[ 4.4.][4,4.]-

(5.8

The term AS(4'v)? is not forced by Goldstone’s theorem to
be zero for any component of ¢’ as ¢’, in the unitary gauge,
has no component in G. As has already been noted the first-

order cross terms have disappeared and a second-order mass
term for 4, has appeared.
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V1. POSSIBLE VACUUM VECTORS

As physical interpretation of the quaternion fields is on
a component level we will express the Higg’s mechanism on
a component level. We first look at the vacuum quaternion v
in components. The most general possible vacuum quater-
nion is

v=ae, + be, + ce, + de,, (6.1)

with
@ +b P +d*= —p*/A.

The Higgs mechanism finds a gauge transformation O such
that O(¢#) is parallel to v. We then define ¢’ such that
O(¢) = ¢’ + v. Now global gauge transformations of O(¢),
which have the form O(¢) —¢qO(#)q~", where ¢ is not de-
pendent on x, will leave the Lagrangian invariant and will
send ¢’ + v to g¢'q~" + qug~'. So we can transform v to
V=qug ' =d'ey+b'e,, where a?+b"*= —pu*/A, by
such a global transformation. The unitary gauge condition is
invariant under such a transformation and so we might well
have chosen v’ as v in the first place. We now choose

v = ae, + be,, (6.2)
where
a*+b = —u*/A4, (6.3)

as the general vacuum quaternion.

Now the Lagrangian (5.8) in component form in the
unitary gauge for the general vacuum vector and shifted
fields to second order is

g = {a,u¢(') au¢(l) +a,u¢1 ay¢i + 4g2Ay2Au2b2
+48°A, A, b7 — A(doa + &, b)?

+2(8,4,, 3,4,, — 0,44, 0,44, Ve,  (6.4)

Notice that two components of the gauge boson 4, have
gained mass and two components of the scalar field ¢’ have
disappeared. Note also that one component of ¢’, namely
#4a + ¢} b, has mass, and that, if ¢ is not zero, goa — ¢1b is
massless and if @ is zero, ¢; is massless. This last point is not
in contradiction to the Higg’s mechanism as the massless
state is not forced by Goldstone’s theorem but occurs inde-

pendently of it.

Now it is possible to split 4,, into

4,=8,+C,, (6.5)
where

Bp —'q(x)B,‘q(})l, (6.6a)
and

Cy =4 x) qu(;)l + ( l/g)ap (9 )9(:)1, (6.6b)

under gauge transformations. The transformations (6.6a) of
B, allow B, to have a gauge invariant mass term m_ﬁ"Bﬂ
added to the Lagrangian. We can make the decomposition
(6.5) in two ways: first we may decompose 4, via existing
fields as Finkelstein et al.* do. This does not change the num-
ber of degrees of freedom. Second we may introduce new
degrees of freedom and have B, and C, as totally indepen-
dent quaternion fields. In either case the Lagrangian is now
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& =D, (¢ —v)D,(§ +v)

- V(¢ +v)K,K,, +mB,B,. (6.7)

In the first case take an example and consider, as did Finkel-
stein ez al.,* the following simple situation. The fields B, and
C, are restricted to satisfy

{B,.m}=0,
and

[Cusn] =3um, (6.8b)
where 7 is an existing field or combination of fields satisfying
(6.92)

(6.8a)

772= -1,
and

7-g(x)ng(x) ", (6.9b)
under gauge transformations. To demonstrate what happens
we further particularize the situation to the case where we
identify 7 as ¢'/|¢’|. Now in the unitary gauge and for the
general vacuum vector

& =die, + die. (6.10)
From which follows that

N=¢€p (6.11a)

B, =B,,e; + By,e;, (6.11b)

C,=C,e,. (6.11¢c)

Here the Lagrangian (3.7) becomes in component form
& ={3,46 9,86 + 3,41 3,4 +4g°b*B,,B,,
+4¢°6°B,,B,, + mB,,B,, + mB,,B,,
— Aoa + $,0)* + 2(3, 40,0, 4,
—-3d,4,,0,4,, )eo, (6.12)

to second order. This is open to the same interpretation as
(6.4). However, this method may produce new interpreta-
tions if we can identify % as something that is not parallel to
v.

In the case that we introduce B, and C, as independent
fields, the Lagrangian (6.3) becomes

L =19.8 3,65 + 3,81 9,81 — A(Bsa + 4 b)>

+mB,, B, + (4b%g + m)B,,B,,

+ (4b7¢> + m)B,,B,, +8b%°C,,B,,

+8b°g°Cy, By, + 4b7¢°C,,C,,, + 4b78°C,, Cs,

+2(3, 40y 0, Ag, — 3,44, 3,4,,) e, (6.13)
to second order. This can be written in a more explicit form
£ =19,06 0,05 + 9,81 9,81 — A(Bss + $1b)?

< = (11 - (11
+ (B ”’C“)[z(a" a“(l 1)‘5"‘ — % a‘(l 1))
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+au(7 o)

- = (11 - = (11
+ 2 BaCa) [2 (a,, a"(l 1)6"‘ — 9 a‘(l 1))

a=2,3
4b> 4b2¢*\1(B.
+ 6"‘(41; 2;2 o 4b "?)](C k)]%’ (6.14)
ak

to second order. This is reminiscent of the current mixing of
Hung and Sakurai.’® However, we will not examine (6.14)
in that light here.

VII. CONCLUSION

SSB and the Higg’s mechanism has been successfully
produced for classical quaternionic fields. Further, it seems
the extension from complex theories is nontrivial. More
work is required to produce a Hilbert space formulation of
SSB and the Higgs mechanism with the quaternions as the
scalar field of the Hilbert space. It is not obvious whether or
not the extension to quaternions will be significant there.
The gauge boson splitting in Sec. VI especially with refer-
ence to current mixing'® warrants more investigation. As yet
we have not examined fermions and it is clear that this will
need to be done.>%%°
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The classical improvement program in lattice gauge theory is examined from the geometric
point of view. Improved actions are derived for pure gauge theories as well as for fermions.

|. INTRODUCTION

The lattice treatment of quantum chromodynamics has
been a very fruitful one. Numerical calculations have given
us a surprisingly large amount of information on nonpertur-
bative aspects of the theory. Much of this information, how-
ever, has to be regarded as preliminary, because the desired
accuracy necessitates values of the lattice spacing that are
too smali to be handled by existing computers in a reasonable
amount of time. To overcome this difficulty, one may modify
the lattice action in such a way that the continuum limit
remains unchanged but is—loosely speaking—approached
faster. If the dynamical continuum limit is sought to be ap-
proached faster, renormalization group transformations are
involved and the modified action has to be calculated on the
computer itself. Alternatively, the approach to the perturba-
tive or even classical continuum limit may be desired to be
hastened; in this case, the new action can be determined ana-
lytically. It is this kind of modification or improvement—
pioneered by Symanzik'—with which we shall be concerned
in this paper.

It is fairly simple to adjust the classical Lagrangian in
such a way that the leading corrections to the classical con-
tinuum limit get canceled. Nearest-neighbor terms have to
be supplemented by terms involving next-nearest or even
more remote neighbors. In principle, one can continue in
this fashion and remove nonleading corrections order by or-
der. All this involves the classical Lagrangian, which may be
regarded as the tree-level approximation to the quantum ef-
fective Lagrangian. An order by order improvement in the
coupling constant also may be carried out. This involves
loop calculations and is obviously more complicated than
mere classical improvement. In any case, high-order im-
provement in either the lattice spacing or the coupling con-
stant makes the Lagrangian too unwieldy for practical work,
so that only the leading tree-level and one-loop modifica-
tions are usually attempted. We shall be even more restric-
tive and ignore all quantum (loop) corrections.

Classical improvement of pure gauge theory has been
discussed very clearly by Weisz and Wohlert? on the basis of
Liischer’s ideas; see also Grensing and Grensing.> A more
complicated action has been advocated by Eguchi and
Kawamoto,* who were really interested in improving the
fermion action proposed by Wilson; Hamber and Wu® also
have considered the Wilson action, as have Sheikholeslami
and Wohlert.® The other popular action for fermions, viz.,
the staggered one, has been improved by Mitra.’

Our aim in this paper is to discuss the improvement of
the classical action from the point of view of differential ge-
ometry on the lattice. The standard action for pure gauge
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theory on the lattice can very easily be written in a geometric
language closely paralleling the continuum situation—see,
e.g., Mack.® Similarly, staggered lattice fermions can be for-
mulated in an elegant geometric way.>? It is these languages
that we wish to use in our study of improvement.

In Sec. II, we first rewrite some of the possible improved
actions for pure gauge theory, including a new one, in an
extension of the available geometric formalism. Then we
show that the formalism, without some such extension, can-
not naturally incorporate improvement. A modification of
the formalism is found to pick out the improved action sug-
gested by Eguchi and Kawamoto.*

In Sec. I1, we consider fermions. The geometric formal-
ism is used to derive an improved action. It is equivalent to
the one found earlier’ in a different framework. But the ear-
lier derivation left it unclear whether this is the simplest im-
proved action for staggered fermions. This defect is reme-
died in the present derivation.

A concluding discussion is given in Sec. IV.

il. IMPROVEMENT OF THE ACTION FOR THE PURE
GAUGE THEORY

The dynamical variables of a pure gauge theory on the
lattice are gauge group elements associated with links. We
write U(x,u) to denote the group element associated with
the one-chain (x,{u}), i.e., the link going from the site x to
the next site in the g direction. Introducing the basic one-
cochains @*} dual to the basic one-chains (x,{p} ), one can
construct the one-cochain

U= SU(xu)zd ¥, (2.1)
X,H

which is the analog of the one-form in the continuum de-
scribing the gauge field, taking values, however, in the repre-
sentation R of the gauge group rather than in the Lie algebra.
To obtain the field strength, one considers the commutator
between parallel transports along two different paths®; tak-
ing these to be along the sides of an elementary cell, oneis led
to

Fm, (x) =U(xu)gU(x + €, V)g

—Ux¥V)rU(x + e, ), (2.2)

where e, stands for translation to the next site in the u direc-
tion. A two-cochain can now be constructed:

F— % S €, F,, (x)d =6, (2.3)

pATRY
Here d*%**} is the basic two-cochain dual to the basic two-
chain (x,{x,v}) and may be identified with dx* Adx" up to
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a sign in the continuum limit, the sign being €,, = + 1,
depending on whether 4 is less or greater than v. Using the
wedge product of cochains,'® one can actually write

F=UAU. 24)

The standard lattice action for pure gauge theory is related
to the norm of F:

(F.F) =% 3 tlF 1 (0)F,, (1)}

EITRY

=2Retrz(1R—Up). 2.5)
4

In the second line, the sum is over all (unoriented) pla-

quettes p and U, denotes the product of the link variables

around p. The usual lattice action is thus

Swison = (1/28)(FF ) . (2.6)

If one wishes to describe the standard improved lattice
action? in the same language, one has to introduce alterna-
tives to the above F and take a suitable combination of the
norms of the different cochains. These alternatives are

F+ = 2 F( + v (x)dx{;tz,v} ’

ENTRY
e (2.7)
F_=Y3 F_,, (x)d*7?,
EATRY
n<v
where
F( + v (x)

=4[ Uxu) g U(x +,,u) g U(x + 2¢,,v) ¢
—Uxv)rU(x+e,u)r U(x+e# +e,.)r]>
F_yu(x)
=4[Uxu) g Ux + ¢, V)R U(x + €, +e,,¥)g

— U ) g Ux+e,v)gU(x +2e,,u)r], (2.8)

and (x,{u?v}) indicates a doubled distance in the u direc-
tion (a rectangular cell instead of a square one). The contin-
uum limit of the norm is unchanged if F'is replaced by F . .
But the corrections—terms of higher order in the lattice
spacing—do change. By taking an appropriate combination
of these terms, the first nonleading term (or equivalently,
the leading correction) can be canceled. The normalization
of the combination is fixed by demanding that the contin-
uum limit be the same as for (F,F ). The resulting improved
action is

Simprovea = (1/682) [S(F,F) — (F,F,) — (F_,F_)].
(2.9)
However, this is not the only way in which the first non-
leading piece in (F,F) can be canceled. One can use co-
chains different from both F and F, —F corresponds to

squares and F, to 21 rectangles. The next thing to try is
obviously F,, corresponding to 2 X 2 squares:

F, =% Z F(*)uv (x)dx{“z'vz} ’ (2.10)

ENTRY

Flapu () =3[Uxp) p Ux + €, ) Ulx + 2¢, ,v)»
XU(x+2e, +e,v)g — (uev)] . (2.11)
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If one is willing to use both ', and F,, then conditions of
improvement to leading order and normalization are not suf-
ficient to determine all the coefficients. One may think of
canceling the leading as well as the first nonleading correc-
tions, but there are two kinds of terms making up the first
nonleading correction, and both cannot be canceled by the
single degree of freedom available. Hence some other crite-
rion is needed to fix the coefficients. Equation (2.9) follows
from the desire to avoid 2 X 2 squares altogether. One might
instead decide to omit the rectangles. This would lead to the
improved action

improvea = (1/68°) [4(F,F ) — (F,,F,)] .  (2.12)
This action takes less time on the computer than (2.9),
mainly because it involves only two terms instead of three. It
is true that larger cells are involved here than in the standard
case, but in both cases the restriction on the lattice size is that
it should be much bigger than 2 in each direction. Thus, from
the computational point of view, S, ;ovea is the improved
action to be preferred. An improved action involving both
2X 1 rectangles and 2 X 2 squares has been used* in the liter-
ature:

Si'x,nproved = (1/1832)[16(FyF) —4(F+,F+)

—4(F_F_)+(F,F,)]. (2.13)

It has the advantage that the propagator factorizes and
thereby makes weak-coupling calculations somewhat easier.
We shall show below that it has some aesthetic advantage as
well: it can be motivated by the geometric approach!

The three improved actions discussed above have been
expressed in the cochain language, but the formalism is not
used in their derivation. The elementary cell is supplemented
by more complicated rectangles in a more or less arbitrary
way, a two-cochain being then introduced separately for
each kind of rectangle. We would like to take a different
approach, making the departure from the unimproved ac-
tion (2.6) less arbitrary and more fundamental. Thus we try
to retain (2.6) and even the form (2.4) for F, replacing the
cochain U by

U= Y{A,U(xp)gd**
X0

+ A/ U Ulx + e, 1) zd ™7}, (2.14)

in an attempt at improvement. The coefficients 4, and A, are
to be determined by the conditions of improvement and nor-
malization. First of all we need

F=UAU
=A}F+AA,(F, +F_)+A3F, . (2.15)
The norm is
(FF) = |4, [*(FF) + |44 {(F 1. F)
+ (F_F)}+ |A,|\F, F,) . (2.16)

Note that all coefficients are non-negative here. Since the
leading corrections to the continuum limits of the different
terms are all of the same sign, it immediately follows that
improvement cannot be achieved in this way.

We therefore have to develop a different formalism for
the action. We go back to the unimproved case. In addition
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to the cochain U of (2.1), we introduce

UT"=Y U~ (xp)pd ™, (2.17)
X,
Correspondingly, we define
F-V= DA gD , (2.18)

where the left-directed arrow on the wedge indicates that the
matrices in the cochains are to be taken in the reversed order.
Explicitly,

1
1;-(—1)=7 3 €, U 1 (x+e,,v)r U " (xu)g

pNTRY
— U Y (x+e, ) U (xv)g M ¥ (2.19)

Finally, we write
SWi]son = (1/2g2)<F(_1),F) ’ (220)

where the inner product {, ) is bilinear, i.e., dispenses with
complex conjugation in the first factor, in contrast to the
Hermitian inner product (, ) used earlier. This construction
may look unnecessarily involved in the context of the unim-
proved action, but something like this is necessary if the sign
problem of (2.16) is to be avoided.

Going back to the cochain Uof (2.14), we introduce, in
analogy with (2.17),

U= {40 (xp)pd "
XL

+ (AU x4+ e, u) g U (x0) gd **7} .

(2.21)
Similarly, in analogy with (2.18), we set
FEV_GEIATY, (2.22)
The inner product entering the action is
(FUUFY =A1(FF) + A143{(F,F,)
+ (F_,F)}+A3(F,F,), (223)

which is the same as (2.16) except in the crucial matter of
the phases of the coefficients. The condition for improve-
ment can be shown to be

At +54202 4444 =0, (2.24)
while the normalization demands that

AT +234244%8=1. (2.25)
These imply that

At=%, A3/ = -1, (2.26)

yielding the action S'[;, oveq Of (2.13). Thus, out of the one-
parameter class of classically improved actions obtainable
by supplementing the elementary cell with 2 X 1 rectangles
and 2 X 2 squares, our geometrical approach chooses a spe-
cific one, and it is the same one that has been motivated
earlier? by a factorization property. Unfortunately, it is hard
on the computer !

Iil. IMPROVEMENT OF THE STAGGERED ACTION FOR
FERMIONS

A geometrical formalism®'° for lattice fermions can be
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derived from the continuum formalism due to Kihler,!!
which involves four species of fermions. It turns out to be a
new representation for staggered fermions on a lattice of
doubled spacing.'® The fields can be written as a combina-
tion of p-forms with p running all the way from 0 to 4. On
the lattice, this translates to a combination of p-cochains. It
may be expanded in basic cochains as

¢="3 $(xHyd™,
x,H

where H goes over all subsets of {0,1,2,3}. In this representa-
tion, the Dirac operator takes the form d — 8 or i(d + 8),
where d and § are the lattice versions of the usual cobound-
ary (exterior derivative) and boundary (adjoint of exterior
derivative) operators. Ignoring the mass term, we can write
the action for free fermions as

Sstaggcred = ({Z,(d - 5)¢) ’ (32)

where 5 is a cochain as in (3.1), but independent of ¢. The
introduction of gauge interactions involves the replacement
of d and & by appropriate covariant versions'? and will not
bother us here._Let us rewrite (3.2) in terms of the compo-
nents of ¢ and ¢:

Sstaggered = Z $(x,H) [ 26;4,11 N} [¢(X + ey »H \{ﬂ})
x,H peH

3.1)

- H\{uhH} + ¥ €, ul{d(xHU{u})

—¢(x—e,,,HU{,u})}]. (3.3)

Here €, is equal to — 1 raised to a power given by the
number of elements in X which are less than u.

A special symmetry of (3.3) will be very important in
our development. If we make the transformations

e, — —€,,

S (x,H) >$(x — ey,H) (3.4)
(and similarly for ¢), both terms in (3.3) change sign. Thus
SO ,H) (¢ (x + e, , H\{u}) — p(x, H\{u})}

—§(x — e, H){$(x — e, — (e —e,).H\{u})

—Blx — (e —e,),H \{u})}

= —¢(x — ey, H) {$(x — ey + €,,H \{u})

— (x — ey, H\{u}}. (3.5)

The first and last lines give equal and opposite results when
all values of x are summed over. This symmetry is recog-
nized to be the invariance of the action under a formal
change of sign of the lattice spacing when one recalls'® that
¢ (x,H) is to be associated with the site x + Je,; of a lattice
with halved spacing. Under this formal change of sign, the
chain (x,H) gets rewritten as (x + ey ,H), i.e., the origin is
shifted from one extremity to the opposite one. This trans-
formation of basic chains is equivalent to the replacement of
¢(x,H) by ¢(x — ey ,H) as is clear from (3.1).

To improve the action (3.2), we add similar terms
where (d — &) is replaced by (d — §),, which is the same as
(d — 8) except that the hopping distance is multiplied by a
factor r; thus, in the analog of (3.3), the rth forward and
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backward differences will occur instead of the 1st. If this
were the only difference between the different terms in the
improved action, the linearity of the action (3.2) in (d — §)
would permit us to rewrite the improved action in the form
(3.2) with (d — &) replaced by an improved (d — 8), i.e., a
sum of several (d — 8),. However, with such a structure it is
not possible to preserve the symmetry discussed above. It is
necessary to change ¢ and # when we change rin (d — §),.
We take

$=3 $(x +sey H)d™, (3.6)
x,H

and consider

(#,(d — 8),6°)

1 e =
=T’§¢(x + sey H) [;e#,ﬂ\u}
X {@(x + re, + s(ey —e,),H\{u})

— ¢(x + s(ey — ¢,).H\{u})}
+ Y €.5{d(x +5s(ey +e,),HU{u})
ueH
— @lx +s(ey +¢,) —re, HU{u})}] . 3.7)

Under the transformation (3.4), a term in the first piece
(with sey absorbed in x) changes as follows:

SO H) (Blx + (r —5)e, . H \{u}) — p(x —se, . H\{u})}
—$(x — ey, H){dlx — (e —e,) — (r—5)e, . H\
{u}) — dlx — (ey —e,) + s, , H \{u})} (3.8)

It is clear that this expression (after the absorption of ey in
x) will be the negative of what it was if

The same condition ensures the desired transformation of
the second piece of (3.7) as well. Thus we see that the sym-
metry can be preserved if in the different terms s and r are
related in the above manner. One immediate observation is
that » must be odd. Note also that changing the sign of r does
not change (3.7).

The usual action (3.2) has »r = 1 and s = 0. To improve
it, the simplest thing that can be done is the introduction of a
term withr =3 ands = 1:

Simproved = /11(5:(‘1 - 6)¢) + /12(5(1),(d - 6)3¢(l)) .
(3.10)

The parameters A, and 4, are to be determined by the condi-
tions of improvement and normalization. Because of the
symmetry considered above, second derivatives do not arise
in the expansion of (3.10) about its continuum limit. The
cancellation of the third derivatives imposes the condition
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Ay +A,-32=0. (3.11)
Since normalization demands that

A+, =1, (3.12)
it follows that
Simprovea = §(6,(d — 8)8) — Y@, (d — 8)¢") . (3.13)

This action is equivalent to the one arrived at earlier’ in
a different representation for staggered fermions. There it
was shown in greater detail that this action and its gauge-
invariant version effect improvement, but in that approach it
was not clear that this is the simplest improved action. The
first term in (3.13) corresponds to a nearest-neighbor term
(also on the lattice with halved spacing) while the second
term involves third nearest neighbors, so that the question
arises whether improvement can be effected with second
nearest neighbors. The present derivation, through the re-
sult that » must be odd, demonstrates that second nearest
neighbors cannot be used.

IV. CONCLUSION

In this paper we have studied both pure gauge and fer-
mion theories on the lattice, the aim being to look at what are
called improved actions from a geometric point of view. In
both cases we have come up with specific improved actions.
In the pure gauge case, some alternative (nongeometric)
actions exist, so that our work may be invoked to motivate
one particular choice. In the case of (staggered) fermions,
our action coincides with the only improved action known.
Now this action, involving third nearest neighbors instead of
second nearest ones, is not simple from a computational
point of view. Our work shows that a simpler improved ac-
tion cannot be found. In both cases we have restricted our-
selves to improvement at the leading order. Extension to
higher orders is straightforward.
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First it is shown in an abstract mathematical framework of supersymmetric quantum theory
that, under some conditions for the perturbation, the wave and the scattering operators on
bosonic states have some connections with those on fermionic ones. In particular, a unitary
equivalence between the two scattering operators is proved. Then, a class of supersymmetric
quantum mechanical models on R” is discussed and the abstract general results are applied to
obtain some more explicit results on the supersymmetric potential scattering.

I. INTRODUCTION

In this paper we study some mathematical aspects of
scattering in supersymmetric quantum theory (SSQT).'”
The main interest is to understand on a mathematically rig-
orous basis what the supersymmetry implies for scattering
quantities such as wave and scattering operators. On a level
of model studies, such an attempt has recently been made,*
where supersymmetric quantum mechanical models in one
and three dimensions are discussed, although their discus-
sions are not completely mathematically rigorous. In the
present paper, however, we first consider SSQT in an ab-
stract framework and derive some general results on the
scattering theory, which include the results in Ref. 4 as spe-
cial cases. Then, we discuss a class of models of supersymme-
tric quantum mechanics (SSQM) on R". We hope that our
approach would clarify in some mathematical generality the
role of supersymmetry in scattering phenomena.

The outline of this paper is as follows. In Sec. II, we start
with a mathematically precise definition of SSQT with a
functional analytical flavor.>> Then, after preparing some
terminologies from the standard abstract scattering theory
(e.g., Refs. 6 and 7), we state the main result (Theorem 2.2).
In particular, we note that, under some conditions for the
perturbation, a unitary equivalence between the scattering
operator on bosonic states and that on fermionic ones holds.
This theorem is proved by a series of lemmas. An essential
point lies in the fact that the bosonic and the fermionic part
of the total Hamiltonian H restricted to the orthogonal sub-
space of the kernel of H are unitarily equivalent (Lemma
2.3), which is due to the supersymmetry. In Sec. III, we
consider a class of models of SSQM on R", which contains
the one-dimensional Witten model.'> By applying the gen-
eral results, we can get an explicit relation between the 7-
matrix elements on bosonic states and those on fermionic
ones. Furthermore, the spectrum of the Hamiltonian is ex-
actly identified.

Il. WAVE AND SCATTERING OPERATORS IN AN
ABSTRACT SSQT

We first give a mathematically precise definition of
SSQT in an abstract framework.>*

# Address after 1 June 1986: Department of Mathematics, Hokkaido Uni-
versity, 060 Sapporo, Japan.
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Definition 2.1: Let N be a positive integer. Then, an
SSQT with N-supersymmetry is a quadruple {H,
{Q,}¥_,,H,Ng } consisting of a complex Hilbert space H, a
set of self-adjoint operators {Q,}"_, (the “supercharges”),
self-adjoint operators H (the “supersymmetric Hamilto-
nian”), and N the “Fermion number operator’), which
has the following properties.

(a) H is decomposed into two mutually orthogonal
closed subspaces Hy and H:

H=Hz;eoH;. 2.1)

(b) Forallj,j=1,...,N,

01=02, (2.2)

and H is written as

H=Q?%, i=1,.,N. (2.3)

(c) Forall ¥ in Hy (resp. Hy),

NeW= +V¥ (resp. —V¥). (2.4)

(d) Ng: D(Q;)-D(Q;), Ne@Qi+ Q:Ne =0,
i=1,.,N, (2.5)

on D(Q;), where D(Q; ) denotes the domain of Q,.

(e) 0.9 +0Q,0, =0, i#jij=1.,N,
on D(Q; Q)ND(Q; @)).

In physics literature (e.g., Refs. 1 and 3), elements in
the Hilbert space Hy (resp. Hg) are called bosonic (resp.
Jfermionic) states.

From the above definition, one can easily see that H is
non-negative and reduced by Hg and Hg (Ref. 5). We shall
denote by H g (resp. H ) the reduced part of H to the sub-
space Hy (resp. Hg ). The operator H 5 (resp. Hg ) is called
the bosonic (resp. fermionic) part of the total supersymme-
tric Hamiltonian H. It is also obvious from (c¢) and (d) in
Definition 2.1 that

Q:: D(Q;,)NHy (resp. Hp)->Hg (resp. Hy),
and
Ker Q;=Ker H, i=1,.,N. 2.7

In what follows, we concentrate our attention on properties
of H and hence we write Q, simply as Q:

H=02.

(2.6)

(2.8)
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Remark: In the following discussions, we do not use
property (e) in Definition 2.1.

In order to consider scattering theory, we first have to
prepare some terminologies from the standard abstract scat-
tering theory (e.g., Refs. 6 and 7). Given a self-adjoint oper-
ator A, we denote by H,_ (4) [resp. P,. (A4)] the subspace of
absolute continuity with respect to 4 [resp. the orthogonal
projection onto H,. (4)]. Let 4, B be two self-adjoint opera-
tors acting in Hilbert spaces H, and H,, respectively, and J
be a bounded operator from H, to H,. Then, wave operators
are defined by

W, (4,BJ) = s-lim e Je~*?P, (B),

t— 4 oo

(2.9)

provided that the rhs exists. The scattering operator
S(A,B;J) is given by

S(A,BJ) = W_(ABJ)*W _(A,B;J]) . (2.10)
IfH, = H, and J = I (identity), then we write

W, (4,B)=W, (4B]), 2.11)

S(A4,B) =S(A,BI) . (2.12)

If
Ran W:t (A,B) =Hac(A) ’

then W, (4,B) are said to be complete. It is well known
that, if W (4,B) are complete, then W, (B,4) exist and
are complete.5’

As a “free” part in the supersymmetric quantum scat-
tering system, we take another SSQT, {H, {Q,}_,, Ho,
Ny}, where H and N ¢ are identical with the previous ones.
We shall write Q,, simply as Q, and denote by H g (resp.
H o) the bosonic (resp. fermionic) part of H,. Let {E(1)}
[resp. {E,(1)}] be the spectral family of Q (resp. Q,) and
define

U=I—E(0)—-E(-0),

Uy, =1— Ey(0) — Eo( —0) .
Then, our main result is the following.

Theorem 2.2: Suppose that (a) W (H,H,) exist and
are complete; (b) D(Q,) CD(Q) and, for all ¥YeH,_ (H,)
and for all €> 0, there exist functions F, on [¢,0) such
that, for all s€[€, 0 ) and teR,

(2.13)
(2.14)

(@ — Qo) (Qo £ is) ~le™ ™ W||<F  (5), (2.15)
and

J lFi (s)ds< o ;

e S
and (c) for all YeH, (H,) ND(H,),

Jim_ (@ Qe "] = 0.
Then, we have

W;t (Hyg,Hpg) = UWi (Hp,Hoe YUoP,. (Hog) ,

(2.16)
S(Hy Hyg ) = UpyS(Hg Hop YU P, (Hyg) - (2.17)

Remark: (1) By symmetry, formulas (2.16) and (2.17)
with “B(F)” in place of “F(B)” also hold. The same is true
for formulas appearing in what follows.

(2) Formula (2.17) shows that the scattering operator
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on the bosonic states is unitarily equivalent to that on the
fermionic ones. In other words, (2.17) is equivalent to that
the total scattering operator

S_(S(HB,HOB) 0 )
- 0 S(Hg ,Hee )/’

is commutative with U, on the space of absolute continuity
of H,. Since U, may be regarded as a ‘“normalized” gener-
ator of the supersymmetry in the “‘free” system, this maybea
rigorous version of the statement that the supersymmetry is
a symmetry consistent with scattering (cf. Ref. 8).

(3) Condition (2.15) can be weakened: It is sufficient
for (2.15) to hold for all ¥ in a dense domain D in H,_ (H,)
(see Proof of Lemma 2.6).

To prove Theorem 2.2, we need some lemmas. A funda-
mental fact in SSQT is given by the following.

Lemma 2.3: Let U be given by (2.13). Then, U is a
partial isometry from Hy (resp. Hy ) to Hg (resp. Hg ) with

Ker U = Ker Q and Ran U = Ran Q and we have
Hy =UH.U,

on Hy ND(Hg).
Proof: Since Qs self-adjoint, it has the polar decomposi-
tion as

9=U|Q|
(see, e.g., Ref. 6, p. 358). Noting that |Q | = H /2, one can
easily see that |Q | is also reduced by Hy and Hp.. Therefore
(2.6) implies that

U: Ran|Q |NH, (resp. Hy) -Hg (resp. Hg),

and is isometric. Since (Ran|Q|)* = Ker|Q | = Ker Q and
Ker Q = Ker U, U gives a partial isometry from Hy, (resp.
Hy ) to He (resp. Hy ). Using the self-adjointness of Q and
U, we have

H=00*=U|Q||Q|U=UHU

on D(H). Then, therestriction of both sidesto Hy ND(H )
gives (2.18). a

Remarks: (1) Equation (2.18) implies remarkable
properties on the spectrum of H g and A . Namely we have

o(H)\{0} = o(H s )\{0} = o(H)\{0}, (2.19)

(2.18)

and
o, (H)\{0} = o, (Hy {0} = o, (He)\{0}, (2.20)

with the equal multiplicity of each corresponding strictly
positive eigenvalue between Hy and H, where o(4) [resp.
g, (4)] denotes the (resp. point) spectrum of the operator
A. [Equation (2.20) is actually well known on a formal level
in the physics literature and it has been expected or assumed
that (2.19) is also true. It seems, however, that, in physics
literature, no rigorous proofs have been given for (2.19) so
far.]

(2) If Ker Q = {0}, then Uis unitary and (2.18) repre-
sents a unitary equivalence between H and H .

Lemma 2.4: Suppose that W, (H,H,)and W, (HoH)
exist. Then, W (Hy,H,;U) exist and we have

W, (HoHyU) =W, (H, HYUW _ (HH,) .
Proof: Let ¥ be in H,_ (H,) and put

(2.21)
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V(1) =eole ~ “Hoy
= ¢'Ho o~ tH [JpitH o — itHoy |
where we have used the commutativity of U with H. There-
fore we have
|W(t) — W, (Ho,HYUW , (HH,)¥|
<||[e" e — W, (HHo) Y|

+(|[6Fee" — W, (HH,)|UW_ (HH,)Y¥| .

(2.22)

On the other hand, it is well known®’ that

W, (HH,)YeH, (H). Since U maps H, (H) onto

H, (H), UW _ (H,H,)V¥ is in H,. (H). Hence the rhs of

(2.22) converges to zero as t— + co. O

Lemma 2.5: Under the same assumption as in Lemma
2.4, we have

W;t (HB!HOB) = UW:‘: (HF;HOF)Wi (HOF,HOB;U) s

(2.23)
S(Hy,Hyg)
= W+ (HOB,H(,F;U)S(HF,HO;: YW_(Hop Hog;U) .
(2.24)

Proof: Using (2.18) and Lemma 2.4, we have
UW, (Hg,Hyg)

_ . itHg —itHop itHgp ~ itHyp
=slime e e "Ue P (Hyp)
I— + oo

=W, (Hg,Hop)W . (Hop,Hop;U) ,

which imply (2.23). Eq. (2.24) is a direct consequence of
(2.23). O

Lemma 2.6: Under the same assumption as in Theorem
2.2, we have

W, (HouHyU) = UyP,. (Hy) . (2.25)
In particular,
Wi (Hop Hyp;U) = UpP, (Hee) . (2.26)

Proof: 1t is easy to see that the linear subspace
Dac = {Q()(DICDED(HO) rWI—I::(: (HO)}

is dense in H,. (H,) and hence we need only to prove (2.25)
onD,. . Let ¥ = Q,PeD,, . Noting that

U=s—1imipr(Q2+s2)—lds
T Js

p-oo

5-0
(see Ref. 6, p. 359), we can write as

¥ (1) = (e Ue = o — U,) W
= (/MU (50) + 1°(0;,Q0)} — (1/mI (1),

where € >0 is arbitrary and

I<(5;4) =s—rdsei'”°A(A2+sz)‘1e“’”°\lf,
0
I‘(t)=s—f ds e"Ho

X{(Q+is)™HQ — Qo) (Qo+is)™!
+ (@ —is)™HQ — Qo) (Qy — is) ~'te™ "oy,
We have
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”16(’)”<f ds %{II(Q — Qo) (@ + is) ~le~ oy

+ 1@ — Qo) (@ — is) ~ e~ |}
The integrand in the rhs is dominated by
sT'[F,_(s) + F_(s)] for se[€, ), which, by the assump-
tion, is integrable on [, ). Therefore, by the dominated
convergence theorem and condition (c) in Theorem 2.2, we
get
lim ||I¢(2)]|=0.
t— + oo
Thus we have

lim ||¥(0)]|
t—= + o

<(z/fr)[“@ 1<)l + ||1‘(o;Qo>u] .o

One can easily see that

Q)| =J; [arctan ﬁ]z d(EA)D(1), (1)),
(2.28)
where
O(t) = ey,

By condition (c) in Theorem 2.2, for any & > 0, there exists a
constant 7, > 0 such that, for all |z |>1,,

(@ — Qo)e ~ || <&
Hence, for any a > 0, we have

|EC( — a,a)®(8)|| <8 + |[E( — a,a)Qe ™ “H@||

<6 +al®|.

Then, by dividing the integral interval in (2.28) into two
parts |4 |>a and |4 | <a, we have for |t | 51,
[rhs of (2.28)]

<2(7/2)%(8% + || P||*) + (arctan(e/a))*||¥||* .

Taking the limit - + oo first, § -0 second, € -0 third, and
finally @ -0, we get

lim ||I¢(5Q)||=0. (2.29)
t— 4+ ®
It is obvious that
lin; 1€(0;Q)|| =0. (2.30)
From (2.27), (2.29), and (2.30), we obtain
lim ||¥()| =0,
t— 4+
which is the desired result. O

Theorem 2.2 now follows easily from Lemmas 2.5 and
2.6.

ill. EXAMPLES

Let n,p>1 be positive integers and let us consider the
operator of Dirac type

L=iyd, +id(x),
acting in the Hilbert space

(3.1)
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I4

K=o L*(R"dx) . (3.2)
Here {y#}._, is a family of pXp Hermitian matrices
(“gamma matrices”) satisfying the Euclidean Dirac algebra

Y+ Yt =2, pv=1,.n,
and ®(x) is a real-valued function on R". The operator L is
considered by Callias® from a different context. Throughout
this section, we assume for simplicity the following state-
ment.

(A) @ is bounded and differentiable on R” with its par-
tial derivatives being also bounded on R".

By the boundedness of ®, L is closed with domain
D(L) =H,(R*%C?) (the first Sobolev space of C?-valued
tempered distributions) and the adjoint is given by

L*=iyd, —id(x), (3.3)
with D(L *) = D(L).

Let Hy and Hy. be copies of K and put

H=HgoH;. (3.4)
Further, let

00 %) an( %) oo

Then, @, and Q, are self-adjoint with D(Q,) = D(Q,)
= D(L) ® D(L *) and satisfy
0,0+ @2.0,=0, (3.6)

on D(L*L) e D(LL *)( =D(Q,Q,) = D(0Q,0Q,)). We also
have

E 3
n=oi=0i=("" 2. 3.7)
Finally, we define
NF=(IP 0 ), (3.8)
o -1,

with 1, being the pXp identity matrix. Then, we conclude
that the quadruple {H,{0,,0,},H,N;} with H,{Q,,0,},H,
and N givenby (3.4), (3.5), (3.7), and (3.8), respectively,
isan SSQT with N = 2 supersymmetry. [ Conditions (c) and
(d) in Definition 2.1 are easily checked.]

From (3.7), we have

Hy=L*L=Hyy + Vg, (3.9)

He=LL*=Hy + Vg, (3.10)
with '

Hog =Hor = — A, (3.11)

Ve = +73d,® + P2, (3.12)

where A is the n-dimensional Laplacian. The total Hamilto-
nian is written as

H=H,+V, (3.13)
with
_(—-A 0 (Ve 0)
Let
(0 iwap)
Q= (ir“ 3, 0o /) (3.15)
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We must check the conditions in Theorem 2.2 for the
quantum scattering system {H,H,} described above. For the
existence and the completeness of the wave operators, we
employ a standard result in potential scattering (see, e.g.,
Ref. 10).

Lemma 3.1: Let y g (x) be the characteristic function of
the set {xeR"| |x| >R} and suppose that

h(R) = |[V(Ho + 1)~ 'y&]|
isin L '((0, 0 ),dx) asafunction of R > 0. Then, W _ (H,H,)
exist and are complete.

Remark: If

V() |[<e(l + |x]) =2,

with some constants ¢>0 and 8> 1, then V satisfies the
above assumption.

Lemma 3.2: Suppose, in addition to (4), that P is in
L?(R",dx). Then (a) for all >0, we have

f ds%”(Q— o) (Qy :tiS)—lll <o,

and (b) for all ¥eH, we have

Jim_ /(@ Qp)e ] = 0.

Proof: (a) Since (Q — Q,) is bounded and Q, is self-
adjoint, we have
(@ — Qo) (@ +is) Y| <e/s,

with some constant ¢ > 0. Hence we get the desired result.
(b) It is sufficient to prove that

lim |desf|| =0, feK. (3.16)
t— F+ o

By using the explicit representation of the integral kernel of
exp(itA), one can easily see that

[[®e™ £|<[1/(4mt)"*1||D|[l £, -

Hence, for all fin L 'NL *(R",dx;C?), we have (3.16). By a
limiting argument, we can extend the result to all fin K. O
Thus, under conditions in Lemmas 3.1 and 3.2 for P,
assumptions in Theorem 2.2 are satisfied and we have, in
particular, ’
S(Hg, — A) = 4oS(Hg, — A)uyP,. ( —A),
where the operator u, on K is defined by
(o) (k) = (— Pk, /lk DFUR), keR", feK,
(3.18)
with ™ denoting the Fourier transform. Eq. (3.17) gives an
explicit relation between the corresponding 7-matrices:
Ty (kk') = (¥ k,/|k )T (kk"YyPk,/ k|,
kk'eR* (k*=k"?), (3.19)

where Ty (resp. Tg) is the 7-matrix defined from
S(Hy, — A)[(resp. S(Hg, — A)]. (For the definition of
T-matrix, see, e.g., Ref. 7.) In particular, in the case n = 1
where 7' = 1, one has

Ty(kk') = (sgnk)(sgnk')Tr(kk'),
kk'eR, k*=k",

(3.17)

(3.20)
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which gives the result in Ref. 4 with respect to the one-di-
mensional model.

As a by-product, under the same assumptions for ®, we
have proved that

o(—A+99,P+ P?)
=0, (—A+73,2+9%) =[0,0), (3.21)

where o,.(A4) denotes the absolute continuous spectrum
of the operator A. This follows from (i) that, by the com-

pleteness of the wave operators, Hy | H, (Hg)
(resp. Hg |H, (Hg) is unitarily equivalent to
—AMH,(—A4), (i) that o(—A)=0,(—A4)

= [0, 0 ), and (iii) that, by the spectral property of the su-
persymmetric Hamiltonian, o(Hyz) = 0(Hg)C{0, ).
Remark: One can extend the discussions in this section
to the case of a more general case of ® and also apply the
general result (Theorem 2.2) to other models in SSQM.

IV. CONCLUDING REMARKS

We have derived in a general framework of SSQT some
relations between the wave and the scattering operators on
bosonic states and those on fermionic ones and seen their
concrete implications in a class of models of SSQM on R”* . In
some sense, our result on the scattering operators gives a
rigorous proof for the consistency of the supersymmetry
with scattering. We remark that our analysis in the present
paper is restricted essentially to nonrelativistic cases, be-

476 J. Math, Phys., Vol. 28, No. 2, February 1987

cause, in relativistic quantum field theories, the concept of
wave operators does not make sense in general, which is due
to Haag’s theorem (e.g., Refs. 11 and 12). We hope, how-
ever, that, if one employs the Haag-Ruelle scattering theory
in the axiomatic quantum field theory (e.g., Ref. 11), one
may obtain results similar to those in the present paper.
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The general formalism of N = 2 pseudomechanics in the superspace is presented for one spatial
dimension. Taking into account the (super) symmetries of the Lagrangian, an exhaustive
classification of superpotentials into three categories is obtained. The first class contains the
harmonic oscillator potential, the free particle constant potential, and the superposition of both
with a linear potential. The second one contains the A 2/¢* potential and its superposition with
the harmonic oscillator potential and a constant one. The third class contains all other
potentials. Through Noether’s theorem, conserved quantities are associated with
(super)symmetry properties, and, for each class, we, respectively, get the following
superalgebras: osp(2,2) Osh(1), osp(2,2), and spl(1,1) Oso(2).

I. INTRODUCTION

In the 1970’s supersymmetry'? emerged as one of the
most elegant creations in theoretical physics. The associated
supersymmetry transformations turn bosons into fermions
and conversely, a very interesting property for the descrip-
tion of fundamental interactions in particle physics.

Supersymmetry? deals with fusion between space-time
and internal symmetries, gauge invariance, spontaneous
breaking of symmetry, string picture, local quantum field
theory, asymptotic freedom in non-Abelian gauge theories,
but also with classical and quantum pseudomechanics.>”’
This last context is very useful for getting acquainted with
supersymmetry in advanced realistic field theories and asks
for relatively simple but meaningful applications.

In recent years many quantum-mechanical systems
have been treated and solved completely within supersym-
metry developments. In particular, the supersymmetry of
the Pauli equation in the presence of a magnetic monopole
has already been pointed out® as well as for the cases™'® of
the 1/7% and Coulomb potentials. The so important harmon-
ic oscillator has also been extensively studied in the context
of supersymmetry®!'~'¢ by dealing in particular with super-
conformal’ transformations.

In fact, within the superfield formalism introduced by
Salam, Strathdee,!” and others,>? N = 1 and N = 2 supersym-
metric quantum mechanics have been partially developed in
a very elegant way.'"'® In particular, D’Hoker and Vinet'®

have presented the (N = 1) superspace formulation for the .

dynamical supersymmetry of the Pauli system in the pres-
ence of a Dirac magnetic monopole: they discovered®'® that
Osp(1, 1) is the largest dynamical invariance group of this
system. More recently, one of us'* discussed the particular
(N =2) example of the harmonic oscillator and obtained
osp(2, 2) Osh(1), the semidirect sum of osp(2, 2) and of

® Chercheur Institut Interuniversitaire des Sciences Nucleaires.

) Boursier Institute pour la Recherche Scientifique dans 'Industrie et ’A-
griculture (LLR.S.I.A.).

) Chargé de recherches Fonds National de la Recherche Scientifique
(F.N.RS.).
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the Heisenberg superalgebra sh(1), as the largest invariance
superalgebra of this system.

This article deals with a general discussion of the one-
dimensional N = 2 pseudomechanics®’ in the superspace
formulation. Our purpose is to obtain a classification of su-
perpotentials in connection with the associated (super)sym-
metry properties and to get the corresponding invariance
superalgebras. We restrict ourselves to superpotentials de-
pending only on the superposition Z. Let us insist on the fact
that we here obtain an exhaustive classification of superpo-
tentials leading to only three kinds of invariance superalge-
bras. This classification corresponds essentially to the results
already obtained by Durand,'® but by another method. In-
deed his work, which does not refer to the superspace formu-
lation, deals with the study of the invariance of the quantized
supersymmetric Schrodinger equation containing explicit
potentials following the procedure issued from the works of
Niederer?® and Boyer.?!

Let us now describe the contents of this paper. Section I1
is devoted to the construction of all the necessary superspace
elements we need for the study of symmetries of the super-
space Lagrangian and for the determination of associated
conserved quantities. We then give a classification of the
superpotentials entering into the theory. In Sec. III, we dis-
cuss the symmetries leading to the superalgebras associated
with the corresponding systems described by these poten-
tials. In this context we show that potentials such as the 1/¢°
potential, the harmonic oscillator, the linear, the constant
ones, and some superposition of these correspond to precise
sets of symmetries leading to the existence of invariance su-
peralgebras such as spl(1,1) Oso(2), osp(2,2), and
osp(2, 2) Osh(1).

. N=2-SUPERSPACE FORMULATION AND
SUPERPOTENTIALS

The N = 2-supersymmetric pseudomechanics®~’ in one
(spatial) dimension can be formulated in superspace.'® Sec-
tion A contains the definition of the superspace Lagrangian
-Z leading to the expected equations of motion and to an
easy quantization. In Sec. B, from the study of the symme-
tries of .Z, we classify all the potentials of the theory. Final-
ly, the superspace Noether theorem is given in Sec. C.
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A. Superspace Lagrangian and equations of motion

Following Ravndal,’! for example, it is sufficient in or-
der to construct the N = 2-superspace formulation of pseu-
domechanics, to extend the ordinary time variable (¢) to a
new supertime involving two Grassmann time variables (©
and ©). Then in the (¢, 6, ©) superspace we call “super-
field” any arbitrary function of 7, ©, and ©. These super-
fields are characterized by their “components,” which are
the coefficients of their Taylor expansion in powers of © and
6.In particular, we define the “‘superposition™ Z(t, ©, O) as

Z(1,0,0) =q(t) +iOyY(1) + iOY(1) + OBA(2),
2.1)

where the usual position variable ¢(#) and the function 4 (¢)
are bosonic variables while ¢ (¢) and E( t) are fermionic ones
describing spin degrees of freedom. Let us also introduce two
superderivatives

D=95 —i04d, D=3, —i034, (2.2)
satisfying

{D,D} = —2i4,. (2.3)

Our physical system is governed by the action

I= f dtL, (2.4)

where L is the usual supersymmetric Lagrangian. In this
superspace formulation L is given by

L=fded§ ¥(Z,DZ,DZ), 2.5

where . (Z, DZ, DZ) is called the superspace Lagrangian.
Here we shall suppose that .%" reads

£(Z,DZ,DZ) =} DZDZ — W(Z), (2.6)

where the so-called superpotential W(Z) is an arbitrary
function of the superposition Z. The Taylor expansion of the
superpotential in powers of © and O is

W(Z)=W(q) +iO(W'(g) ¥) + i O(W' (9)¥)
+O8(W' ()4 + W"(q) P,

where the primes denote derivatives with respect to g.
The corresponding Euler-Lagrange equation evidently
reads
9L D 9L 5 9L _
az a(DZ) d(DZ)
leading with . = (2.6) to the equation

2.7)

0, (2.8)

= w

5[D,D]Z=%E. (2.9)
In components, Eq. (2.9) explicitly gives

A=W'(q), (2.10a)

=W (@)Y, (2.10b)

p= —iW" (Y, (2.10c)

= —W"(@4—W"(Q. (2.10d)
From Eqgs. (2.10a) and (2.10d) we have

d= — (W@ — W"(q)d. (2.11)
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Thus, we can identify } W’(g)? with the classical potential
Vig).

This formulation is of course equivalent to the usual
one. Indeed, using the components of the superfields, the
Lagrangian (2.5) can be written

L=4@+3A> - WA+ D@ - — Wiy

(2.12)
This Lagrangian is a constrained®>?** one. It gives rise to
three primary constraints

pr=7, + ()Y, (2.13a)

@, =5 + ()Y, (2.13b)

@3 ="y, (2.13¢)
and a secondary one

Pa=A—W', (2.13d)

where 7, 73, 7, are the momenta conjugated to ¥, ¥, and
A, respectively. All these constraints are second class ones.
Thus from the canonical Poisson brackets,** we can define
Dirac brackets. Strongly realizing the second class con-
straints, the only two brackets different from zero are

W =—i {gplr=1, (2.18)

where p is the momentum conjugated to g. Once more, real-
izing the constraints, the total Hamiltonian is

Hp=1p"+{(W'): + W Py, (2.15)
and the equations of motion are

p={p. Hr}p = —Q(W")* + W "y, (2.16a)

g=1q, Hr}p =p, (2.16b)

Yv={9,H}, =iW"y, (2.16¢)

v={4,H}p = —iW"y. (2.16d)

These equations are clearly equivalent to (2.10) [and
(2.11) ]. Let us also notice that the Lagrangian

L=3@— 3 (WY + D@~ ) — Wiy
would give the same results. It means that it is not necessary
to consider a Lagrangian depending explicitly on 4. This
variable appears in (2.12) only because of the superspace
formulation.

Finally, the quantization®® of this supersymmetric
pseudomechanics is realized by imposing

W, 9}y=irly,9}p =1, [gp1=if{g plp =i

(2.18)

where we have taken # = 1 and where [ , ] and {, } denote
as usual commutators and anticommutators, respectively.

(2.17)

B. Symmetries of the superspace Lagrangian
Let us now study infinitesimal transformations
Z-2Z + 62, (2.19)

leaving the action (2.4) unchanged. This happens if the vari-
ation of .& (Z, DZ, DZ) is given by

8. =da+dea+d5@, (2.20)

or
8.2 =D A + DA, (2.21)
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where

A= (i/2)Da+iBGa+i07) +7, (2.22a)
and _

A= (i/2)D(a+iBa +i0F) +a (2.22b)

[in fact, it is easy to see that the condition (2.21) is equiva-
lent to the usual condition SL = df /dt]. In the following, we
will consider transformations (2.19) characterized by

8Z=06t3,Z+603,Z+8035Z

+K(1,0,0)Z + Z,(1,6,08), (2.23)

with
5t=F(,0,0), 66=2(1,06,0), §6=%(1,6,0),
(2.24)I

where F, K, and Z, are arbitrary even?* functions of t, ©, and
6, while Z and E are odd** ones. Using the superderivatives
(2.2), Eq. (2.23) becomes

8Z=)G{D,D}Z+EDZ+EDZ+KZ+Z, (2.25)
with

G=iF+0Z+06E. (2.26)
With . =(2.6), we can then compute

8% =y D6Z DZ +}DZ D6Z + 6Z mZ(ZZ) . (227

Using (2.25), after rather simple calculations, we get

8% = —\D(GDZDDZ + DK Z* +2DZ,Z + 2GW'DZ) +  D(GDDZ DZ + DK Z*> + 2DZ, Z
+2GW'DZ) +} (2K + DE + DE)DZ DZ + } (2E — DG) (DZ DDZ — 2W'DZ)
—1(2E — DG)(DDZDZ + 2W'DZ) + 4 (ID,D1K)Z*+ (4 [D,D1Z)Z —KW'Z — Z,W".

We notice that condition (2.21) will be satisfied if and
only if

E=}DG, E=}DG, K= —1{D,D}G, (2.28)
and
1(ID,DIKYZ*+4(ID,D1Z)Z —KW'Z — Z,W'
=DQ +DQ, (2.29)
where ) and Q are functions of ¢, ©, and ©.
These expressions lead to the quantities
A=1GDDZDZ - D{D,D}G Z*
—1GW'DZ+1DZ,Z+Q
and (2.30)
A= —-1GDZDDZ + },D{D,D}GZ*
—~JGW'DZ+}DZ,Z+ Q.

Let us discuss the system (2.28) and Q.29). We notice
that Egs. (2.28) give the expressions of Z, Z, and K in terms
of G but are independent on the specific form of the superpo-
tential W while Eq. (2.29) does depend on it and now be-
comes

(MZ+N)W'=DQ+DQ—M'Z*—-N'Z, (2.31)
where

M=1{D,D}G, M'= —L[D,D1{D,D}G,

N=-Z,, N'=}[D,D]Z,.

Let us now solve Eq. (2.31) according to different possi-

ble superpotentials.
If W' is not of the form

W' =wZ+p+ (A/Z)+aZ? o,u,A, a constants,

(2.32)

we immediately see that Eq. (2.31) implies the vanishing of
all the functions M, M ', N, and N'. For such a potential, §.
reduces to a superbidivergence if and only if
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-

{D,D}G=0 (2.33a)
and

Z,=0 (2.33b)
In this case, we have

Q=0=0. (2.34)

If W' has the form (2.32), Eq. (2.31) gives, by identifi-
cation of the coefficients of the powers of Z,

aM =0, (2.35a)
oM +aN= —M', (2.35b)
uM +oN= —N', (2.35¢)
uN + AM = DO + DQ, (2.35d)
AN =0. (2.35¢)

From Egs. (2.35) we immediately deduce that, if £0, we
have to impose restrictions (2.33) in order to get Eq. (2.31).
So, let us suppose that @ = 0. Then Eq. (2.35¢) suggests
considering separately the cases A = 0 and 4 #0. Let us be-
gin with 4 0. Equation (2.35¢) gives N = 0, which also
impliesN’ = 0. Equation (2.35c¢) tells us that, if £ 520, M has
to be zero, and this leads us once more to restrictions (2.33).
So we consider i = 0, i.e., we study the potential

W(Z)=(0/2)Z*+ A 1n|Z|,

A #0, & arbitrary constants.
Equations (2.35) now become

oM= —M', N=0, iM=DQ + DQ,

and tell us that the potential (2.36) satisfies Eq. (2.31) ifand
only if

([D,D] —40){D,D}G=0

(2.36)

(2.37a)
and

(2.37b)
with
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Q=(1/4)DG and Q= (4/4)DG.
Let us now consider A = 0. We study the potential

W(Z) = (w/2)Z* +uZ, o,y arbitrary constants.
(2.39)

(2.38)

Equations (2.35) become
oM= —M', uM+oN= —N', uN=DQ + DQ.
So the potential (2.39) satisfies Eq. (2.31) if and only if

([D,D] —40){D,D}G=0 (2.40a)
and

([D, D] —20)Z,= ( —p/2){D, D}G, (2.40b)
with Q and Q determined by

DO+DO= —puZ, (2.41)

In summary, we can classify all the potentials in three
categories.

(1) If W(Z) is any potential different from (2.36) and
(2.39), we ensure Eq. (2.21) if and only if relations (2.33)
are satisfied.

(2) If W(2Z)=(2.36), we have (2.21) if and only if
relations (2.37) are satisfied. If o = O, this case corresponds
to the potential ¥(q) = A ?/q?, while if @ #0, we get the su-
perposition of the A 2/¢? potential with the harmonic oscilla-
tor potential and a constant one.

(3) If W(Z)=(2.39), we have (2.21) if and only if
relations (2.40) and (2.41) are satisfied. If x = O, we get the
harmonic oscillator potential. If » = 0, we get the free parti-
cle potential. If @ %0 and £ #0, we get the superposition of
the harmonic oscillator potential with a linear one and a
constant one.

Let us notice that the solutions of Eq. (2.33) are, of
course, also solutions of (2.37) and (2.40). This means that,
for any potential W(Z), the Lagrangian (2.5) will have the
symmetries characterized by Eq. (2.33).

These results are particularly meaningful in connection
with Niederer’s?® and Boyer’s®! discussions on classes of po-
tentials within the nonrelativistic “conformal invariance” of
the Schrodinger equation. In the following section, we will
discuss the symmetries and supersymmetries of such super-
potentials.

C. Superspace Noether’s theorem

Let us now end this section by giving Noether’s theorem
in the N = 2 superspace formulation, which enables us to get
the conserved quantities associated with the symmetries we
have found above. It reads as follows: If the transformation
(2.19) is a symmetry of the Lagrangian .¥ (Z, DZ, DZ)
[i.e., it gives rise to (2.21) ], there exists a conserved quanti-
ty called a “superbicurrent” defined by

oL JdL

S=6Z—2—_—A Z=86Z- _A], (2.42)
DZ Dz
such that
DI +Dx=0. (2.43)

Assuming that the Euler-Lagrange equation (2.9) is satis-
fied, the proof is straightforward. Let us notice that this su-
perspace theorem is strictly equivalent to its fourth compo-
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nent which is the usual Noether theorem.

With

3 =0 + 65 + Os + i000, (2.44a)
and

3=0+60u1+6u+i086375,, (2.44b)

Eq. (2.43) reads

uU+5—i0(Gy+05) +iO(0y— ) +i0O(G—14)=0.
(2.45)

The first three components do not teach us anything. So, in

the following, we will only take into account the conserva-
tion law given by the fourth component

—é—(E— u) =0.

.46
7 (2.46)

Ill. SUPERPOTENTIALS AND INVARIANCE
SUPERALGEBRAS

Through Noether’s theorem, we associate conserved
quantities with symmetries described by Egs. (2.33),
(2.37), and (2.40). These quantities obey the structure
equations of a superalgebra and we discuss separately the
superalgebras associated with the various potentials, our
choice of presentation going from the smallest to the largest
superstructures.

So we will get in Sec. III A the superalgebra spl(1, 1)
[0 s0(2) corresponding to the (super)symmetries character-
ized by Eqgs. (2.33), i.e., the (super)symmetries of the La-
grangian (2.6) including an arbitrary superpotential. In the
particular cases of the superpotentials (2.36) (Sec. B) and
(2.39) (Sec. C), we will obtain the superalgebras osp(2, 2)
and osp(2, 2) Osh(1), respectively. As expected, we see
that the arbitrary superpotential case leads to a supersubal-
gebra of the superalgebras associated with both the other
cases.

A. Arbitrary superpotentials

The symmetries of the Lagrangian (2.6) are associated
with the transformations on Z, ¢, ©, and 6 given by Egs.
(2.23) and (2.24) such that we have Egs. (2.28) and (2.29).
So we get

8t=i[—2G+6DG+6DG],

86 =}DG, 8§6=1DG
and

8Z =4 G{D,D}Z + DG DZ + 3 DG DZ, (32)
where G satisfies Eq. (2.33a). The general solution G can
then be written

G(6,0) =ic—206—2a0 +240 6, (3.3)
where ¢ and id are ordinary real parameters while  and @
are Grassmann ones. From Egs. (3.1) with (3.3) we expli-
citly get
St=c+ix®+iad, 80=a—d6, 66=a+dH,

(3.4)

and from Eq. (3.2), definition (2.1), and Eq. (3.3), we de-
termine

a.a1n
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S5q=cqg+iay+iay, a$=ca—a'(q+u.) —dy,
Sp=cp—a(g—id) +dy, SA=cA+ad—Ty.
(3.5)

The conserved superbicurrent is then given from
(2.42), with (2.30) and (2.34), by

X =G DDZ DZ + }DG DZ DZ + }GW'DZ
and (3.6)
3 = —{GDDZDZ — \DG DZ DZ + iGW' DZ.

In components, with the definitions (2.44) the general
charge is

C=F—u=3e—2|5

= —i(cHy +dY +i@Q + ia 0), 3.7

where
Hr=ip +{{(W' @QP +iW"(@[¥,¢¥], (3.8a)
Y=il[4 ¢], (3.8b)
O=(p+iW' (W, ° (3.8¢)
O=(p—iW'(QW. (3.8d)

In these charges (3.8), we have written p = (dL /d¢) = ¢
and strongly realized the second class constraint (2.13d):
A = W'. Moreover we have made the skew symmetrization
of the terms proportional to ¥ . Let us also notice that the
total Hamiltonian (3.8a) admits the decomposition into a
bosonic part H g, i.e., containing no fermionic degree of free-
dom, and a fermionic part H g such that

Hp=H, + Hy, (3.92)
with

Hy =ip* + 1 (W (@) =1p" + V(g), (3.9b)

He =3 W" (@) [¥, ¥ (3.9¢c)
Since we have

Hp = —iW" ()Y, (3.10)

the bosonic and fermionic parts are separately conserved if
and only if W " is independent of .

Charges (3.8) form a closed structure for the commuta-
tor and the anticommutator (2.18) which turns out to be the
semidirect sum of spl(1, 1) (generated by Hr, Qand Q) and
s0(2) (generated by Y). The brackets different from zero
are

(3.11)

B. Superpotentials W(2)=(2.36)

The symmetries of Lagrangian (2.6) are now associated
with the transformations on ¢, ©, and © such that we have
Egs. (3.1) and on Z such that

6Z=4G{D,D}Z +1DGDZ+}DGDZ —}{D,D}G Z,
(3.12)

where G has to satisfy Eq. (2.37a). Let us then find the sym-
metries by considering separately the cases w #0and w = 0.
For 70, we get the general solution of Eq. (2.37a)
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G(1,0,0) = ic — 206 — 2a0 + 246 6
+ i(a cos 2wt + b sin 20t) (1 + 2000)
—2Be~ %' Q@ — 2B ¥ O, (3.13)

where the first four terms are evidently those given in Eq.
(3.3). From Eqgs. (3.1) with Eq. (3.13), we explicitly get

St=c+asin2wt+bcos2wt+ia©®+idO
+ iB ©e~ 2t 4 | BOH,
80 =a + B(1 — 200 B)e 2
+ awe ~ ¥'Q — ibwe ~ ?*'© — dO,
0 =a+B(1 — 200 8)e*™ 4+ awe*'®
+ ibwe*@© +d O,
and from Eq. (3.2) with the solution (3.13), we explicitly
have
8q = cg + a(q sin 2wt — wq cos 2wt) + b(g cos 2wt
+ wq sin 2wt) + ia ¥ + i @Y + ife ¥ + i ¥y,
5T =ch—alg+id) +iBe™( — A+ if+ 2g) —d ¥

+ a(';Z— i ¥)sin 20t + b(? — i P)cos 2wt,
(3.15)

8 =c ¥ —a(g—id) +ife~'( — 4 + ig — 2wq)
+ dy + a(P + iwy)sin 2wt + b(¢ + iwy)cos 2wt,
84 =c A + a(A sin 20t + (Ao — 2w°q)cos 20t )
+ b (A cos 20t — (Aw — 2w°q)sin 2wt )
+a @+ e G — B,
The superbicurrent (2.42) becomes, with Eqs. (2.30)
and (2.38),
3 =G DDZ DZ + }DG DZ DZ

+4GW'DZ — {{D,D}G ZDZ

(3.14)

+ & D{D, D}YG Z* — (A /4)DG (3.16a)
and
3= —16DDZDZ — DG DZ DZ
+1GW'DZ + {{D,D}GZDZ
~ & D{D,D}YGZ?— (1 /4)DG. (3.16b)

By computation of the © component of = and the © compo-
nent of =, the general charge is easily found to be

C= —i(cH; +dY +aC, + bC,
+idQ+iz Q+iBS+iBS),
where Hy, Y, Q, and Q are given in (3.8) with

W'=wq+ (A /q). Using p= ¢ and 4 = W’ and defining
C, =C, +iC,, we get the following:

C,=je™((p+ing)* + (A/¢*) (A — [¥, ¥])),
(3.18a)

C_= —jé((p—ing)* + (A/g*) (A — [¥, ¥])),
(3.18b)

3.17)
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S =¥ (p — ilwg — (A /)Y, (3.18¢)
S=e ¥ (p+ilwg— (1/9)))¥, (3.18d)

which are the additional charges [with respect to Egs.
(3.8) 1, appearing for the particular potential we are consid-
ering here. Let us notice that in this case the bosonic and
fermionic parts given by Eqs. (3.9b) and (3.9c) are not sepa-
rately conserved.

We can verify that these charges form a closed structure
which is the superalgebra osp(2, 2). The brackets different
from zero are, in addition to those given in (3.11),

[Hr, C.]= +20C_,
[C,,C_ 1= —4w(H; + inY),
[Hr,S]= —20S, [Hr S| =205,
[¥,8]1= —iS, [¥,8]=i5,

[C,,01= —2iwS, [C,,S]= —2ioQ,
[C_,Q)l= —2iwS, [C_,S]1= —2i00,
{0, 8} = —2c,, {Q S}=2iC_,

{8, 5} =2(H; + 2iwY).

For =0, Eq. (2.37a) admits the general solution
G(1,6,0) =ic— 226 —2T0 + 2d6 6

(3.19)

+iat?+ibt + 26t 6 + 2510, (3.20)
so that we get from Eqgs. (3.1)
St=c+at>+bt+ia®+iad—iftO —ipO,
8O0=a—B(t—i00)+at®+ (b/2)0—-d6, (3.21)
56=a—-B(t+i06)+atO+ (b/2)0+d6,
and from Eq. (3.2) with (3.20)
8g=cq+a(t?’q—1q) +b(1g—iq)
+iay+iay— ity —iBry,
8V=ch—alg+id) +B(gt+itd — g
—d$+at2$+bt$,
Sp=cp—a(g—id) +B(gt —itd — )
+ dy + at %) + bry), (3.22)

SA=cA+a(t>?A+14) +b(tA+}4)
+ay—ay—prv+ B
The conserved superbicurrent is given by Egs. (3.16) so that
in this case the general charge reads
C= —i(cHy +dY + bD + aK
+i@Q + iaQ + i8S + i BS), (3.23)

where H,, Y, Q, and Q are once more given in (3.8) (with
W' =A/q)and (p=¢g,A=W'),

D=:H— Hg,p}, (3.24a)
K= —t’H+2D+14’, (3.24b)

= —1Q+q1 (3.24¢c)
S= —t0+q9. (3.24d)

These charges are the ones typically conserved for the super-
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potential W(Z) = A In|Z |. In this case, the bosonic and fer-
mionic parts of the Hamiltonian are not separately con-
served.

We find that the superalgebra associated with this case
is once more osp(2, 2). The brackets different from zero are,
apart from those given in (3.11),

[Hr, D] =iH,

[Hy, K] =2iD,

[D,K]=IK,

[Hr,S]= —iQ, [HT’S] = "ié,
[Y,§]=—iS, [YV,S]=i§,

[D,S]=%S9 [D,§]=%§,

[K,Q]=IS, [K’Q]=l'§;
{0,S}= —2D+7v, {Q,S}=—-2D—7,
{s, S} =2K.

As a last comment let us notice that here we recover
Durand’s results'® obtained for the above two cases, but not
from the study of the supersymmetric Schrodinger equation
following the method of Niederer®® and Boyer.?! In fact the
supersymmetries of the 1/¢” potential have already been de-
termined in the work of Fubini-Rabinovici’ and have been
combined® with those of the field of the magnetic monopole.
The superposition of the harmonic oscillator and the 1/¢*
potentials (plus a constant one) has been studied by Boyer?'
and Durand'® as far as symmetries and supersymmetries,
respectively, are concerned. Our approach differs from the
preceding ones by the fact that we construct the superspace
formulation as D’Hoker—Vinet'® in the N = 1 context.

C. Superpotentials W(Z)=(2.39)

The symmetries of the Lagrangian (2.6) are associated
with the transformations (3.1) on ¢, ©, and © and the trans-
formation §Z on Z such that

8Z=4G{D,D}Z+4DGDZ
+3DGDZ—1{D,D}GZ + Z,, (3.26)

where G and Z, have to satisfy Eqgs. (2.40). Since Eq.
(2.40a) is identical to Eq. (2.37a), we get solutions (3.13)
for w#0 and (3.20) for ® = 0. As a consequence, we again
consider separately the cases %0 and @ = 0.

For 40, inserting solution (3.13) into Eq. (2.40b) we
get

Z,(1,0,0) = — u(a cos 2wt + b sin 20t) (1 + 400 O)
+2/‘Be2iwte_2llﬁe—-2im§
+ (e cos wt + fsin wt) (1 + 0O 6)

+ (PO + iye~ ' ©. (3.27)

This solution contains two ordinary real parameters ¢, f, and
two Grassmann ones ¥, 7. Let us notice that the transforma-
tions associated with these parameters affect only the super-
position Z and not the variables (z, 6, ©). Indeed, we have
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Eq. (3.14) while from Eq. (3.26) with Eqgs. (3.13) and
(3.27), we get

8q = ¢g + a(g sin 20t — (wq + p)cos 2wt)
+ b (g cos 2wt + (wg + p)sin 2wt ) + e cos wt
+{‘sinwt+ia?+i?iqb+i,8e‘2"“"$+i/§e2""‘¢,
S ¢ =cy+a(y — ioy)sin 2wt
+ b(§ — i Prcos 2t — d P — T (G + i)
+ i e (— A + i + 2(wg + 1)) — 7,
&Y =c ¢ + a(yY + iwy)sin 2wt
+ b(§ — iwy)cos 20t + dip — a(§ — id)
+iBe ¥ — A +ig —2(wg +p)) —rve™ ™,
54 =c A+ a(A sin 20t + (Ao — 20°q — 2wp)cos 2wt )
+ b (A cos 20t + (Aw — 20°q — 2w0p)sin 20t )
+ewcoswt+fwsinwt+a.$—5¢
+ Be™ e — B
The conserved superbircurrent (2.42) then explicitly reads
2 =1GDDZDZ+3DGDZDZ+}W'GDZ
—{D,D}YGZDZ + }, D{D,D}YG Z*
+12,DZ —yZDZ, - Q,

(3.28)

(3.29a)

and

2]
Il

—1GDDZDZ—-3DGDZDZ +,W'GDZ
+ 4D, D}YGZ Dz — }, D{D, D}G Z*
—12,DZ+42DZ,-Q, (3.29b)

where © and Q can be obtained from Eq. (2.41) with
Z,=(3.27). Going to the components, the general charge
reads

C= —i(cH; +dY +aC, + bC, + eC; + fC, + i &Q
+iaQ+iBS+iBS+iyT+iyD), (3.30)
where H,, Y, O, and@aregivenin (38)withW'=wq + 4.

Using p=¢ and 4 = W', and defining C, =C, +iC,,
P, =C,4iC; wehave

C, =le " ((p+ilwg+p))P —u),

o (3.31a)
C_= —}&((p—ilwg+p)f —p?),
— pliont ;
f_e -(p-—t(a)q +,u))¢,_ (3.31b)
=e ™ (p + i(og + )W,
P, =ie=(p+ilag+p), (3.31c)
P_= —ie”(p—ilwg+p))
T= ey, (3.31d)
7-v=e—-imt-'z.

In this case, let us notice that the bosonic and fermionic
parts=(3.9) of the total Hamiltonian are separately con-
served, the fermionic part H ¢ essentially being the charge Y.
It is easy to show that the charges (3.8a), (3.31a), and
(3.31c) generating the so-called Schrédinger group® are ex-
actly those which would be obtained by considering the
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problem where the fermionic degrees of freedom have been
suppressed. This was not the case in the preceding section.

The charges (3.31a) together with (3.8) again lead to
the superalgebra osp(2, 2). Moreover we also have four ad-
ditional charges [ (3.31c) and (3.31d)] which come from
the nonannulation of Z,. Finally, if we add the identity 7 to
them, we obtain the superalgebra sh(1) characterized by the
nontrivial relations

[P,,P_ 1=20I {T,T}=1I (3.32)

We can then check that, taken altogether, the charges (3.8)
and (3.31) form the semidirect sum osp(2, 2) Osh(1). In-
deed we have

[H;,P.]|=0P,, [H,P_]=—wP_,
[H, T]= —oT, [Hr,T]=0T,
[¥,T1= —ioT, [V, T]=ioT,
[C,,P_}=2wP, , [C_,P.]l=2wP_,
[P,,01= —20T, [P_,Q]= —2ioT,
[P,,S]= —2ioT, [P_,S]= —2ieT,
{1,0}=iP_, {T,Q}= -iP,,
{1,§}= —iP,, {T,S}=iP_.

For @ =0, inserting the solution (3.20) into Eq. (2.40b)
we get

Zy(1,0,0) =et +f—puBtO +upt©
+i70 +iy© +1ub0 6,
so that in components §Z= (3.26) reads

(3.33)

(3.34)

Sg=cq+a(t’q—1g9)+b(tg—}iqg)
+ia+iap—iBty—iPty +et+f,
5¥=ch+a’+bty—dy
—@(q +iA) + B(gt +itA —q — iut) -7,
SY=cp+at®P+ bty +dy — a(g—id) (3.33)
+B(qt —itA — g + iut) - v,
SA=cA+a(t?A+1t4) +b(tA+} (4 +p))
+a$—a¢—ﬂt$+ﬁt¢.
The conserved superbicurrent is given by (3.29), 2 and

Q satisfying Eq. (2.41) with Z, = (3.34). Going to the com-
ponents, the general charge is now

C= —i(cH; +dY+aK +bD +eE+fF+iaQ
+ia Q+iBS+iBS+iyT+i7D), (3.36)
whereHr, Y, O, and Q are given by Egs. (3.8) with W' =y,

D, K, S, and S are given by Egs. (3.24) and, with p = 4,
E=tp—gq, F=p, T=¢, T=Y9. (3.37)

Just as for w # 0, we have to add the identity / in order to
get a closed structure. If we want to see directly that this
structure is the semidirect sum osp(2, 2) Osh(1), we have
to consider the linear combination

Q' =Q—-iuT=py, Q'=0+uT=p¥,

.38
Hp=Hy — =7 (3:38)
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instead of Q, @, and H .. It can then be shown that these new
charges verify the same commutation rules (3.11) as the old
ones. One can also check that, together with D, K, S, and S,
the charges (3.38) verify relation (3.25), which character-
izes the osp(2, 2) algebra. Moreover E, F, T, and T turn out
to obey the (anti)commutation relations of the sh(1) super-
algebra. The other nonzero brackets are then given by

[D,E]=iE,

[D,F]1= —iF,

[¥,T]= —iT, [V, T]=iT,

[Q,E1=iT, [Q,E]l=iT, (3.39)
[S,F1=iT, [S,F]=iT,

{0, T}={0", T} =F,
{7} ={S, T} = —E.

Finally, let us notice that from the superspace formula-
tion we have shown that we recover some results already
known'#1%1° about the supersymmetries of the physical sys-
tems such as the free particle and the harmonic oscillator.
Let us recall that since Niederer*® we know that a change of
variables realizes the one-to-one correspondence between
the free particle and the harmonic oscillator showing that
the superalgebras for both cases are isomorphic ones.

In our approach we have (additionally with respect to
Durand’s'® work) considered (when »#0 in the preceding
discussion) the potential

V(g) =10°¢* + i * + wpug, (3.40)

which corresponds to the superpotential W(Z) = (2.39) in-
cluding the harmonic oscillator and constant potentials as
well as the linear one. We have shown that it admits a sym-
metry also associated with the superalgebra osp(2,2)
Osh(1). The correspondence is evident since the substitu-
tion ¢’ = ¢ + (u/w) leads to the harmonic oscillator poten-
tial. Let us notice that with V(q) = (3.40) we cannot recover
the linear potential alone. It was expected since as already
noticed by Durand,'® this case does not admit a large set of
supersymmetries. More precisely, we can say here that such
a case admits only the superalgebra (3.8) of symmetries
when we have considered W' = vg'/2. This supersymmetric
system breaks down some symmetries of the nonsupersym-
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metric one. Indeed the symmetries®> of the Schrodinger
equation with the linear potential are associated with the
Schrédinger algebra Schr( 1) and there exists?” a one-to-one
correspondence between the linear potential case and the
free one.
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On the color factor of n-gluon decay from quarkonium

Minoru Biyajima

Department of Physics, Matsumoto, Faculty of Liberal Arts, Shinshu University, Matsumoto 390, Japan

Tetsuji Kawabe

Department of Physics, Kyushu Institute of Design, Fukuoka 815, Japan

Naomichi Suzuki

Matsushou Gakuen Junior College, Matsumoto 390-12, Japan

(Received 30 May 1986; accepted for publication 15 October 1986)

A method for evaluating the weight of the color factor necessary for gluon decay in the context
of quantum chromodynamics (QCD) is presented. As concrete examples, the method is
applied to the three- and four-gluon decays from heavy quarkonium.

1. INTRODUCTION

To study the decay of any quarkonium in quantum
chromodynamics (QCD) (Ref. 1), it is necessary to evalu-
ate the color factor involved in an amplitude for the #-gluon
annihilation of a color singlet state as shown in Fig. 1.

For the case of charmonium decay, two- and three-
gluon decays with definite charge conjugation (c.c.) states
have been studied from realistic viewpoints.> The amplitude
for the two-gluon decay of c.c. even states is given by

dma, M, Tr(A°A*/2%)es (1)e5(2)/43, (1)

where a,b = 1,2,...,8, the A ¢ are the standard SU(3) matri-
ces, e, °( 1) and e, %(2) are the gluon wave functions, and o,
is the coupling constant of the quark—gluon interaction.

Similarly, the amplitude for the three-gluon decay of
c.c. odd states is given by

3/2
4>’ M o
with

w32 = Tr(A“A°A/2%) .,

w;"%,%(1)e,”(2)e,*(3) /43, (2)

where the suffix “sym” means that the structure constants
for the totally symmetric states, i.e., d coupling, are only
taken into account. In the above expressions (1) and (2),
the trace parts describing the color factors are easily calcu-
lated by using the general properties of A matrices.”> How-
ever, recent argument’ for heavier quarkonium, i.e., upsilon
(bb), seems to need the contribution of four-gluon decay in
addition to the three-gluon decay. If this is the case, we have
to evaluate the amplitude involving the four A matrices un-
der the constraint of the charge conjugation as follows:

417'as2M,uvpalU4”2epa( 1 )evb(z)ePC(3)ead(4)/3; (3)
with
wM? =Tr(AA°A49/2*) . oaa-

The actual calculation of the trace w, is, however, not so easy
as that of w; in (2) because the way of combining the A
matrices to form the c.c. odd states is very complicated. Un-
fortunately, the explicit value seems not to be given in any
literature, to the best of our knowledge.* Furthermore, from
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the physical viewpoint the color factor w, with n>4 will
become important for the study of heavier quarkonium such
as topponium (7).

1l. METHOD OF CALCULATIONS

In this paper we give the explicit method to evaluate the
color factor w, for n-gluon decay by using the Young tab-
leaux and the concept of the nth symmetric group §,. And
we apply our method to three- and four-gluon decays with
c.c. odd states as concrete examples.

The systematic evaluation for the trace of the product of
A matrices is obtained from the following rule derived by the
method of the Young tableaux>®:

Tr(d A% 4 %/2") = (AA)Tr@XEOX o X0).  (4)

The parentheses containing # boxes on the rhs of (4) stand
for all possible normalized basis functions of the nth sym-
metric group S, . The basis functions are constructed by the
usual procedure®’ as follows:

‘lym) =ZDIm (R)R\I’y (5)
R

where /,m = 1,2,...,d ( = dimension of the representation),
and D,,, (R) denotes the (/,m) component of orthogonal
matrices of irreducible representations of S, belonging to the
group element R. Here, ¥ represents a state vector of # iden-
tical particles.

n-gluon

FIG. 1. The decay of the quarkonium state into an n-gluon. The solid and
wavy lines stand for quark and gluon, respectively.
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lli. CALCULATION OF S,

For the case of S, there are the following three possible
Young tableaux:

¢s=m:] s ¢a=B' ¢m=Bja (6)
whered, (¢,) represents a state which is totally (anti)sym-
metric under the interchange of any two of the particles and
stands for a basis vector of a one-dimensional irreducible
unitary representation of S;. On the other hand, ¢,, denotes
the tableau of mixed symmetry for the two functions which
are the basis vectors of a two-dimensional irreducible repre-
sentation (doublets) of S;. In S;, there are six elements such
asE, (12),(13),(23),(123),and (1 3 2). Thus we obtain
from (5) with ¥ = ABC for ¢, and ¢,,,

¢, = (1/y/6) (ABC + BAC

+ CBA + ACB + CAB + BCA), (7)
#, = (1/6) (ABC — BAC
— CBA — ACB + CAB + BCA), (8)

where 4, B, and C denoted /2, A °/2,and A /2, respective-
ly, and also stand for gluons. For four functions of ¢,,, it is
sufficient to consider only one of them, e.g., /=m =1, to
show the present procedure

o = (1/3)[1,1)
= (1/\3)[D,,(E)E+D,,(12) +D,,(13)
+D,,(23)(23)
+D,,(123)(123) +D,,(132)(132)]4BC

= (1/2/3) (24BC + 2BAC — CBA
— ACB — BCA — CAB), 9

where we use the same orthogonal matrices for D as those
given by Hamermesh.® Here it is worth giving the correspon-
dence of notations between the present expressions for the
basis functions of S, and those given by Lichtenberg®
A =\/—6¢s’ Y. =\/g¢a’ Y= — '191} +\/§]2’1>s U= Il’l)
+ |2,1)/43, ¢ =2|2,2), and y = — 2|1,2)/4/3. Since the
trace of the mixed symmetric states vanishes as easily as
proved from (9), the trace of the Young tableaux in the rhs
of (4) consists of the totally symmetric state and the anti-
symmetric one

Tr(A°A%4/2%) = (1/Y6)Tr (4, + &,). (10)

For the charge conjugation we notice that a gluon field
G4 goesinto — G?, (a,B = 1,2,3), under the charge con-
jugation so that Tr(4BC) and Tr(BAC) go into

— Tr(BAC) and — Tr(ABC), respectively. This means
that the c.c. odd state corresponds to the symmetric state &,
as known from (7) and (8). From the general properties of 4
matrices as

{1272, A2/2}=6,,/3 +d,, A2, (11)
TrA=0, (12)

we get the following relation:

Tr ¢, = (V3/V2)Tr({4,B}C) = (3/22)d .. (13)
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Bj B,

N

FIG. 2. The Young tableaux for S,.

Thus we obtain the well-known result? for the weight w, as

1 2 dape )2 5
= — T = =) ==.
ws ag’c [( JE) r( Om) a;’c( 2 s (14)

IV. CALCULATION OF S,

For the case of S, there are five Young tableaux as
shown in Fig. 2. In S, there are 24 elementssuchas E, (1 2),
(13), (14), (23), (24), (34), (12)(34), (13)(24),
(14)(23), (123), (132), (124), (142), (134),
(143), (234), (243), (1234), (1243), (1324),
(1342),(1423),and (1432). In the same way as the
case of S, we first write down the basis functions of their
irreducible representation for all Young tableaux contained
in S, by means of (5) with ¥ = ABCD. Next we select the
nonvanishing Young tableaux by taking the trace of the basis
functions. Then we find that there remain the totally sym-
metric tableaux (B,) and one of the mixed symmetric ones
(B,). Furthermore, it is easily shown that the mixed sym-
metric tableau B, corresponds to the c.c. odd state of four-

gluon decay.
Then we obtain for (4) as follows:
Tr(A°A%4A9/2%) ¢ oaa = (1/81)Tr B:' (15)

This tableau denotes the basis vector of three three-dimen-
sional representations (triplets) for the mixed symmetry.
For the function |1,1) we obtain

|1,1> = [D1 1(E)E+D1 1(1 2)(1 2) + -
+D,,(1432)(1432)]4BCD
= ABCD + BACD + --- + DABC /2. (16)
The normalized function ¢, is then given by |1,1)/2y2. Simi-
larly, we have all the orthogonal normalized basis functions
¢i( o« ,l’1>), X,( o« |i12))’ and ¢1( o« |i)3>) (i= 112’3) be-
longing to each triplet (3211),(3121),and (1321) in

the Yamanouchi symbols.® The explicit forms of them are as
follows:
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The

¢, = (1/4y2) (24BCD — CABD — DACB — BCAD — BDCA — 2BADC + ACDB

+ ADBC + CBDA + DBAC + 2BACD — ACBD — ADCB — CBAD

— DBCA — 24BDC + CADB + DABC + BCDA + BDAC), (17)
¢, = (1/4/6) ( — 3CABD — DACB + 3BCAD + BDCA — ACDB — 34DBC

+ 2CDAB + CBDA — 2DCBA + 3DBAC + 34CBD + ADCB

— 3CBAD — DBCA + CADB + 3DABC — 2DCAB — BCDA + 2CDBA — 3BDAC), (18)
¢ = (1/23) (DACB — BDCA + ACDB + CDAB — CBDA — DCBA — ADCB

+ DBCA — CADB — DCAB + BCDA + CDBA),

(19)

1= (1/4/6) (3CABD + DACB — 3BCAD — BDCA — 34CDB — ADBC

+ 2CDAB + 3CBDA — 2DCBA + DBAC + 3ACBD + ADCB

— 3CBAD — DBCA — 3CADB — DABC + 2DCAB + 3BCDA — 2CDBA + BDAC), (20)
X2 = (1/12{2) (64BCD — 3CABD + 5DACB — 3BCAD + 5BDCA + 2BADC

— ACDB — ADBC — 4CDAB — CBDA — 4ADCBA — DBAC

— 6BACD + 34CBD — 5ADCB + 3CBAD — 5DBCA — 2ABDC

+ CADB + DABC + 4DCAB + BCDA + 4CDBA + BDAC), @n
X3 =23 (DACB + BDCA — 2BADC + ACDB — 2ADBC + CDAB + CBDA

+ DCBA — 2DBAC — ADCB — DBCA + 2ABDC — CADB + 2DABC

with

and

— DCAB — BCDA — CDBA + 2BDAC), (22)
¥, = (1/2\3)( — DACB + BDCA + ADBC + CDAB — DCBA — DBAC — ADCB

+ DBCA + DABC + DCAB — CDBA — BDAC), (23)
¥, =3 (DACB + BDCA — 2BADC — 2ACDB + ADBC + CDAB — 2CBDA

+ DCBA + DBAC — ADCB — DBCA + 2ABDC + 2CADB — DABC

— DCAB + 2BCDA — CDBA — BDAC), (24)
¥y = (1/62)(34BCD + 3CABD — DACB + 3BCAD — BDCA — BADC — ACDB

— ADBC — CDAB — CBDA — DCBA — DBAC — 3BACD — 34CBD

+ ADCB — 3CBAD + DBCA + ABDC + CADB + DABC + DCAB+ BCDA + CDBA + BDAC). 25)

{
trace of this mixed symmetry becomes [A9/2,A%/72) = if,p A /2. (30)
Tr ﬁj =k [Tré, + (1/3)Try, + (42/43)Try, ], Thus we obtain the value of w, from (15),
26 wy="S (—I—)Tr(gj)]2=3.581. (31)

Tr ¢, =4 Tr({4,B}[C,D ]) = 2id S o im> (27) "
Tr y, = 4 Tr({B,C}D, 4 1) + 4Tr({4,C}[B,D ]) V. CONCLUDING REMARKS

= 2i(dy fium + Do foan)s (28) Our method can be directly applied to arbitrary n-gluon

Tr ¢, =2 Tr([B,C]{4,D})
+2Tr([C, A}BD) + 2 Tr(AC|B,D}])
= i i(Zdadmfbcm +f;‘amdmbd +fbdmdacm )’

k= (1/{2 + 1/{3 + 1/6) /4.

Here we use (1 1), (1 2), and the property as
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(29)

states with the definite charge conjugation. As a summary,
we briefly describe the procedures in order. First, we write
down all Young diagrams belonging to S, and find all ex-
pressions of the basis functions for their irreducible repre-
sentation by (5). Second, we take the trace of them and
select the nonvanishing Young tableaux. Third, we check
the charge conjugation for their basis functions. Thus we can
construct, straightforwardly, appropriate basis functions for
n-gluon decay with definite c.c. states as shown above for the
case of n = three- and four-gluon decays.
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On dissipativity of quantum optical systems
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Applying a suitably modified Liapunov—Yoshizawa direct method {T. Yoshizawa, Stability
Theory by Liapunov’s Second Method (Math. Soc. Japan, Tokyo, 1966) ], a rigorous
mathematical proof of dissipativity in the sense of Levinson [N. Rouche, P. Habets, and M.
Laloy, Stability Theory by Liapunov’s Direct Method (Springer, Berlin, 1977)] to the majority
of effective optical processes has been carried out. The ability of an upper final estimation of
the average number of photons is demonstrated (as an example) on the well-known second-

harmonic generation process with classical pumping.

I. INTRODUCTION

Itis very interesting that the ingenious idea of Liapunov,
concerning the construction of comparing functions to the
stability analysis, a straightforward expression of which has
become his second (direct) method, grew rich essentially
only after more than half a century. This famous generaliza-
tion due to the Japanese mathematician Yoshizawa' consists
mainly of an extension of the analyzed object into the
(semi-) invariant sets.” Recently, Habets and Peiffer’ per-
formed a classification of the Liapunov-Yoshizawa func-
tions (more precisely, of the single types of attractors stud-
ied by them) in detail. Moreover, Kushner? transformed the
actual deterministic stability theory by an implementation of
the probability element on the stochastic models in the
1960s. Therefore it seems to be only a little step to employ
Liapunov’s idea for the quantum dynamical systems.

Although some attempts have been done in this field
[namely the potential* defined by virtue of the stationary
(quasi-) distribution or the generalized entropy” defined by
virtue of the density operator have been used for the con-
struction of the Liapunov functions], the corresponding
general theory does not yet exist. Maybe an operator nature
of the variables included (in the Heisenberg picture) makes
the largest difficulties in this respect.

In spite of the intuitively clear (from the physical point
of view) qualitative behavior of the lossy systems, here, we
would like to prove rigorously the dissipativity in the sense of
Levinson? to some nonlinear optical phenomena, when ap-
plying the quantum theory of damping.%’ As we will see,
sometimes their final state can be deduced quantitatively in
the same manner (at the simpler effects).

The successive generalization of Liapunov’s idea can be
schematically sketched as follows:

Liapunov’s direct method—=Yoshizawa’s generaliza-

(1893) tion (1953)
Kushner’s probability
extension (1965)

our transformation to the quantum systems.

) Present address: Department of Mathematical Analysis and Numerical
Mathematics, Faculty of Science, Palacky University, 771 46 Olomouc,
Czechoslovakia.
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There are de facto three conceptions of stability in our
diagram, regarding the character of the level respected. The
mutual correspondence is reached by the projection into the
phase space of amplitudes through the basis of the coherent
states.® Here, it should be noted that such an averaging is not
done a priori at the studied systems, but at the conservation
laws of their “conservative parts” (which are taken just as
the Yoshizawa’s functions), because an influence of the
quantum fluctuations is not eliminated in this way.

Il. DERIVATION OF RATE EQUATIONS (QUANTUM
THEORY OF DAMPING)

Let us consider the Hamiltonian H = H L+ H s Where

B, = 3 (083 8, +p (D8} +pE (D),

k=1
e A _+_ A + A A
Hy =F(ta,,..a,} a....8,,).

The functions f; (¢) = Re f.(t) are continuous and the
D (t) are integrable (in Lebesgue’s sense) everywhere,
F=F™ is a continuous multilinear form without the “un-
mixed terms” (i.e., without those like [g; .(2)g;...8;
+ H.c.]) and &' (4, ) are the creation (annihilation) pho-
ton operators® which can be represented, e.g., as infinitely
dimensional matrixes of some Hilbert space.

Thus the corresponding Heisenberg equations take the
form (Ai=1)

4 N aF ,
ia; =f;(1)a; +p; (1) + — — for j=1,.,m. (2.1)
4;

Assuming the actual (lossy) mechanism as to be connected
with an infinite reservoir boson system in each of the modes
(the quantum theory of damping), (2.1) can be replaced®’

by the following Langevin equations:

.2 YiYa JF
ia; = (fj(t) — t?’)aj + P

+p;(8) +iL,, for j=1,.,m, (2.2)

with Langevin forces Ej representing the quantum noise
contributions of the reservoir and y; being the positive
damping constants.

In order for the Bose—Einstein statistical rules to be sat-
isfied for the ensemble of the radiation field photons [ whose
dynamics is determined by (2.2) ], we will traditionally re-
quire that

© 1987 American Institute of Physics 489



[ 4,,8;* ] =8,; (the Kronecker delta), ) : ‘
[88;] = [ai 8] =0, forjk = 1,...m.

Since p;(¢) represents the pumping of the jth mode,
(2.1) turns out under p; (£) =0 (j = 1,...,m) to be a conser-
vative system with the conservation law

Y cxdi @, = const, (2.3)

k=1
where the ¢, are suitable positive reals. Indeed, if we multi-
ply (2.3) by the density operator p, take the trace and deriva-
tive, we obtain a zero identity, i.e. (;"} = 0 according to the
Liouville theorem®),

— 3 Trpedita, = Y Trpe (88, + 45 8,) =0,
dt =, =1

2.4)
where we have substituted for 4, and &;* from the right-
hand sides of (2.1) and have used the ability to find con-
stants ¢, such that

m m
ny OF

E Crly —— -

K= da; «<1 o aa,

8. (2.5)

Ill. DEFINITION OF YOSHIZAWA'’S FUNCTION

At first, let us recall the simplified version of Yo-
shizawa’s theorem (see Ref. 4, p. 38).

Yoshizawa’s Theorem: Let there exist a function
V({n,),...,{n,,)) with continuous first-order partial deriva-
tives with respect to {n,),....,{n,,) for all ({n,),....{n,,))
such that

i (1) |36>0,

where § is a suitable constant. If the following relations

(i) BV ({1} () = 0, for 3 [(m)]— 0,

k=1

(ii) %V( (NN, ))< —€<0, forall

Y )36, 130,
k=1

where € is a suitable number (time derivatives are respected
to the continuous system of equations considered), are satis-
fied, then such a system is dissipative in the sense of Levin-
son?; i.e., such a constant D (common for all the solutions of

the given system) can be found that
J

%V( ) (1,0 22y

<-— ki Vi ((ne) — (ni)) +2 }i‘, IAOINKCAE
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limsup Y [{n, (£)}|<D. (3.1)
t~w K
Hence defining [cf. (2.4)]
def. m
Vi{n),.{n,)) = Z Tr pe a; a,
k=1
= kz e @ a,) = z clnme),  (3.2)
=1 =1

where
p=pibe b= [brOapan) Tl Ia) 1%,
i=1

is the Glauber-Sudarshan representation® of the probability
density operator for the field in the mixture of pure coherent
states® |@;) with a quasiprobability® 4 ,- as a weight func-
tion, it is obvious that (p, is related to the reservoir modes)

kﬁ (n) = k§1|<nk>| - f ¢JV§; 2 Pd*ad, (3.3)

where

(n) = f 6. ({a}|a o, | {a}yd {a}

—_ f¢f‘ak |2 dz{a}, {a} = (al’--'ram )-

Expression (3.3) [also included in (3.1) and (3.2)] repre-
sents the sum of the mean number of photons in the single
modes.

Furthermore, using the Schwarz inequality, we have

€@ ) = €@ )| = |Tr pait | = [Tr pa,|

— ’ f 8., ({a}a, Hab)d Ha}

= ‘f¢/ak dl{a}‘ <J.¢,V |, |d *{a}

<U bl dz{a})”z =\ {n), (34)
and mainly (see, e.g., Ref. 7, p. 169)
Cira, +arly =@ ra, +arLy),
=¥, (nf?¥) (= const), (3.5)

where (n{®) is the mean number of the noise photons (more
precisely, of the reservoir photons for the & th mode).

Deriving the comparing function of (3.2) with respect
to (2.2), we get by means of (2.4), (2.5), and (3.3)-(3.5)
the following important inequality:

n P - - R A | a4y OF ~+ OF\*
=y TrPck[ — "l a4 +La, +8 L, —’[Pk(t)a: —pE()a, + a4 —:——(al:' 3&*) ]]
k

+
aa;

(3.6)
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IV. FORMAL PROBABILITY EXTENSION FOR
STOCHASTIC PUMPING

If the functions p, (¢) are of a stochastic nature and if
they are bounded by suitable constants P, almost every-
where (‘““a.e.,” i.e., except the zero measure set)

P (1) | <P, a.e. for t30, (4.1)

then, regarding (3.6), it is clear® that condition (ii) of Yo-
shizawa’s theorem is satisfied a.e. as well; namely such posi-
tive constants €,6 can be found that

%V( (n1)sesn,)) 22

< - ick}’k<nk> +2iCkPk\/ (n,) +C(ny)
= K=1

L —€
holds a.e. for 27'_ , {n, } >8, where

(4.2)

Cing) = 3 ex7u{n).

k=1
Since condition (i) of the same theorem is trivially satisfied,
its assertion can be formally extended,® namely that the sys-
tem (2.2) is under (4.1) dissipative with probability 1:

lim Py (sup>>T $ (1, (1) >D)=0,  (43)
where P, is the Lebesgue-Stieltjes-like probability mea-
sure.

Theorem: If F = F* is a multilinear form of the vari-
ables 4,",...,a,} ,ay,...,4,F , without the unmixed terms (see
Sec. I1), then the system (2.2) is under (4.1) dissipative in
the sense of Levinson with probability 1.

Remark I: The assumptions of our theorem comprise®
the majority of the effective quantum optical processes, but
those of multilinear absorption and emission.

Remark 2: The theorem asserts that the sum of the aver-
age number of photons is ultimately (finally) less than some
D. However, using (4.2), we can, at least, approximately
estimate this D.

V. APPLICATION TO THE SECOND-HARMONIC
GENERATION PROCESS WITH CLASSICAL PUMPING

This process is described (see Ref. 7, p. 226) by the
Hamiltonian (fi=1)

H =048, + 0,85 4, — gé38; —g*a;a,

+iat p(t)exp( — iw t) — ia, p(t)exp(iw,t),
where
H(a; 35 85 81,b008,)
= H(a} a5 6} a,88,) = H,

Imw, =0=Imw,, Eﬁgg)[p(t)](P,

and g is a coupling constant. Furthermore, we assume that
the sum-frequency mode is pumped only for simplicity.
Thus system (2.2) reads
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&, = — (i, + (y1/2))3, + 2ig*d;" &, + p(t)exp( — iwyt),
&, = — (io, + y,/2)a, + igd?. (5.1)

Defining Yoshizawa’s function as V({n,),(n,))
= (n,) + 2(n,) [i.e., substitutingc, = 1,¢, =2in (3.2) in
order for (2.5) to be satisfied ], we have, according to (4.2),
that

4

dtV(<”1),(”2>)(5.1) < = yi{ny) —2y,(n,)

+ Py{n;) + C{(n,).

From here we can estimate (see Remark 2) the constant D of
(3.2) or (4.3) as follows:

1ixgsup((n,(t)> + (ny(2)))

<2 max(C {(n;),4P?/y, min(y,,27,)).

Although the last relation determines (rather roughly)
the corresponding attracting set, an invariant probability
measure of the attractor itself may be much less.

VI. CONCLUSIONS

In the results above we have illustrated a dissipativity
(and consequently also a Lagrange-like stability®) in the
sense of Levinson to the majority of the lossy optical pro-
cesses. Nevertheless, those need not be stable in the sense of
Liapunov. For example, considering just the second-har-
monic generation process as above, when C=0 and
p(t)=P, one of the stationary solutions of (5.1) is (Lia-
punov-like) nonstable already for P> y,y,/|g|, while the
second one is stable. The same is true even for the more
general parametric generation process® (when &, #a,).
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ERRATUM

Erratum: The Lorentz group and the Thomas precession. ll. Exact results for
the product of two boosts [J. Math. Phys. 27, 157 (1986)]

N. A. Salingaros

Division of Mathematics, Computer Science and Systems Design, The University of Texas at San Antonio,

San Antonio, Texas 78285

(Received 30 September 1986; accepted for publication 8 October 1986)

Reference 1 attempted to derive the exact combination
of two finite nonparallel Lorentz boosts and to calculate the
rotation correction that is otherwise identified with the
Wigner angle. The derivation in Ref. 1 sheds some light on
this neglected aspect of special relativity. Some additional
references that also derive the Wigner angle from the prod-
uct of two Lorentz boosts include Refs. 2—6 (see also Ref. 7).
The result of two consecutive Lorentz boosts, first by a, then
by b, is given by

L(b) VL(a) =R(0) VL(d), (nH

where 0 is the rotation correction (Wigner angle). What was
amost surprising result in Ref. 1 is that the net boost vectord
is not equal to the standard combination of the boosts a and
b, which is denoted by s. Instead, there is a further rotation
correction by another angle ¢ as follows:

L(b) VL(a) = R(8) VL(d)
=R(0) VR($) VL(s) VR(—¢). (2)

The extra correction angle ¢ is entirely the result of us-
ing the Clifford algebra in Minkowski space-time N, (see
Ref. 8) to realize the Lorentz Lie algebra.!® It should be
emphasized that this realization is isomorphic to the Dirac
gamma-matrix realization of the Lorentz Lie algebra, which
provides the standard representation of the Lorentz group in
field theory.'%!! The rotation corrections to the product of
boosts are not, however, easily derivable using explicit ma-
trix representations except in the infinitesimal case. The ad-
ditional correction angle ¢ in (2) is entirely absent from the
corresponding derivation of the Wigner angle in the Clifford
algebra in three-dimensional Euclidean space $; (see Ref.
12). That algebra is isomorphic to the Pauli algebra, which
has the well-known sigma-matrix representation, and is em-
ployed in Refs. 2-6 to calculate the product of Lorentz
boosts. In the Pauli algebra $,, decomposition (1) implies
thatd =s, i.e.,, that $ = 0in (2).

The puzzle is the following: apparently, the Lorentz
group depends upon which algebra is used. Both algebras N,
and $, provide a faithful representation of the Lorentz Lie
algebra 80(1,3) via the commutator bracket. Yet the two
Clifford algebras are entirely distinct, and $, is a subalgebra
of N, (see Refs. 13 and 14). Included in the Lie algebra
80(1,5) of the Clifford algebra N, is a duality rotation that
defines a U(1) group outside the Lorentz group SO(1,3).
This is not true in $,, which strictly contains the Lie algebra
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80(1,3).">!* Exponentials of elements of the Lorentz alge-
bra in N, therefore generate an intrinsic duality rotation
which may be responsible for the additional rotation correc-
tion angle ¢ in (2).

The additional angle ¢ identified in Ref. 1 was unfortu-
nately calculated incorrectly in Ref. 1. There is an algebraic
error following Eq. (37) of Ref. 1 so that ¢ does not equal

— 1 0. Consequently, formulas (39), (40), (42), and (44)
are not correct in substituting — 1 0. This error was pointed
out in Ref. 6. The angle ¢ can be calculated from the discus-
sion in Ref. 1, and one obtains the expression

Asinf — (B+ Ccos&)tan} @

tan ¢ = - ,
B+ Ccosé +Asinftanié
A =ya, _xﬁs’ B=xas +yﬂs’
C=ya, + xp,. (3)

In (3) 61is the Wigner angle, and £ is the angle between
the two boosts. The quantities x,y and «,, B, are defined in
terms of the two boost parameters by Eqs. (27) and (34) of
Ref. 1. Note, in particular, that the rotation ¢ is along the
axis of the Wigner rotation, i.e., & = 0. As should be expect-
ed, 8 = 0, ¢ = O for parallel boosts. Nevertheless, the inter-
esting special case of equal orthogonal boosts gives & = max-
imum, ¢ = 0. Otherwise, ¢70.

Asthe Lorentz group description in N,, which naturally
includes the additional rotation correction ¢, is isomorphic
to the standard gamma-matrix representation of the Lorentz
group,'®!! I do not agree with the authors of Refs. 6 that Eq.
(2) is mistaken. Rather, one has to seriously address the
possible physical validity of the additional angle ¢, and the
important question of which Clifford algebra correctly de-
scribes the physical Lorentz group.
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