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A large class of nonelementary indecomposable representations of G = SU (2,2) is constructed 
and the invariant integral operators are found. An example describing a photon and a linear 
Weyl graviton field along with some auxiliary fields is studied. A nonsingular Lagrangian for 
the system is given. The pure, linear Weyl gravity with a conformal invariant gauge fixing 
condition arises as a particular case. 

I. INTRODUCTION 

The use ofindecomposable representations 1.2 of the con­
formal group has proved to be indispensable in the efforts to 
build conformally invariant gauge models such as the mass­
less spinor electrodynamics. 3-11 The main idea was to extend 
the conformal invariance of the physical sector to the full 
indefinite metric space needed for a local and Poincare-co­
variant formulation of a quantum gauge theory (see, e.g., 
Ref. 12). Such a formulation allows one to implement the 
usual consequences of the conformal symmetry like com­
pletely known, two- and three-point functions, etc. (see, e.g., 
Refs. 5 and 13 for an introduction to conformal invariance in 
QFT). 

In the present paper we build a large class of nonelemen­
tary indecomposable representations of G = SU (2,2). Non­
elementary refers to the fact that they are induced by finite­
dimensional reducible (indecomposable )-and hence 
nontrivial-representations of the nilpotent special confor­
mal transformations subgroup N of G. The indecomposable 
elementary representations, induced by finite-dimensional 
irreducible representations of the maximal parabolic sub­
group P of G, have been thorougly studied in the Euclidean 14 
and Minkowski 15 cases and their structure was the essential 
ingredient of the physical applications.5

•
7.16 Nevertheless, 

for the purposes of the covariant gauge models building, 
especially in the quantum case, they seem to be not enough 
suitable (see a discussion in Ref. 11). 

The representations of G = SU(2,2) built here (Sec. 
II), are the group analogs of some algeba representations 
(type Ib) of Ref. 2. The "fields" here are actually (finite) 
multiplets of the ordinary Poincare-covariant fields grouped 
together by the conformal symmetry. After giving their gen­
eral construction we show how the procedure of building the 
(integral) Knapp-Stein 17 intertwining operators can be gen-

a) On leave of absence from the Institute for Nuclear Research and Nuclear 
Energy. Bulgarian Academy of Sciences, Sofia 1184. Bulgaria. 

eralized to this case. Their knowledge is important since they 
correspond to invariant two-point functions in the physical 
applications and provide as well invariant local action terms. 
Some ofthe multiplets in Sec. II are realized equivalently as 
the odd and even parts of "supermultiplets" related to the 
extended superconformal SU(2,2IN)-multiplets after re­
duction to SU(2,2). 

In Sec. III we apply our general results to a particular 
example which describes a multiplet of spin-I (photon) and 
spin-2 (Weyl graviton) fields together with some auxiliary 
pure gauge partners as well as the corresponding currents 
multiplet. A nonsingular Lagrangian giving a G-invariant 
action for the system is written down. In a limiting case it 
provides a nonsingular Lagrangian (equivalently G-invar­
iant gauge fixing conditions) for the linearized Weyl gravity. 
Unlike a previous realization l6 of this model based on ele­
mentary indecomposable representations, the action is in­
variant under local transformations of the fields. Other pos­
sible interpretations of the mixed model are given. 

Finally in Sec. IV we relate our construction on one 
example of Sec. III to the manifestly covariant six-dimen­
sional formalism,2.ls where many of the formulas look 
simpler. The Minkowski space picture is reproduced by a 
standard reduction procedure. 

We point out that the various realizations of the nonele­
mentary "multiplet" representations provide us a natural 
method to introduce in the conformal invariant gauge theor­
ies the minimal set of auxiliary fields which are absolutely 
needed for the "off shell" description of both local and con­
formal (and Poincare) invariant gauge conditions. The 
same problem arises in the string field theories 19; to con­
struct a local and reparametrization invariant string field 
action the infinite set of the so-called Stueckelberg auxiliary 
fields should be introduced. We believe that the construction 
of nonelementary representations given in the present paper 
can be extended to the case of reparametrization group and 
might be useful in the building and understanding of the 
string field theories. 
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II. NONELEMENTARY REPRESENTATIONS OF SU(2,2): 
X-SPACE REALIZATION. KNAPP-STEIN 
INTERTWINING OPERATORS 

(1) Let q;(q;Z,z+) be a polynomial of maximal degree k 
in qeR4 and a homogeneous polynomial of degrees 2j I' 2j2 in 
z, z+eC2, respectively. The space Vx of polynomials 
q;(q;Z,z+) carries a representation Dx of the subgroup 
P= yAMN<::::.NyAMCG(Y<::::.Z4/Z2' M<::::.SL(2,C), A,N­
subgroups of dilations and special conformal transforma­
tions) labeled by 

X = (d;jl,j2;).;k), d real, Ae[0,2) (mod 2), 

A =j2 -jl (mod 1), 

and defined according to 
(Dx (yman)q; )(q;Z,z+) 

= P - d exp( - i1rJ...ffo) 

Xq; (pl-Iq (/ +) -I -11;zl,1 +z+). 

Here 's q = ql" 0"1'" 

(2.1) 

(2.2) 

Yman - fYo (I 0) (fP 0) (12 01) - 0 (/ +) -I 0 l/fP iii 

eyMAN; (2.3) 

./Yo = 0,1 (mod 2); ii = nl"ul"; uP = - O"p 0"0 = 12, O"i are 
the Pauli matrices; the metric ( - 1,1,1,1) in M4 is used; 
leSL(2,C),p > O. We use the standard realization (cf., e.g., 
Ref. 20) 

SU(2,2) = {geSL(4,C), g+wg = w, w = (~2 ~2)}. 
Note that the coefficients of the polynomial in q can be 

considered to represent elements of the irreducible finite­
dimensional representation spaces of SL(2,C). Some of 
these coefficients can be chosen to be zero consistently with 
(2.2), thus specifying additionally the general polynomial 
introduced above. 

The representation (2.1 )-(2.3) of Pinduces a represen­
tation Tx ofthe whole group G in the space Cx offunctions 
feC" (R4,V

X
) 

[Tx(g)f] (x;q,z,z+) = [DX-'(nmay)f] (x';q;Z,z+) , 

(2.4) 

where 

X=(~2 iX) 4 - , xeR, 
12 

and 

x' =x'(x,g), p(x,g), I(x,g), No(x,g), and n(x,g) 

are determined from the decomposition 

g-Ix =x'nmay (2.5) 

which holds for all (g-I = (~;),x) such that 
det (icx + d) =to. As for the elementary representations, cer­
tain asymptotic behavior of the function f at infinity has to 
be required to extend (2.4) for det (icx + d) = 0, e.g., 

(T(w) f)(xc;q,z,z+) 

= lim {[DX-'(p(x;w»)f] (xw;q;z,z+)} < 00 , 
x-xc 
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xceXc = {xeX, x 2 = o}, i~w = (i~) -I. [Use (2.4), (2.5), 
and (2.2) to extract the needed asymptotic behavior of f.] 

Equivalently, the representations above can be realized 
by the left regular action of G in the space of C" functions on 
G satisfying the covariant condition 

Y(gp;q;z,z+) = (D x-Ie p)Y)(g;q;z,z+), 

Y(xp) = [Tx(p)f](x), Y(wxc ) = [Tx(w)f](xc )' 

peP, geG. 

We can rewrite (2.4) in another equivalent form 

(T(g) f)(x;z;z+;q) 

(2.6) 

= pd exp(hrJ...ffo)f(xg;ZI-',(l +)-IZ +;( l/p)lql + + 11) 

=(TE (g)q; )(X;Z,z+;q + pl-ll1 (/ +) -I) . (2.4') 

Forg = w (2.5) givesgl -111 (/ +) -I = ~/IX21. Therepresen­
tation T E (g) defined in (2.4') is such that the coefficients of 
the polynomial in q + pi -111 (I + ) -I in the rhs of (2.4') are 
given exactly by transformed initial coefficients that are ele­
mentary representations. 

(2) From now on we shall always assume that there is 
one and only one nonvanishing term of highest degree k in 
the polynomial q;(q). Furthermore any Vx withj, - j2 = 0 
(mod 1) can be imbedded in some space Vx' of polynomials 
that start and end with scalar coefficients. Similarly for 
Ijl - j21 =! (mod 1), Vx can be imbedded in a spinor 
(jl - j2 = ± P field. We shall consider here in detail the 
scalar case X = (d;O,O;).,k). 

We define a Knapp-Stein-type intertwining map17.20 

Wx: Cx--+Cx ' X= (4-d+k;0,0;).,k), 

Cx 3 fl--+( WxY)(xl,ql) 

=fdXPk(q,-X,-4-)Y(X,WX;q2)/ ' (2.7) 
aq2 Q2=0 

wherewis the Weyl inversion andPk (a,b) is a homogeneous 
polynomial of degree k /2 of the arguments a2,b 2, a' b. (Note 
that k is always even for the scalar multiplets considered 
here.) 

The intertwining property of (2.7), 

WxoTx = TxoWx ' (2.8) 

is easily checked using that 

x,nyamwx =xlwx'(yam)+)-I, 

~' = ii + (l/p)(1 + )-I~/-I, 

and exploiting (2.2) and (2.6). The operator (2.7) estab­
lishes in general a partial equivalence of X and X. If P(a,b) 
= const· (b 2) k /2 , the image of Wx coincides with the ele­

mentary representation subspace of Cx labeled by Xelem 

= (4 - d + k,O,O,A). 
The operator (2.7) can be easily generalized to the case 

of polynomials starting and ending with the same tensor type 
of fields or, if these fields differ, by (j1,j2) --+ (j2,jl)' In the 
more general cases, other invariants, i.e., like say 

i.ai. i.bi. 
az oz' az - az' 

etc. should be exploited along with a2, b 2, a·b. 
(3) For k = 2 some of the representations above can be 
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realized equivalently in a way reminiscent of the N = 1 su­
persymmetry. The space C consists of functions 
ct>(x; Y;Z,z+) with the same properties with respect to z, z+ 
which are polynomials of degree 2 with respect to 

v!' = (l/..j2)f)u!,f) +, {f),f)} = 0 = {f) +,f)} = {f) +,f) +}. 

Instead of (2.2) we have here 

[Dx (ramn)ct>] (v,z,z+) 

=p-d exp( _ i1rAN)exp(lIp)tr ftl- 1ll(/ +)-1). 

ct>( (lip )1-lll (/ +) -I;zl,l +z+). (2.9a) 

More generally one can use polynomials of f),f) +. Then 
(2.9a) is replaced by 

[Dx(ramn)ct>] (f),f) +;Z,z+) 

= P - d exp( - i1TAN)exp( (lIp)tr ftl- 1ll1 +) . 

ct>( (lI,[ji)f)[,1 +f) + (1I,[ji);Z1,1 +z+). (2.9b) 

[In both (2.9a) and (2.9b) the parametrization (2.3) is 
used.] Obviously the odd and even parts of the multiplets 
split in an invariant way as implied by (2.9b). Note that here 
the multiplets start and end automatically with the same 
tensor type of fields. Unlike in (2.2) the dimension of the 
fields in the multiplets ct> (v) increases with v; let us give a 
sample example exploited in Refs. 8-11: 

X = (2;0,0;0;2), tp(q) = -!A + + A !'q!, + A _q2, 

Xs = (0;0,0;0;2), 4>(v) =A_ +A!'Y!, _A+y2, 
(2.10) 

both give the same transformation laws for the multiplet of 
fields (A_,A!',A+). 

The representation Txs induced by (2.9) is .!.partially) 
equivalent to the representation Tis' Xs = (4-d-
2N;j2,k,A.;2N) (N = 1 here) via the intertwining map: 

Wis:Cxs 3ct> ..... (Wis 4» (X;Vl;Z,z+) 

= f dp (x,f),f) + )exp( tr .Ill 1 ) 

XP( - tr lllll2)ct> (XIWX;V2;Z+E,tEZ), 

E=iu2, (2.11) 

where P(a) is a polynomial of a and the integralin (2.11) is 
Berezin's integral. Ifwe drop the exp(tr .Ill) term in (2.11), 
we get a direct sum of elementary representations spaces for 
the image of Wis' Both (2.9) and (2.11) can be generalized 
to N> 1 using lit = f)jd'f)j. i = 1.2, ...• N (no summation in 
i). The two-point function emerging in (2.11) has been 
found in Ref. 21 with the infinitesimal version of (2.9a) be­
ing used. 

Having (2.11) one can define an invariant Hermitian 
sesquilinear form on Cx X Cx : 

( .,,) - const f d (x f) f) +) 
tp,'I' - (2jl)!(2j2)! 'J.t" 

Xtp (x. - v;~. ~)( W,p)X;V;ZE/EZ+). 
az az+ 

III. THE SPIN-2 EXAMPLE 

Let X = (2;0,0;0;4). Consider the multiplet 

tp(x,q) = -!A+(x) + ql'Aj.< (x) +q2A_(x) 

(2.12) 

+ q!,qvgP'V(x) - 2q2q1'C!, (x) _ (q2)2D(x). 

(3.1 ) 

The dimension of the component fields starts from d A + = 2 
and goes down to dD = - 2. The field g!'v (x). dg,.. = 0 is 
supposed to be symmetric and traceless. Using definition 
(2.2) and (2.4'). one gets a set of inhomogeneous special 
conformal transformation laws for the components. Note 
that the tracelessness of the transformedg!'v is not achieved 
automatically-a certain rearrangement ofthe shifted poly­
nomial modifying also the transformation law for A _ can be 
done consistently. The resulting transformations include for 
a given component field all the lower (in scale dimensions) 
components. Only the field D transforms according to an 
elementary representation. 

The dual multiplet characterized by X = (6;0,0;0.4) is 
of the same type 

ct>(x,q) = -!D(x) +qI'C!,(x) +2T!,V(x)q!,qv +¥/H(x) _2q2q1'J!'(X) -q4R(x), (3.2) 

and is related to (3.1) by (2.7). Here T!'v = Tv!" T~ = O. An invariant form onxxx is provided by 

(tp,ct» = - f d 4x[A+R +A!'J!, +A_H + ~vT!,v + C!'C!, +DD]. 

The Euclidean version of (2.7) more explicitly reads 

ct>(X I.ql) = lim 1 fd 4x 2(+)2-Ep2(qr + X!2. ~){ _ J..A +(x2) 
hO r(E)r X l2 X 12 art;. 2 

+ (A!, (X2)q2vr!'v + A !'(X2)X12!')+ + (q~ + xi2 - 2xr2q2v) A - ?2; 
x 12 (X 12 ) 

+ (q2l'rl'Vgvp (x2)r PUq2u + 2x121'gP'V(x2)rpuq~ + Xl2!lgP'V(X2)X12v) +, 
(x2 ) 

(3.3) 

--( ;)3 (q~ +xi2 -2x':2q2P)(CI'(x2)rI'Vq2v +CI'(X2)x'j'2)- (q~ +Xi2 -2x':2q2P) D~X2:}1 
x 12 (X 12 ) 9,=0 

(3.4) 
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Here, 

r 1''' = rJp" - 2x12pXI2"lxr2' 
P2(a,b) = C1(a

2)2 + C~2a'b + C3a
2b 2 + C4 (a'b)2 + Cs(a'b)b 2 + C6 (b 2)2. 

For each of the components of <I> Eq. (3.4) reduces to a differential operator acting on the fields in <po Inserting the result in 
(3.3) we get an invariant form on Cx ® Cx : 

(<p,<p) = J d 4x .2"1 (x), (3.5) 

.2"1 = C1 [ -!A 2+ - !A+a'A + lA+DA- + M+apa"lt''' + M+oa·C 

+ AA papa"A" - M papa"apg"p - M pa"oa·c - (1!4!12)lt'''apa"apa"gP'' 

- (1!4!6)lt'''apa"oa·c - AA papDA_ - (1!4!2)lt'''apa"DA_ 

- n,C02A_ - (1!4!2)A_02a·~ + (1!4!12)Cpap0 2a·C] + (terms containing D) + .2"0' (3.6) 

where 

.2"0 = -!!.. [A p(apa" -rJp"O)A" - A papDA_ + ~A p(0rJp" - apa,,)apg"p 
2 2 

+ ~A 1'(0'1'> - a a )OC" - 2.A pa oa.c] -!!... [A_02A_ + 2.A_02a.c] 
8 "1''' 1''' 8 I' 2 4 

+!!.. [A_oapa"lt''' + 2. It'''apa" oa·C -It'''ap (0rJva - a"a" )apgP" 
8 8 

+ -;. Cp02(0rJp" - apa,,)c"] + 9a2 cpaI' 02a"c " - L [It'V02gpv - 2lt'''apap~ + ~gI'''apa"apa"gP'' 
8 2'8 2 3 

-It'''ap (0rJ"p - a"ap )OCP + + It'''apa" oapcp] - ~ c
p
02(apa" -rJp"O)C" + (!~ - ~)cpap02a"c". 

(3.7) 

(The constants a, /3, r, 8 are expressed by the initial con­
stants Cj .) 

To simplify the model we shall choose a subspace of Cx 
such that A + is expressed through the rest of the fields in a 
covariant way 

A+ = - 9\02D + ~oa"c" + ~apa"lt''' 
(3.8) 

and further we shall choose D = 0 (which is possible since D 
is the lowest elementary field). Then we are left exactly with 
the form provided by (3.7). To the mUltiplet 
(Cp,gp".A_.Ap) thus obtained ..!here corresponds a short­
ened dual multiplet (Jp ,H,Tp,,'Cp )' Adding to (3.7) what 
is left from the "interaction" terms (3.3) we finally get 

.2" =.2"0 +A pJp + ~"Tpv +A_H + CPCp, (3.9a) 

which provides a conformal invariant action for the fields 
involved. We shall rewrite it in a compact form using an 
obvious notation: 

(3.9b) 

Then (3.9b) implies the following set of (classical) equa­
tions of motion in the presence of the external source: 

Jlab(a)db = fa. (3.10) 

The free propagators (Schwinger functions) of the fields in 
d a can be combined in a matrix Gab (x,y) satisfying 

JI(a)'G = identity. (3.11) 
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The existence of G as an inverse of JI is related to the fact 
that the Minkowski space Lagrangian corresponding to 
( 3. 9b) [as well as the more general (3.6) ] is nonsingular for 
all generic values of the constants involved. There is still 
some arbitrariness in the choice of certain constants in G 
which may be fixed by requiring G to coincide with the invar­
iant (matrix) two-point function obtained from the Euclid­
ean version of the intertwining operator (2.7). Note that 
(2.7) itself reproduces the corresponding free Wightman 
two-point functions. 

The model built above has various interpretations. 
( 1) It obviously comprises as a particular case the con­

formal electrodynamics model of Refs. 6 and 8-11. Indeed a 
choice gp" = 0 = Cp reduces the field multiplet to 
(Ap.A_), or to (A+.Ap.A_) . 

(2) Integrating over the fieldA_ and then AI' (orequiv­
alently choosing /3 = 0 = a) and postulating Jp = 0 = H, 
one gets a model described by (r = 1) 

.2"sr = !Cp"p"nCp/u - [a[pa [p~ll - !(rJ~-rt -rJp UrJ"P) 

xaAaKgAK - !rJ[p [P(0g"t1 - la"laAgA (1)]} 

+ !It'''ap (0rJ"p - a"ap )CP - ~"apa"oapcp 

+ (8!2)Cp02(OrJp" - apa,,)C" 

+ (i6 - 814)Cpap0 2a"c". (3.12) 

This can be interpreted as a nonsingular Lagrangian for the 
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linearized Weyl gravity that provides a conformally invar­
iant action (CI'"po- is the Weyl tensor). We would arrive at 
(3.12) starting from a polynomial of the type 
(fJ1''' (q,x) = gl''' (x) - !q(1' C,,) (x) + 7J1'''qPCp (x) with dual 
multiplet <1>1' (x,q) = CI' (x) + 2TI''' (x )q". 

A nonsingular formulation of the linearized Weyl gravi­
ty has been constructed recentlyl6 using the indecomposable 
elementary representations of Ref. 11. Starting from .2"~r in 
(3.12) and integrating over the field CI' (x) we will repro­
duce exactly the result of Ref. 16. Since effectively this ex­
presses CI' (x) in a nonlocal way by gl'''' one gets instead of 
the simple linear transformations for (gl''' ,C" ), the nonlocal 
law of Ref. 16 for gl''' (x) which can be interpreted 14 as a sum 
of subrepresentations and of factor representations of ele­
mentary indecomposable representations. The experience 
with the analysis of the renormalized equations of motion in 
the massless quantum electrodynamics II suggests however 
that one can hardly go very far in the quantum case with the 
approach of Refs. 7 and 16. 

The Weyl tensor Cl'vrp is invariant under the gauge 
transformations (local deformations) of the metric 

gl',,-gl''' - a(I'S") + !7JI'"a
psp' (3.13) 

(The solutions ofthe equation 

a(I'S") - !7JI'"a
p
Sp = 0 

(gl''' (XI )gyp (X2» 

= f (dp)/ iP.X,,{ [ 48~; 6 PI'P"PyPp + ( 20 - ! )7JI''' 7Jyp 

parametrize the infinitesimal conformal transformations.) 
The equations of motion implied by (3.12) read 

JjJKapcp.KVp + ¥1l'a"oa pc p -lo2a(I'C,,) - ~7JI'"o2apcp 

= ~TI''' -15(03CI' - ~o2al'apCp) - iso2al'apcp 

+~o2aKgKI' -,al'0apaKgpK =(:1'" (3.14) 

In the presence of a conserved energy-momentum ten­
sor we have 

(3.15a) 

which leads to the conformal covariant gauge condition 

- jp,02al'apcp + !02a "g,,1' - ~al'0apa "gp" = (:1'" 

(3.15b) 

Note finally that as in Ref. 6 and 11 there exists covar­
iant expression for the current (:1' 

(:1' = (a "S) T"I" (3.16) 

in terms of the energy-momentum tensor and the field aILs, 
which together with the constant field q transforms as the 
pair (A I' ' A _ ). A kinetic term for S as in Refs. 6 and 11 
should be added if (3.16) is assumed. 

The free propagator matrix (3.11) reduces in this sim­
ple case to the expressions 

(1 )1 2-815 . - 2 + 415 p2 (pl'Py 7J"p + P"Py 7J1'P + PI'Pp 7Jvr + P"Pp 7JI'Y) + ~ (Pl'P" 7Jylj + PyPp 7J1''') 

+ ~ (7Jl'y7J"p + 7Jl'p7Jvr ) ] (;2Y + d [7JI',,7Jyp - 2(7JYI'7Jp" + 7Jyv7Jpl' ]15(p), (3.17a) 

(CI' (xl)gyp (x2» = i f (dP)[iP"X',{ (;2 y[ - 12 P~~pp + 2 (PI' 7Jyp + Py7J1'P + Pp 7Jyl') ] 

+ ib (7JYl'a~ + 7Jpl'a~ - ~ 7Jypa~ )15(P)} , (3.17b) 

(CI'(x l )C,,(X2» =a f (dp)[iP"X"(07JI''' - 2al'a,,)I5(p), (dp) =dp/(21T)4. (3.17c) 

The two-point Schwinger function 

(CI'.,,"K (XI )CYapP (x2» 

that results from (3.17a) coincides with the elementary rep­
resentation invariant Knap{rStein kernel. [We assume here 
that the (Euclidean) conformal group is enlarged to include 
space reflections thus ensuring the irreducibility of the uni­
tary representation described by CI'P"K'] Note that the corre­
sponding Wightman two-point function of the Minkowski 
field CI'P"K (x) is well known to define an indefinite form, the 
relevant subrepresentation of the Minkowski space confor­
mal group being nonunitary.20 

(3) Finally the Lagrangian (3.9) describes a mixed sys­
tem including the linear conformal gravity along with the 
electromagnetic field. Note that .2"0 in (3.9) can be looked 
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I 
upon as a Hertz-type formulation of the free electromagnetic 
field (see, e.g., Ref. 22). The fields CI' andgl''' give in general 
a contribution to the transversal as well as to the longitudinal 
parts of the A I' -propagator. There exists however a choice of 
a constant 15 = 15 (r,{3) such that only longitudinal terms are 
produced-thus the whole system in (3.9) can be looked as 
another version of the nonsingular massless electrodynam­
ics. Note that analogously to (3.16) all higher "currents" in 
(3.9) can be realized explicitly in terms ofthe (elementary 
representation) electromagnetic current jl' and the field 
aI's. An alternative Hertz-type model can be built using in­
stead of (3.1) the multiplet 

AI' + q"HI''' + 2qI'A_ - 2q
2
CI' + 4ql'qPCp' 
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IV. MANIFESTLY O(4,2)-COVARIANT FORMALISM FOR 
THE PHOTON·WEYL GRAVITON SYSTEM 

As is well known (see Ref. 10 and references therein) 
the manifestly O(4,2)-covariant [or O(5,1)-covariant in 
the Euclidean case] formalism 18 generates naturally just 
nonelementary representations, the elementary ones, being 
singled out by imposing subsidiary conditions. 

In order to "translate" the results of Sec. III into the 
manifestly covariant language, let us introduce the (isotrop­
ic) six-vector (!' (s;q) with homogeneity degree ( - 1), 
whose components QM (M = + ,f.l, - ), in the Aut &' basis 
defined in Ref. 10, are given by 

(4.1 ) 

Let us consider the theory of a symmetric, traceless (and 
then irreducible) 0(4,2) [or O( 5, 1)] tensor field [§ab (5) 

(six-dimensional Weyl graviton) with homogeneity degree 
zero and corresponding six-dimensional "energy-momen­
tum tensor" yab (5) with homogeneity degree ( - 4). Then 
it is easy to get Eqs. (3,1) and (3,2) again, once we define the 
quadratic forms 

([J(x;q) =,cz[§ab(s)£?2 a(s;q)£?2 b(s;q), (4.2) 

<I>(x,q) = K
6yab(s) g a (s;q) £?2 b (s;q), (4.3) 

with the following natural identification of the components 

I 

(yab(SI )ycd(S2» E 

of GMN and tMN (M;N = +,f.l, - ) of [§ and Y in the 
Aut &' basis lO 

A+ = -!G++, A_ =iG/= -~G+_, 
AI' = - GI' +' CI' = - GI' _ , ( 4.4a) 

gl'v = GI'V -i"'l'vG/, D = - G __ , 

and 

Jj = - !t++, H = !t~ = - t+_, 

el' = -tl'+' JI' = -tl'_' (4.4b) 

Tl'v = tl'V -i"'l'vtpP, R = - t __ . 

The invariant form (3.3) is simply given by 

«([J,<I» = - ~ J df.l,,(S)[§ab(S)yab(s), (4.5) 

where 

df.l" (5) = 2d 6s b(s 2)b(s'n - 1). 

In order to construct the invariant action for [§ ab we 
should find the (Euclidean) two-point functions of the ener­
gy-momentum yab . Since the procedure is just the same as 
in Ref. 10 (see Sec. III) we give here only the final expression 
for the general manifestly covariant Euclidean two-point 
function of yab (without tracelessness condition yet im­
posed) 

= [Als~sts~s~ +A~~s~s~st + A3(S~S~ + sts~ )(sg~ + sts~)][ 1I( - 2sl 'S2)d+4] 

+ [BI",ab(s~s~ + stsn + B2",Cd(S~S~ + sts~) + B3(",acsts~ + ",adsts~ + ",bcS~S~ + ",bdS~S~) 
+ B4(",acs~st + ",ads~s~ + ",bcs~st + ",bds~sn][ 1I( - 2sl 'S2)d+3] 

+ [cl",ab",cd + C2 (",aC",bd + ",ad",bc) ] [11( _ 2sl 'S2)d + 2], (4.6) 

where the limit d -+ 2 has to be performed. We note that the 
limit d -+ - 2 in Eq. (4.6) gives us the "6-Weyl graviton" 
two-point function ([§ab(SI) [§cd(S2» E' The well-known 
reduction procedure (see, e.g., Ref. 10) allows us to derive 
directly from (4.6) the x-space "current--current" (matrix) 
two-point function (as well as the corresponding four-space 
propagator matrix). They coincide with those ones obtained 
in Sec. IIIfrom the Lagrangian density (3.6), (3.7), once we 
relate the constants a, /3, y, b, C I with those ones appearing 
in Eq. (4.6). 

We have to remark that the three constants B I , B2 , and 
C I do not appear in the expressions for the x-space current­
current two-point functions. Furthermore, if we impose the 
tracelessness condition 

1/abYab = 0 (4.7) 

on the two-point function (4.6), we see that it simply implies 
two relations for Bland B2• Therefore the condition (4.7) 
has no influence on the x-space current--current functions 
expressions. 

Since the x-space currents appearing in the multiplet 
(4.5) form an indecomposable representation of the confor­
mal group the conformally invariant current conservation 
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laws mix them in general. Nevertheless we are able to write 
such manifestly 0 ( 4,2) -covariant subsidiary conditions on 
yab (5) that they provide us with the usual (electromag­
netic) current conservation 

al' JI' = O. (4.8) 

In fact, from the condition 

(4.9) 

(where ba is the interior derivative defined in Ref. 10), we 
get 

al'JI' (x) + !DR(x) = 0, 

while the subsidiary condition 

(4.10) 

( 4.11) 

gives simply R (x) = 0 and therefore altogether conditions 
(4.9) and (4.11) imply Eq. (4.8). 

To simplify the model we can impose here also condi­
tion (3.8). Its manifestly covariant counterpart is given by 

( 4.12) 

The conformal invariant constraint D = 0 imposed in 
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Sec. III is easily translated into the condition 

SaSb [ffab(s) = o. (4.13) 

Finally, we conclude that the manifestly covariant six­
dimensional formalism recovers in compact form all results 
given in Sec. III and provides us with a simpler and easier 
method to construct nonsingular conformally invariant lo­
cal Lagrangians (with invariant gauge-fixing terms). The 
six-dimensional formalism [as well as nonelementary multi­
plet representations rp(x,q)] seems to be the natural way to 
introduce in the conformal invariant gauge theories a mini­
mal set of auxiliary fields needed to describe "off-shell" both 
local and conformal invariant gauge conditions. 
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The Clebsch-Gordan coefficients for the product (1001) ® (1001), where (1001) is the adjoint 
representation of SU (5), with respect to the group basis and the subgroup basis in the 
reduction SU (5) :::> SU (3) X SU (2) xU ( 1 ) are computed. One of the basic tools in this 
computation is the exhaustive use of the Verma algorithm to find bases for the weight 
subspaces of dimension higher than 1. It allows for the construction of bases in a systematic 
way by using the so-called Verma inequalities. Only the coefficients for the dominant weights 
are calculated. The other ones can be obtained by using the elements of finite order (charge 
conjugation operators) of SU (5). 

I. INTRODUCTION 

The need to compute Clebsch-Gordan and related coef­
ficients was the main avenue used by group representation 
theory to find its place in physics. As long as SU (2) was the 
relevant group, it was possible to seek the properties of the 
Clebsch-Gordan coefficients (CGC) in general, and in ev­
ery detail. 1,2 The situation is already quite different for rank 
2 Lie groups in spite of the fact that some CGC's are part of 
the everyday life of particle physicists and that general ex­
pressions for CGC are known.3 For simple Lie algebras/ 
groups of rank n;;. 3, many particular CGC's were calculated 
and a limited number of (infinite) series of special cases are 
published.4 

Obstacles in deriving CGC in other cases invariably 
stem from the difficulty of building appropriate bases in rep­
resentation spaces. More precisely, a basis of an irreducible 
space VA of dim VA < 00, which decomposes into the direct 
sum 

(1.1 ) 

of subs paces VA (A) labeled by weights A ( = sets of suitable 
chosen additive quantum numbers), is given by the weight 
system n (A) of the representation (A) as long as the sub­
spaces VA (A) are all one dimensional. Once one has 
dim VA (A) > 1 for some A, the construction of a basis be­
comes considerably more involved. 

The purpose of this article is to present the Clebsch­
Gordan coefficients for an important particular case 
[24 ® 24 of SU (5) ] where the dimensions dim V A (A) range 
up to 10. In that respect, our case is the most complicated 
ever worked out. Furthermore, our computation has two 
other objectives: (i) to provide the CGe in a basis which 
reduces naturally to the subgroup SU (3) X SU (2) xU ( 1 ) 
of SU (5), and (ii) to proceed in a way not particular to 
SU(5) or SU(n)-type Lie groups (more precisely Lie alge­
bras). 

The first objective is clearly motivated by particle phys-

.j On leave of absence from Departamento de Fisica Te6rica, Facultad de 
Ciencias, Universidad de Vallodolid, 47005 ValladoJid, Spain. 

b) Present address: Departamento de Metodos Matematicos de la Fisica, 
Facultad de Fisicas, Universidad Complutense, 28040 Madrid, Spain. 

ics. Virtually all theories of unification of electromagnetic, 
weak, and strong interactions lead to groups such as SU (5) 
(or larger) containing SU(3)c X SU(2)w X U(1)w as a 
subgroup (for a detailed description of these models, see Ref. 
4). The second objective is of general interest. Thus for in­
stance, the well-known basis of Gel'fand-Zeitlin,s which 
could have been used to solve our problem here, would offer 
no advantages imposing a restriction to groups of the type 
SU(n) only. 

The present article complements Ref. 6, where SU(5) 
CGC were found for lower representations. The method 
used here is that of Refs. 6 and 7. Its essential feature is a 
tabulation of only a small number of representative CGC. 
Any other CGe is obtained from our tables by application of 
the charge conjugation operators R of Refs. 6-8. The new 
feature here is a systematic exploitation of Verma bases8 in 
VA (A) of dimension> 1. These bases were not known at the 
publication of Refs. 6 and 7. 

In Sec. II, we present a short summary of some math­
ematical tools used in this paper. A detailed account of them 
can be found in Refs. 6 and 7. We describe Verma bases in 
Sec. III and compute the bases corresponding to the cases 
studied here. Section IV contains some examples of the ex­
plicit computation of CGC in the group basis and the corre­
sponding tables. The next section is devoted to CGC in the 
subgroups' basis [SU(3) xSU(2) xU(1) ofSU(5)]. Fin­
ally, in Sec. VI we comment on some properties of the meth­
od. 

II. MATHEMATICAL PRELIMINARIES 

In the following we will work with the Lie algebras 
su(n), with n = 2,3,5. We choose the n2 

- 1 generators of 
su(n) in the following way: 

e(ai+ai+I)' i(a.+a. )' i = 1, ... ,n - 2, 
I 1+1 

(2.1 ) 

(2.2) 

(2.3 ) 

where ail i = 1, 2, ... ,n - 1, are the simple roots of the alge­
bra, considered as vectors of a real Euclidean space. The 
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TABLE I. Branching rules for SU(5) :JSU(3) XSU(2) xU(l). 

(2002):J (22)(0)(0) Ell (11 )(2)(0) Ell (11 )(0)(0) Ell (21) (l )(5) e (12) (1 )(5) Ell (10)(3)(5) 
Ell (01) (3) (5) Ell (10)( 1 )(5) Ell (01) (1 )(5) Ell (20)(2)( 10) Ell (02)(2) (10) Ell (00)( 4 )(0) 
Ell (00)(2)(0) Ell (00)(0)(0) 

(0102):J (12)( 1 )(5) Ell (03 )(0)(0) Ell (11 )(2)(0) Ell (11 )(0)(0) Ell (10)(3)(5) Ell (02)(0) (10) 
Ell (02) (1 )(5) Ell (00)(2)(0) Ell (01 )(2)( 10) e (01)( 1 )(5) e (10)( 1 )(5) 

(201OP (21) (1 )(5) Ell (30)(0)(0) Ell (11 )(2)(0) Ell (11 )(0)(0) Ell (01)(3 )(5) Ell (20)(0)( 10) 
Ell (20)(1)(5) Ell (00)(2)(0) Ell (10)(2)(10) Ell (10)(1)(5) Ell (01)(1)(5) 

(0110P (11 )(2)(0) Ell (11 )(0)(0) Ell (20) (1 )(5) Ell (02)( 1 )(5) Ell (10) (1 )(5) Ell (01)( 1 )(5) 

Ell (10) (0) (10) Ell (01) (0) (10) Ell (00) (0) (0) 

(1001 P (11 )(0)(0) Ell (10)( 1)(5) Ell (01)( 1 )(5) Ell (00)(2)(0) Ell (00)(0)(0) 

scalar product is 

(aj,aj ) = 2{jij - OI,lj _ ii' i,j = 1,2, ... ,n - 1. (2.4) 

The nonzero commutation relations ofsu(n) operators are 

[ea,ep ] = Aapea+p , [/a,lp] = Aapla+p , (2.S) 

[ea,la] =ha , [ha,ea ] =2ea, [ha'/a] = -2Ia, 
(2.6) 

where a, P, and a + P are roots of the algebra, and A.aPare 
constants that can always be chosen as integers. For more 
details see Ref. 8. In the following we will write ei instead of 
eaj , etc. 

Each irreducible representation of a Lie algebra is char­
acterized by the highest weight. The irreducible representa­
tion space is spanned by the weight vector which we denote 
by its weight. For instance, in the case of SU (S), 
m = (m l ,m2 ,m3 ,m4 ). The coordinates of the highest 
weight are non-negative integers. The weights of a represen­
tation with non-negative coordinates (in the basis offunda­
mental weights) are called dominant weights. There exists a 
standard algorithm to compute all the weights of a linear 
representation starting from the highest one. 

Consider the subgroup SU (3) X SU (2) xU ( 1 ) of 
SUeS) (see Table I). Its generators are linear combinations 
of SU (S) generators. In standard conventions, the SU (S) 
weights are related to those of the subgroup as follows: 

m' = mP , (2.7) 

where P is the projection matrix of Ref. 6: 

p= [~ ~ I 1l (2.8) 

In particular, the roots ofSU(S) are projected into roots of 
the subgroup, and the generators of the three groups SU ( 3 ) , 
SU(2), and U(l) are 

SU(3): el =el +2 = [e l ,e2 ], e2 =e3 +4 = [e3,e4 ], 

hi =hl +h2 , it =/1+2 = [/1'/2], 

i2 =/3+4 = [h,!.], 1,2 = h3 + h4; 

SU(2): e=e2+3= [e2,e3], 1=/2+3= [12,/3]' 

j, = h2 + h3; 
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(2.9) 

(2.10) 

(2.11 ) 

In the following the U ( 1 ) component of an 
SU(3) XSU(2) XU(I) weight will not appear because it 
does not vary within an irreducible representation and for 
this reason, it is not necessary to compute CGC. It can al­
ways be found, for instance, using the generating function of 
Ref. 9. 

In our tables, there are only the CGC of the dominant 
weight vectors, but one can easily compute the CGC of the 
nondominant ones, making use of the charge conjugation 
operators,7 which are given by (a i is a simple root) 

Ri = exp( /; )exp( - ei )exp( /;) 

= (1 + /; + ... )( 1 - ej + ... )( 1 + /; + ... ) . 
(2.12) 

These operators generate the finite Demazure-Tits sub­
group 10 N ofSU (5). They act in the representation space VA 
in the following way: 

RI VA (A) = VA (rjA.) , 

RiIA) = ± IriA.) if riA ;fA and 1..1 )EVA (A) , 
(2.13) 

where 1..1 ) denotes a weight vector of weight A and r i is a 
reflection in a plane orthogonal to the simple root a i (rj is an 
element of the Weyl group). Determination of the sign is 
done by direct computation or from the prescription given in 
Ref. 6. 

Finally, note that the product of two adjoint representa­
tions of SU (5) decomposes as 

(1001) ® (1001) = (2002) $ (0102) $ (2010) 

$ (0110) $2(1001) $ (0000). (2.14) 

We choose the two representations ( 1(01) as symmetric and 
skew-symmetric ones with respect to the permutation offac­
tors on the left side of (2.14). 

III. VERMA BASES FOR SU(5) 

One of the most difficult tasks in representation theory 
of semisimple Lie algebras is to construct a basis in the sub­
spaces VA (A) of a representation space VA' In physics this 
has often been called the "internal state labeling problem." 
Until very recently there has been no effective method appli-
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cable to all representations of semisimple Lie algebras of all 
types although a large number of particular cases has been 
solved. 

Since Ref. 8, it is known how to construct a basis for any 
VA (J) of a finite-dimensional representation of the classical 
Lie algebra G (and even for any rank 2 Lie or Kac-Moody 
algebra) and it appears quite likely that the same will soon be 
true for any exceptional simple Lie algebra. A complete basis 
of a subspace VA (J) of VA consists of the vectors 

(3.1 ) 

where the sequence of the sUbscripts i l , ... ,iN of the lowering 
generators is given by a chosen form of the opposite involu­
tion ofG 

(3.2) 

Here N is the number of positive roots of the algebra, which 
is also Racah's number of required labels. 11 In particular, a 
basis vector of an SU(n)-irreducible representation space 
with the highest weight A, can be written as an expression of 
the following type: 

···(f7'f;Z)f7'IA), N= n(n + 1)/2, (3.3) 

where the /; are the lowering generators of the SU (n) Lie 
algebra, and the 0; are integers limited by the following in­
equalities: 

O<ol<m l , 0<02<m2 + 0 1 , 0<03<min(m2,02)' 

0<04<m3 + O2 , 0<os<min(m3 + 03,04) , 

0<06<min(m3,os), 0<07<m7 + 04 , (3.4) 

0<og<min(m4 + 05,07), 0<09<min(m4 + 06,Og) , 

0<01O<min(m4,09) . 

These inequalities are a special case, n = 5, of the general 
inequalities of Tabiel in Ref. 8. For SU(3) [or SU(2)] one 
should take, respectively, only the first three (or one) in­
equalities of (3.4 ). 

Examples of Verma bases for SU(2) and SU(3) repre-

TABLE II. Multiplicities of the dominant weights (1001) and (0000) in 
the representations (2002), (0102), (2010), (0110), and (1001) ofSU(5). 

(1001 ) 
(0000) 

(2002) 

4 
10 

(0102) 

3 
6 

(2010) 

3 
6 

(0110) 

2 
5 

(1001) 

1 
4 

sentations were shown in Sec. II of Ref. 8. Since our task is to 
decompose the tensor product (1001) ® (1001) ofSU(5), 
let us construct a basis in the representation space V(100I}. It 
decomposes into a direct sum (2.1) of 21 different sub­
spaces, the first one being the highest weight subspace 
V(lOOI} (1001). All but one ofthe subspaces are one dimen­
sional and are related to V( 1001} ( 1001) by the charge conju­
gation operators (2.13). The corresponding basis vectors are 
thus characterized by their SU ( 5) weights so that one does 
not even need to use the fact that the inequalities (3.4) allow 
precisely one choice of exponents 0 1,02, .•• for each basis vec­
tor. The subspace V(lOOI} (0000) is quite different. Its dimen­
sion is 4 because the multiplicity of the weight (0000) in the 
weight system n (A) of the representation A = (100 1) is 
equal to 4 (see Table 11).12 

Let us construct a basis for V(lOOI) (0000) in detail (see 
Table III). The weight (0000) is obtained from the highest 
weight (1001) by subtracting four simple roots of A4: 

(1001) - a l - a2 - a3 - a 4 = (0000) . (3.5) 

Recall that a l + (2,1,0,0), a 2 = (1,2,1,0). a3 = (0,1,2,1), 
a4 = (0,0,1,2). We denote by 110001) the highest weight 
vector of VA> and by 10000)1,10000)2,10000)3,10000)4 the 
basis vectors of V(lOOI} (0000) which we now want to write 
explicitly using (3.3) and (3.4). These are precisely the vec­
tors (3.3) satisfying 

10 

L 0;=4. (3.6) 
i=1 

Furthermore, for the representation (1001) one has from 

TABLE III. Verma bases for (1001) and (0000) weight vectors in the representations (2002), (0102), (2010), (0110), and (1001) ofSU (5). The notation 
represents the weight vector as a constant times a sequence of lowering operators applied to the highest weight. 

(2002) 

(1001), (1/,/6) [4,3,2,1] 
(1/2J'i) [3,4,2,1] 
( 1/2J'i) [2,3,4,1] 
(1/,/6) [1,2,3,4] 

(0000)/ (1/16,/6) [1,1,2,2,3,3,4,4] 
(:b) [1,2,2,3,3,4,4,1] 

(t&) [1,2,3,3,4,4,2,1] 
(ll [1,2,3,4,4,3,2,1] 
(1/16,/6) [2,2,3,3,4,4,1,1] 
(:b) [2,3,3,4,4,2,1,1] 

(t&) [2,3,4,4,3,2,1,1] 

(1/16,/6) [3,3,4,4,2,2,1,1] 
(:b) [3,4,4,3,2.2,1,1] 

(1/16,/6) [4,4,3,3,2,2,1,1] 

(0102) 

(1/../3) [4,3,2] 
(!) [3,4,2] 
(P [2,3,4] 

( I/s,/6) [1,2,2,3,3,4,4] 
(1/sJ'i) [1,2,3,3,4,4,2] 
(1/4,fi) [1,2,3,4,4,3,2] 

(1/4,/6) [2,3,3,4,4,1,2] 
(1/4,fi) [2,3,4,4,3,1,2] 
(1/2,/6) [3,4,4,2,3,1,2] 
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(2010) 

q) [3,2,1] 
(P [2,3,1] 
(1/../3) [1,2,3] 

(!) [2,3,4,1,2,3,1] 
(1/2J'i) [3,4,1,2,3,2,1] 
(1/4,fi) [4,1,2,3,3,2,1] 

(ll [3,4,2,3,2,1,1] 
( lISJ'i) [4,2,3,3,2,1,1] 
(1/8,/6) [4,3,3,2,2,1,1] 

(0110) 

(1/J'i) [2,3] 
(l/J'i) [3,2] 

(!) [2,3,4,1,2,3] 
q) [3,4,1,2,3,2] 

(!> [4,1,2,3,3,2] 
(P [3,4,2,3,1,2] 
(1) [4,2,3,3,1,2] 

(1001) 

(1/J'i) [1,2,3,4] 
(l/J'i) [2,3,4,1] 
(1/J'i) [3,4,2,1] 

(l/J'i) [4,3,2,1] 
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TABLE IV. Verma bases for the (11), (10), (01), (00) weight vectors in 
the representations (22), (21), (12), and (11) ofSU(3). Note: The lower­
ing operators to be used in this table areJ: j = 1,2ofSU(3) (2.3). 

(22) 

(11), (1/../6) [1,2] 
(1/../6) [2,1] 

(21) 

(10), (1/.J3) [1,2] 
(P [2,1] 

(12) 

(01), (!) [1,2] 
(lI.J3) [2,1] 

(00)/ (1/4../6) [2,2,1,1] 
(l) [1,2,2,1] 
(1/4../6) [1,1,2,2] 

(11 ) 

(1/../2) [1,2] 
(11../2) [2,1] 

(3.4) that 

a3 = as = a6 = a , a 1 + a3 + a6 + a 10 = I , 
a2 + as + a9 = I, a4 + as = I, a7 = I . 

(3.7) 

This yields the following four linearly independent vectors 
spanning the V(lOOI) (0000) subspace 

100(0) 1 = 2- 1/2fddd41100l) , 

100(0)2 = 2- 1/2fdd4flIIOOI) , 

100(0)3 = 2- 1/%fddIIIOOI) , 

100(0)4 = 2-1/2~fddlllOOl), 

(3.8) 

Verma bases are not orthogonal in general. The matrix 

TABLE V. Inner products of the bases of weight spaces (as given in Table III with same order), with multiplicity greater than 1. 

1 11.J3 0 0 0 

[17 
11.J3 0 

I~~] 
11.J3 11.J3 l 0 

[2002] [~] 
0 ! 1 1/2.J3 ! 0 

1001 1 11.J3 112.J3 11.J3 

0 11.J3 0 11.J3 1 1/.J3 

0 0 0 11.J3 

1 3/2../6 0 0 i 0 0 0 0 0 

3/2../6 o 3/2../6 0 0 0 0 

0 ! 11../6 ! 0 0 0 

0 0 ! 0 l 0 0 0 

[:] 
3/2../6 11../6 0 1 3/2../6 0 0 0 

0 l ! 3/2../6 3/2../6 l 0 

0 0 l 0 ! 1 11../6 ! 0 

0 0 0 0 3/2../6 11../6 3/2../6 

0 0 0 0 0 ! 3/2../6 1 3/2../6 

0 0 0 0 0 0 0 3/2../6 

1 11../2 114../2 112../2 112../6 

11../2 112../2 l 0 

[~] 1/4../2 ! 1 114../2 ! 0 

i 112../2 114../2 1 11../2 2/../6 

112../2 ! 11../2 1 11.J3 

112../6 0 0 2/../6 11.J3 

[0102] [+ 
11.J3 ;l [2010] 

[; +l 1 
1001 1001 

11.J3 

[j 
i 

1] 
[0110] [~ !] [~] 

1 ! 
1001 
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of inner products of the basis vectors (3.8) is 

! 
1 

o 
! 
1 

o ! fl (3.9) 

The same procedure can be applied to any of the weight 
subspaces of dimension > 1. The bases in dominant weight 
subspaces relevant to our problem are given in Table III. The 
basis vectors in the table are written in a shortened way. 
Thus a vector 

11(01)IEV(2002) (1001) C V(2002) , 

is found as 

11000)1 = 6- 1/2 [4,3,2,1] =6- 112 hfdzlI12(02) . 
(3.10) 

Note that, e.g., for the same representation (2002) and 
dominant weight (1001), there are four vectors 1100 1) i> 

i = 1,2,3,4. Thus the first row corresponds to 11(01) I' the 
second one to 11001 )2' etc. 

We will also encounter some SU(3 )-weights with multi­
plicities higher than 1. In Table IV we give the bases for these 
cases, namely for the weights (11), (10), (01), and (00) of 
the representations with highest weights (22), (21), (12), 
and (11). In order to facilitate the use of Verma bases we 

also give the inner products among the vectors of those bases 
in Table V. 

IV. CLEBSCH-GORDAN COEFFICIENTS IN THE GROUP 
BASIS 

In this section we describe briefly how to compute CGC 
related to the tensor product (1001) ® (1001). To do that, 
we will give some examples which illustrate how the method 
works. 

First, we take an example from Table VI, 

[
2 0 0 2] 
2 0 0 2 = (1001)( 1(01) , (4.1 ) 

[~ ~ ~ ~] = 2- 1/2{(1001)(11Ol) + c1101)(1001)}, 

(4.2) 

[~ : ~~] = 2- 1/2{(1001)(11Ol) - (1101)(1001)}. 

(4.3) 

[Remark that ( ) ( ) is a short expression for ( ) ® ( ).] 

In this case the multiplicity for these three weights is 1. 
The vectors on the left side are written with the highest 
weight above the weight. That is sufficient to underline the 
irreducible subspace to which the vector belongs. On the 

TABLE VI. CGC of the weight vectors with dominant weight different from (0000) in the group basis. The last row, when it exists under the list of weight 
vectors gives normalizing factors. In that case the corresponding whole column must be multiplied by that factor. 

;, 
(2002) (2002) (0102) 

1(1000 (1000 1 (0102) (0102) 

1(1000 (Tl00 l/ff l/ff (2002) (2010) 

(Tl00 (1000 l/ff 'l/ff (2010) (2010) 

(1000 (1011) l/ff l/ff (2002) 

(101T)(1000 l/ff 'l/ff (0110) 

(1000 (TIlT) 1 
2 

(TIlT) (1000 1 
2 

(1101)(1011) t 
(101T) (Tl00 t 

(2002) 
(1001). (1001)2 (1001)3 (1001 ). 

- - 1!,fi 
1!,fi 

(0102) 

(0110) 

t 
t 

''2 

·t 
1 
2 

(1001). 

1!,fi 

(1101)(2100) 
(2100)(1101) 
(1011) (0012) 
(0012)(1011) 
(0111)(1110) 
(1110)(0111) 
(1001) (0000) I 
(0000) I (1001) 
(1001 )(0000)2 
(0000)2(1001) 
(1001) (0000)3 
(0000)3(1001 ) 
(1001 )(0000). 
(0000).( 1(01) 

1!,fi 
1!,fi - 1!,fi 

1!.J'i 
1!.j2 

I 
-I 

(2010) (0110) 

(0110) (0110) 

t t '2 
t t ''2 
1 .1 
2 2 

·t .1 
2 

(0102) 
(1001)2 (1001), 

! 
-! 
-! 

! 

1!.J'i 
- 1!.J'i 

-~ 
~ 

-~ 

~ 

1!.J'i 
- 1!.J'i 

(1001). 

-~ 
! 
! 

-~ 

1!.J'i 
- 1!.J'i 

(2010) 
(1001 )2 

~ 
-~ 

! 
-~ 

1!.J'i 
- 1!.J'i 

(1001 )3 

1!,fi 
- 1!,fi 

I 
-I 

(0110) 
(1001). (1001)2 

-! 
-! 

-! 
-! 

-! -! 
-! -! 

1!.J'i 
1!.J'i 

I/.J'i 
1!.J'i 

(1001), 
(1001), 

5/,fi 
5/.J'i 
5/.j2 
5/.J'i 

- 5/.J'i 
- 5/.j2 
-3 
-3 

I 
-3 
-3 

1/J3 I/.J'i I/.J'i 1/J3 1/J3 I/.J'i I/.J'i I/.J'i I/.J'i I/J3 I/.J'i I/.J'i 1!/fOS 
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(1001). 
(1001). 

1!.J'i 
- 1!.J'i 
- 1!.J'i 

1!.j2 
- 1!.J'i 

1!.J'i 
-I 

I 
I 

-I 
-I 

I 
I 

-I 

1!,j5 
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TABLE VII. CGC ofthe vectors with weight (0000) in the group basis. Normalizing factors for the columns are given in the last row. 

(2002) 
(0000), (0000)2 (0000)3 (0000)4 (0000), (0000)6 (OOOOh (0000)8 (0000)9 (0000)10 

(0000), (0000), 2 
(0000), (0000)2 
(0000)2(0000) , 
(0000), (0000)3 
(0000)3(0000) , 

(0000), (0000)4 
(0000)4(0000), 
(0000)2(0000)2 2 
(0000)2(0000)3 
(0000)3(0000)2 
(0000)2(0000)4 
(0000)4(0000)2 
(OOOOh (0000) 3 2 
(0000)3(0000)4 
(0000)4(0000)3 
(0000)4(0000)4 2 
(1001)(1001) 
(1001)( 1(01) 
(1101)(1101) 
(1101)(1101) 
(1011)(1011) 
(1011)(1011) 
(Olll)(OlH) 
(OIH)(OI11) 
(111I)(1Hl) 1 4 
(1Hl)(llll) 1 
(1110)(HIO) 1 1 4 
(HIO)(II10) 1 
(2100) (2100) 
(2100) (2100) 
(1210) (1210) 1 1 4 
(1210) (1210) 1 1 4 
(0121) (0121) 1 1 4 
(0121)(0121) 1 1 
(0012) (0012) ! 
(0012) (0012) 1 4 

1/,;6 1/,;6 1/,;6 1/,;6 

(0102) (2010) 
(0000), (0000)2 (0000)3 (0000)4 (0000), (0000)6 (0000), (0000)2 (0000)3 (0000)4 (0000), (0000)6 

(0000), (0000), 
(0000), (0000)2 1 -! 
(0000)2(0000) , -1 ! 
(0000), (0000)3 ! -! 
(0000)3(0000) , -! ! 
(0000), (0000)4 ! -! 
(0000)4(0000) , -! ! 
(0000)2(0000)2 
(0000)2(0000)3 1 -! -! 
(OOOOh (0000) 2 -1 ! ! 
(0000)2(0000)4 ! -! 
(0000)4(0000)2 -! ! 
(0000) 3 (OOOOh 
(0000)3(0000)4 1 -! -1 
(0000)4(0000)3 -1 ! 1 
(0000)4(0000)4 
(1001 )(1001) 1 1 
(1001) (1001) -1 -1 
(1101)(1101) ! 1 1 

4 

(1101)(1101) -1 -I -1 _1 
4 4 

(1011)(1011 ) 1 ! 1 1 4 
(1011)(1011) _1 -1 -1 -1 
(Olll)(OlH) 

4 
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TABLE VII. (Continued.) 

(0102) (2010) 
(0000), (0000)2 (OOOOh (0000)4 (0000), (0000)6 (0000), (0000)2 (0000)3 (0000)4 (0000), (0000)6 

(OIH)(Olll) -1 -~ -1 -1 -~ 
(111I)(lTTi) 1 ~ 1 1 1 1 1 1 
(lHI)(IIII) -I -1 -~ -1 -1 -1 -1 -1 -1 4 
(lllo)(HIO) ! 1 1 1 
(iT1O)(1l10) -! -1 -1 -1 
(2100) (2100) ! 1 
(2100) (2100) -~ -1 
(1210) (1210) ! 1 ! ~ 1 1 4 
(1210) (1210) -~ -1 -~ -! -1 -1 
(0121) (0121) ! 1 ~ 1 ~ 1 ! 4 
(0121)(0121) -! -1 -! -I -! -1 -! 4 
(0012) (0012) ! 1 ! 
(0012) (0012) -! -1 -~ 

1../3 1!../3 1!../3 1!.j2 1!.j2 1!../3 

(OlIO) (1001), (1001). (0000) 
(0000), (0000)2 (0000)3 (0000)4 (0000), (0000)" (0000)2, (0000)3, (0000)4, (0000) ,. (0000)2. (0000)3. (0000)40 (0000) 

(0000), (0000) I -6 ~ 
(0000) I (0000)2 -! 6 2 -! 
(0000),(0000) I -! 6 2 -! 
(0000) I (0000)3 -! -4 2 ~ 
(0000)3(0000) I -! -4 2 ~ 
(0000) I (0000)4 -! 2 2 -~ 
(0000)4(0000) I -~ 2 2 -~ 
(0000)2(0000)2 I 2 ~ 
(0000)2(0000)3 -! -! -4 -4 -~ 
(0000)3(0000)2 -! -~ -4 -4 -~ 
(0000)2(0000). -! 2 -4 ~ 
(0000)4(0000)2 -! 2 -4 ~ 
(0000)3(0000)3 2 ~ 
(0000)3(0000)4 -! 2 6 -! 
(0000).(0000)3 -! 2 6 -! 
(0000)4(0000). -6 

(1001 )(1001) -~ -~ ! -! ! 
(1001) (1001) -~ -~ -~ ! ! 
(1101)(1101) 1 -~ -~ ~ ! ! ! -! 
(1101) (1101) 1 -~ -~ -! -~ -! -! 
(1011)(1011) ~ -~ -~ -! -! -! -! 
(1011)(1011) ~ -~ -~ ~ ! ! -! 
(OIII)(OIH) -; -; -; ! ! -! ! 
(OlH)(Olll) -~ -~ -; -~ -! ! ! 
(llll)(lHI) ~ ; ; -! -! ! ! ! 
(lHI)(111I) 1 ; ; ! ! -~ -! ! 4 
(I 110) (iT 10) 1 -; -; -~ ~ -! -~ ~ • 
(iT1O)(1l10) 1 -; -~ -; -! ! ~ ! 
(2100) (2100) 1 -; -I -! -! 4 
(2100) (2100) -~ ! 
(1210) (1210) -; ! I ! -! 
(1210)(1210) -~ -! -I -! -! 
(0121) (0121) 1 -~ '1 -I -! -! 
(0121)(0121) 1 -; ~ ! -! 
(0012) (0012) -; ! I -! 
(0012) (0012) -~ -! -I -! 

1!v'f55 1!v'f55 1!v'f55 1!v'f55 1!,f5 1!,f5 1!,f5 1!,f5 1!./6 
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TABLE VIII. CGC of the weight vectors with nonzero dominant weight in the subgroup basis (first part). Normalizing factors for the columns are given in the last row. 

(2002) 

(22)(0) (2002) (0102) 

(22)(0) (22)(0) (03)(0) 

1(1001) (1001) I (03)(0) (03)(0) 

1'1001)(0111) -1/42 1/42 

(0111) (1001) -1/42 -1/42 

(1001) (1110) 

(I I TO)(lool) 

(2002) (2010) 

(20)(2) (20)(0) 

(20)(0) (20)(0) (2002) 

1'2100)(1 o IT) 1/42 -1/a (02)(2) 

(1011)(2100) 1/42 1/a (10)(0) 

(olll) (1101) -f 
(1101)(0121) -f 
(0012) (1210) -1 
(1210) (0012) _1 

2 

(2002) (2010) 

(22)(0) (30)(0) 

(30)(0) (30)(0) (2002) (0102) 

1/42 1/42 (12)(1) (12)(1) 

1/42 -I/a (12)(1) (12)(1) (2002) (2010) 

(1001) (1101) 1/a 1/a (21 )(1) (21)(1) 

1 (1101)(1001) 1/a -I/a (21 )(1) (21 )(1) 
(2002) (0102) (2010) (0110) 

(1001) (1011) 1/42 1/42 (12)(1) (12)(1) (20)(1) (20)(1) 
(lOll) (1001) 1/42 -1/42 (20)(1) (20)(1) (20)(1) (20)(1) 

(1001) (1210) 1 1 
2 "2 2 2 

(1210) (1001) f _1 -f 1 (2002) (0102) (2010) (OliO) 2 2 
(1110) (1101) 1 f 1 _1 

(21)(1) (02)(1) (21)(1) (02)(1) 2 -2 2 
(1101)(1110) 1 -1 1 -1 (02)(1) (02)(1) (02)(1) (02)(1) 2 

(1001) (012T) -1 1 -f 1 
(012T) (1001) -1 -1 f f '(;, 
(101T) (011 I) -1 1 1 -f 2 (02)(2) (2002) 
(0111)(101T) 1 1 -f -f (0102) (2010) (OliO) -2 -2 (02)(2) (20)(2) 

(02)(0) (10)(2) (10)(0) 
1 (1101)(1101) I (20)(2) 

(10)(0) (10)(0) (10)(0) 
I (IOll)(IOIT) I 

-1 f 1 (1101) (1210) 1 1 1 (2002) (0102) (2010) (OliO) 2 -2 2 
-f -f _1 

2 

1 1 -1 2 

(2100) (012T) 

(012T) (2100) 

(1011)(llI0) 

llllO) (101T) 

(20)(2) 

(01)(0) 

-f 
-f 

1 
-2 2 
_.1 -f 

(01)(2) 

(01)(0) 

1 
2 

-1 
1 

_1 
1 
-1 

(20)(0) (01 )(0) 

(01 )(0) (01 )(0) 

f -f 
-f _1 

2 

-f 2 
1 

.1 1 f 
(1001 )(TII T) 

(1111)(1001) 

(I o IT) (1101) 

(1101) (101T) 

(2002) 1(0102) 1(2010) 1(0110~ I 
(II )(2) 1 (II )(2) 1 (II )(2) 1 (II )(2) (11)(2) (11)(2) (11)(2) (11)(2) 

(11)(2)1(11)(2)1(11)(2)1(11)(2) 

f 
1 
1 
f 

111 
222 

-f -1 1 
f -1 -1 

-f 1 -1 
(101T) (TIlT) 

(lilT) (101T) 

(2002) I (0 102) 
(10)(3) (10)(3) 

(1210) (1101) 

(10)(3)1(10)(3). (2002) 1 (2010) 

I/a l1/a 
1/6 -I/a 

(lilT) (1101) 

(TIOI) (TilT) 

(Til T) (lilT) 

(2002) (2010) 

(02)(2) (10)(2) 

(10)(2) (10)(2) 

1/42 1/42 

I/a -1/a 

(I o IT) (012T) 

(012T) (I o IT) 

(2002) (0102) 

Wl)(2) (01)(2) 

(01)(2) (01 )(2) (2002) (0102) 

-1/a 1/42 (02)(2) (02)(0) 

-I/a -1/42 (02)(0) (02)(0) 

(0012) (TIOI) -1/6 -I/a 

(TIOI)(ooT2) -I/a I/a 



                                                                                                                                    

TABLE IX. CGC of the weight vectors with nonzero dominant weight in the subgroup basis (second part) . Normalizing factors for the columns are given in 
the last row. 

(2002) (0102) (2010) (OlIO) (1001), (1001) a 

(12)(1) ~[(01)(3~~ (01)(1) (12)( I) II ~OI)( 1) (20)(I~I(01)(3~1 (01)(1) (20) (I ~r(OI) (I) (01) (I) (01) (I) 
(01),(1) (01)2(1) (01)(1) (01)(1) (01), (I) (01)2(1) (01)( I) (01)(1) (01)(1) (01)(1) (01)(1) (01)(1) (01)(1) (01)(1) 

(1001 )(2100) ! ~ 1 -1 1 3/2,fi - 1/2,fi - 51,fi - 1/,fi 2 • 2 
(2100) (1001) ! J -~ ! -1 - 3/2,fi 1 - 1/2,fi - 51,fi - 1/,fi 4 2 2 
(0111 )(lilO) -1 - 1/,fi J -! - 1/,fi _1 -1 3/2,fi _I - 1/2,fi - 51,fi - 1/,fi 2 • • 2 2 
(1210)(0111 ) _I - 1/,fi J ~ 1/,fi ! ! - 3/2,fi _I - 1/2,fi - 51,fi 1/,fi 2 4 2 
(1111)(0012) - 1/,fi I I 1/,fi - 1/,fi - 1/,fi 51,fi - 1/,fi 
(0012)(1111) - 1/,fi I -I - 1/,fi 1/,fi - 1/,fi 51,fi 1/,fi 
(1101)(0000), 1/,fi 3/2,fi - 1/,fi 1/2,fi 1/,fi 1 - 1/,fi 2 

(0000),(1101) 1/,fi 3/2,fi 1/,fi - 1/2,fi - 1/,fi -1 - 1/,fi 2 

(1101)(0000)2 - 1/,fi 5/2,fi 1/,fi - 1/2,fi - 1/,fi I 1 1/,fi -1 I 2 2 
(0000),(1101) - 1/,fi 5/2,fi - 1/,fi 1/2,fi 1/,fi -I -~ 1/,fi - 1/,fi -I 
(1101)(0000)3 -I -I - 1/,fi 1/,fi -I I I -I 
(0000)3(1101) -I -I - 1/,fi -I - 1/,fi I -I I 

(1101 )(0000)4 3/,fi -I 1/,fi -3 I 
(0000)4(1101 ) 3/,fi - 1/,fi -3 -I 

1/,fi 1/{3 1/{3 1/,fil 1/,fi 1/{3 1/~ 1/,fi 1/{3 1/,ff5 1/,fi 1/{3 1/~ 1/~ 

(2002) (0102) (2010) (0110) (1001), (1001 )a 

(21)(1) ~r(lO)(3~1 (10)(1) (02) (I ~ I ~ 1O)(3~ I ~ 10) (I) (21)(1) )I~IO)(I) (02)(1) 1(10)(1) (10)(1 ) (10)(1) 
(10), (I) (10)2(1) (10)( I) (10) (I) (10)(1) (10)(1) (10)(1) (10), (I) (10)2(1) (10)(1) (10)( I) (10) (I) (10) (I) (10)(1) 

(1001) (0012) -1 3/2,fi ! ! -1 1/2,fi - 51,fi 1/,fi 2 2 
(0012) (1001) - 3/2,fi -! -1 -I 1/2,fi - 51,fi - 1/,fi • 2 
(1110) (0121) - 1/,fi -I ! 3/2,fi - 1/,fi -~ I ! 1/2,fi - 51,fi 1/,fi 2 4 
(0121)(1110) - 1/,fi -I -1 - 3/2,fi - 1/,fi -1 1/2,fi - 51,fi - 1/,fi 2 2 4 
(1111)(2100) 1/,fi - 1/,fi - 1/,fi -I 1/,fi 51,fi 1/,fi 
(2100)(1111) 1/,fi I 1/,fi 1/,fi I 1/,fi 51,fi - 1/,fi 
(1011)(0000) , 3/,fi -I - 1/,fi -3 -I 
(0000),(1011) 3/,fi 1/,fi -3 
(1011)(0000)2 -I I - 1/,fi - 1/,fi -I I 

(0000)2(1011) -I I - 1/,fi -I -I -I 1/,fi -I -I 
(lOll )(0000)3 - 1/,fi -I 5/2,fi 1/,fi -I 1/,fi 1/2,fi - 1/,fi -I 
(0000)3(1011) - 1/,fi -I 5/2,fi - 1/,fi -~ - 1/,fi - 1/2,fi - 1/,fi 
(1011)(0000). 1/,fi 3/2,fi - 1/,fi - 1/,fi - 1/2,fi 1/,fi -~ 2 

(0000)4(1011) 1/,fi 3/2,fi 1/,fi -~ 1/,fi 1/2,fi 1/,fi -I 2 2 

1/{3 1/,fi 1/{3 1/,fil 1/,fi 1/{3 1/,ff5 1/{3 1/,fi 1/~ 1/,fi 1/{3 1/~ 1/~ 

(2002) (0102) (2010) (OlIO) (1001), (1001 )a 

(11)(2) ~1'(00)(4~1 (00)(2) (11 )(2) )1 (00)(2) (11)(2) )1 (00)(2) (11)(2) (00)(2) (00)(2) 
(00), (2) (00)2(2) (00)(2) (00)(2) (00), (2) (00)2(2) (00)(2) (00), (2) (00)2(2) (00)(2) (00), (2) (00)2(2) (00)(2) (00)(2) 

(1101)(0012) ! -! - 1/,fi ! - 1/,fi -! - 51,fi 1/,fi 
(0012)(1101) , , 1/,fi -! 1/,fi -! - 51,fi - 1/,fi 2 2 
(1210) (0121) -! -I 1 - 1/,fi _I _I - 1/,fi ~ - 51,fi 1/,fi 2 2 2 2 
(0121)(1210) _I -! I -1 -1 1/,fi ! 1/,fi ! - 51,fi - 1/,fi 2 2 2 

(1011) (2100) ! I ! 1/,fi -1 1/,fi -1 - 51,fi - 1/,fi 2 2 
(2100) (lOll) ! I _1 - 1/,fi , - 1/,fi -! - 51,fi 1/,fi 2 2 
(1111)(0000), 1/,fi 2/,fi - 1/,fi -I - 1/,fi I 1/,fi 2 
(0000),(1111) 1/,fi 2/,fi 1/,fi I 1/,fi -I 1/,fi 2 
(1111)(0000), - 1/,fi I 1/,fi 1/,fi I 1/,fi 2 - 1/,fi I I 
(0000)2(1111) - 1/,fi I 1/,fi - 1/,fi -I - 1/,fi -2 - 1/,fi I -I 
(1111) (0000)3 - 1/,fi -I 1/,fi 1/,fi -2 1/,fi -I - 1/,fi I -I 
(0000)3(1111) - 1/,fi -I 1/,fi - 1/,fi 2 - 1/,fi - 1/,fi I I 
(1111)(0000)4 1/,fi 21,fi - 1/,fi -I - 1/,fi 1/,fi 2 
(0000)4(1111) 1/,fi 2/,fi 1/,fi 1/,fi -I 1/,fi 2 

1/,fi 1/,fi 1/,fi 1/,fil 1/,fi 1/,fi 1/,ff5 1/,fi 1/,fi 1/,ff5 1/,fi 1/,fi 1/~ 1/~ 
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TABLE IX. (Continued.) 

(2002) (0102) (2010) (0110) (1001). (1001 ). 

(22)(0) l(11 )(2~ 1(11 )(0) (03)(0~1 (11) (2) (11 )(0) (30)(0) /1(11 )(2~ f,( 11 )(0) (11 )(2)l(11 )(0) (11 )(0) (11)(0) 
(11), (0) (11 h(O) (11 )(0) (11 )(0) (11)(0) (11)(0) (11)(0) (11)(0) (11)(0) (11)(0) (11 )(0) (11 )(0) (11 )(0) (11 )(0) 

- -(1101 )(2100) 
(2100)(1101) 
(1011)(0012) 
(0012)(1011) 
(0111)(1110) 
(1110)(0111 ) 
(1001) (0000), 
(0000), (1001) 
(1001) (OOOOh 
(0000)2( 1(01) 

(1001 )(0000») 
(0000»)(1001) 
(1001 )(0000)4 
(0000)4( 1(01) 

- 1/,J2 
- 1/,J2 

1 
1 

-1 

-1 

- 1/,J2 
- 1/,J2 

-1 

-1 

1/,J2 
1/,J2 

- 1/,J2 
- 1/,J2 

S/2,J2 
S/2,J2 
S/2,J2 
S/2,J2 
1/,J2 - 1/,J2 
1/,J2 1/,J2 

2 
2 

! 
! 
! 
! -1 
2 -1 
2 1 

1/,J2 
- 1/,J2 
- 1/,J2 

1/,J2 

right side, the weights of the representation (1001) denote 
the basis vector of the product space. The expression (4.2) is 
computed in the following way: 

J; [2 0 0 2] = 21/2[2 0 0 2] (4.4) 
12002 0102 

because ngg~] is an element ofa triplet ofSU(2)al [sub­
group ofSU(5) associated to a l] and, in the same way, the 
right side of ( 4.1) is 

fl[~ ~ ~~] = {fl} (1001) (1001) 

= (1101)(1001) + (1001)(1101), (4.5) 

where {fJ=/;®I+I®/;. [Note that (1001) isanele­
mentofadoubletofSU(2)a,]. Then we get (4.2). The high­
est weight vector [g: g ~] does not belong to the subspace 
generated from [~~ g ~ ] . It is then orthogonal to it. Choosing 
conveniently its phase, one gets (4.3). 

One can compute all the CGC for weights with multi­
plicity 1 in the same way. 

A more complicated case appears when the weights are 
degenerated. Let us take Table VI corresponding to the 
weight (1001), with multiplicity 14. The first vector gives 

[2 0 0 2] = 6- 1/2 I' f f I' [2 0 0 2] (4.6) 
1 0 0 1 J4 3 2JI 2 0 0 2 . 

Using our previous results (4.1) we can write 

6-1/2 I' f f I' [2 0 0 2] 
J4 3 2JI 2 0 0 2 

= 6- 1/2 {f4HhHf2HfJ(1001)(1001) 

= 3-1/2[2-1/2(1011)(0012) + 2-1/2(0012)(1011) 

+ (1001)(0000)4 + (0000)4(1001)] . (4.7) 

The situation is similar for the other vectors with weight 
(1001) in (2002), (2010), (0102), and (0110). Finally, 
vectors [l g g 1 ] s and [l g g 1 ] a are chosen (symmetric and 
skew symmetric) in the subspace orthogonal to the subspace 
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- 3/2,J2 
3/2,J2 
3/2,J2 

- 3/2,J2 
- 1/,J2 - 1/,J2 

1/,J2 1/,J2 
1 

-1 
! - 1 

-! 
-! 

! 
2 

-2 

1/,J2 

- 1/,J2 
- 1/,J2 

1/,J2 

3/2,J2 -! 
- 3/2,J2 -! 
- 3/2,J2 ! 

3/2,J2 ! 
1/,J2 

- 1/,J2 
2 

-2 
-! 

! 
i 

-! 

1/,J2 
1/,J2 

- 1/,J2 
- 1/,J2 

- 1/2,J2 S/,J2 
- 1/2,J2 S/,J2 
- 1/2,J2 S/,J2 
- 1/2,J2 S/,J2 
- 1/,J2 - S/,J2 
- 1/,J2 - S/,J2 

-3 
-3 

1 

-3 
-3 

1/,J2 
- 1/,J2 
- 1/,J2 

1/,J2 
- 1/,J2 

1/,J2 
-1 

1 
1 

-1 

-1 

1 
-1 

generated by the other vectors. With a convenient phase we 
obtain the values of Table VI. The symmetry and skew sym­
metry mean that the vectors of the tensorial product basis 
must appear like [(a)(b) + (b)(a)] and [(a)(b) 
- (b)(a)], respectively. 

In Tables VI and VII only the dominant weight vectors 
appear. The CGC for a vector not in the tables can be ob­
tained in two ways, as shown in the following examples: 
(i) via charge conjugation operators, 

[
2 0 0 2] _ R [2 0 0 2] 
2 2 0 2 - a, 2 0 0 2 

= R a , (1001 )Ra , (1001) = (1101 )(1101) , 
(4.8) 

[2 ~ 0 2] =R R [2002] = (0111)(0111) (4.9) o 2 2 2 a2 a, 2 0 0 2 ' 

[2 0 ~ 2] =R R R [200 2] = (0012)(0012) o 0 2 4 a) a2 a, 2 0 0 2 ' 
(4.10) 

(ii) via the expression of the vector in the Verma basis, 

[: 0 0 2] = -lf2[2 0 0 2] 
2202 2 1 20 02 

= 2- 1 {fIP(1001)(1001) = (1101)(1101). 
(4.11 ) 

Similarly, 

[2 ~ 0 2] =4- l f2f2[2 0 0 2] = (0111)(0111). 
0222 21 2002 

v. CLEBSCH-GORDAN COEFFICIENTS IN THE 
SUBGROUP BASIS 

(4.12) 

In this section we want to express the CGC for a basis of 
SU (3) X SU (2) xU (1 ). Each basis vector of SU (5) has a 
definite SU (3) X SU (2) xU (1) weight and, as in the pre-
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TABLE x. cae of the weight vectors with weight (00) (0) in the subgroup basis. Normalizing factors for the columns are given in the last row. 

(2002) 
(22) (0) (II )(2) (11 )(0) (00) (0) 
(00),(0) (00)2(0) (00)3(0) (00),(0) (ooh(O) (00), (0) (00)2(0) (00) (0) 

(0000), (0000), 2 4 2 
(0000), (0000)2 -2 ~ -~ 2 
(0000)2(0000) , -2 1 -, 2 

(0000), (OOOOh -1 -1 ~ -1 -2 
(0000)3(0000), -1 -! ~ -1 -2 I 
(0000), (0000). 1 1 1 
(0000).(0000) , ~ 1 1 
(0000)2(0000)2 2 -1 -1 2 2 2 
(0000)2(0000)3 ~ 1 -! -~ -~ -2 -1 

(0000)3(0000)2 ~ ! -! -~ -~ -2 -1 

(0000)2(0000). -~ 1 -1 ~ 2 1 

(0000).(0000)2 -! ! -1 ~ 2 

(0000)3(OOOOh 2 1 -1 2 -2 2 
(0000)3(0000). -2 -! -~ -2 

(OOOO).(OOOOh -2 -! -~ -2 

(0000).(0000). 2 4 2 
(1001 )(1001) ! ! 
(1001) (1001) ! ! 
(1101) (1101) I ~ 1 • 
(1101)(1101) I 1 • 
(1011)(1011) -I -1 • 
(1011)(1011) -I i -1 • 
(Olll)(OITI) -1 -1 -! 
(OITI)(Oll1) -1 -1 -! 
(llll)(lTI1) -1 
(lHt )(1111) -1 
(1110)(TIIO) -1 -1 -1 
cHlO)( 1110) _J -1 -! • 
(2100) (2100) 

(2100) (2100) i 
(1210) (1210) _J -1 -~ -i • 
(1210) (1210) _J -I -i -i 1 • • 
(0121) (0121) 1 -i -i -1 • 
(0121) (Oli!) -~ -i -1 

(0012) (0012) -I i -1 • 
(0012) (0012) -1 i -1 

1/,j6 1/,j6 1/,[35 1/,[35 1/,j6 1/,J4'i 1/,J4'i 

(0102) (2010) 
(11)(2) (11) (0) (00) (2) (11)(2) (11) (0) (00)(2) 
(00),(0) (00)2(0) (00), (0) (00)2(0) (00)(0) (00), (0) (ooh(O) (00),(0) (00)2(0) (00) (0) 

(0000), (0000), 
(0000), (0000)2 ! ! • -1 

2 

(0000)2(0000) , -! -~ -1 -! -~ 
(0000), (0000)3 -! ~ 1 1 -1 -! 1 1 1 1 
(0000)3(0000) , -~ -1 -1 1 ! -~ -1 -1 -1 
(0000), (0000). 1 -1 -1 1 -1 -1 
(0000).(0000) , -1 -1 
(0000)2(0000)2 
(0000)2(0000)3 ! ~ -! ~ -1 -1 ! ! -! ! -1 1 
(0000)3(0000)2 -! -! ! -! 1 1 -! -! ! -! 1 -1 
(0000)2(0000). -! -1 -! 1 -1 -! -1 -1 1 1 
(0000)4(0000)2 ! 1 ! -1 1 ! 1 ! -1 -1 
(0000)3(0000)3 
(0000)3(0000). 1 -l ! -~ -1 

(0000).(0000)3 -! l -1 -! l 
(0000).(0000). 
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TABLE X. (Continued.) 

(0102) (2010) 
(11)(2) (11) (0) (03)(0) (00) (2) ( 11)(2) 1(11)(0) (30)(0) (00) (2) 
(00)] (0) (OOhCO) (00)] (0) (00)2(0) (00) (0) (00)(0) (00)] (0) (OOh(O) (OOh (0) (OOh(O) (00) (0) (00)(0) 

(1001 )(1001) ! -! -! -! ! ! 
(1001)( 1001) -! ! ! ! -! -! 
(1101)(1101) -1 -i -! 1 ~ -! 
(1101)(1101) 1 i ! -1 -~ ! 
(101 1)( 1011) -1 ~ -! 1 -~ -! 
(1011)(1011) 1 -i ! -1 ~ ! 
(0111 )(oITI) -! -1 ! -! 1 -! 
(OITI)(Oll1) ! 1 -! -! -1 ! 
(1111)( ITII) -~ -~ 
(1TII)(I11I) ~ ~ 
( 1110)(TIIO) 1 ! ! -1 -! -! 
(1110)(1110) -1 -! -! 1 ! ! 
(2100) (2100) 1 i ! -1 -~ ! 
(2100) (2100) -1 -~ -! 1 l -! 
(1210)(1210) 1 1 l ~ -! -1 -1 -l -i -! 
(1210) (1210) -1 -1 -i -~ ! 1 1 i J ! 4 
(0121)(0121) 1 1 -l -~ -! -1 _I i a -! 4 
(0121)(0121) -1 -1 a ~ ! 1 1 -a -i ! 
(0012) (0012) 1 -~ ! -1 a ! 
(0012) (0012) -1 a -! 1 -~ -! 

1/,fiS 1/,fiS 1/,[3 1/,fiS 1/,fiS 1/,fiS 1/,[3 1/,fiS 

(0110) (1001), (1001). (0000) 

(11 )(2) )t (11 )(0) {<OO)(O) (11 )(0) )[ (00)(2tOO)(0) (11) (0) )1 (00)(2~ I (00)(0) (00) (0) 
(00)] (0) (00)2(0) (00)] (0) (00)2(0) (00)(0) (00)] (0) (OOhCO) (00)(0) (00)(0) (00)](0) (OOh(O) (00)(0) (00)(0) (00) (0) 

(0000)] (0000)] -6 -! ! 
(0000)] (ooooh ! ! -1 4 2 H -i 
(ooooh(oooo) ] ! ! -1 4 2 H -~ 
(0000)] (0000)3 -! -! -1 -4 -2 -2 -~ ~ 
(0000)3(0000) ] -! -! -1 -4 -2 -2 -~ i 
(0000)] (0000)4 1 -1 2 2 13 -~ 
(0000)4(0000)] -1 2 2 13 -~ 
(0000)2(0000)2 -1 -1 i -2 2 ~ ~ 
(0000)2(0000)3 ! -! ! ! -i 4 4 -13 -~ 
(ooooh(ooooh ! -! ! ! -~ 4 4 -13 -~ 
(ooooMOOOO) 4 ! -1 -! -2 -4 2 -~ i 
(0000)4(0000)2 ! -1 -! -2 -4 2 -~ i 
(OOOOh (0000) 3 1 -1 ~ -2 -2 ~ ~ 
(ooooh(0000)4 -! ! -1 4 -2 H -~ 
(0000)4(0000)3 -! ! -1 4 -2 H -~ 
(0000)4(0000)4 -6 -~ ~ 
(1001)(1001) -! -! 1 -~ -~ -~ -! ! 
(1001) (1001) -! -! 1 -~ -~ -i -! ! 
(1101)(1101) -1 -1 1 ~ -; -1 ! ! ! -! 
(1101)(1101) -1 -1 1 ~ -~ -1 -! -! -! -! 
(1011)(1011 ) 1 -1 1 ~ ~ -1 -! ! -! -! 
(1011)(1011) 1 -1 1 ~ ~ -1 ! -! ! -! 
(OI11)(OITI) ! 1 ~ -i -! -1 ! 
(OITI)(OI11) ! 1 ~ -i ! ! 
(1111)(1TII) ! 1 -1 ! 
(1TI1)(111I) ! 1 1 ! 
(1110)(TIIO) 1 -i ! ! 
(TIIO)(1110) 1 -i -1 -! ! 
(2100) (2100) -1 -1 i ~ -~ -1 -! -! -! -! 
(2100) (2100) -1 -1 i ~ -~ -1 ! ! ! -! 
(1210)(1210) 1 1 1 i -~ -~ -~ -1 -! -! ! ! -! 
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TABLE X. (Continued.) 

(0110) (1001), (1001). (0000) 

(11)(2) )1?1)(0) fOO)(O) (11) (0) ) I~OO) (2) 1(00) (0) (11)(0) fOO)(2TOO)(0) (00) (0) 
(00) 1 (0) (00h(0) (00) 1 (0) (OOh(O) (00)(0) (00) 1 (0) (00)2(0) (00)(0) (00)(0) (00) 1 (0) (OOh(O) (00)(0) (00)(0) (00) (0) 

(1210) (Iiio) -~ 
(0121) (0121) _I _I l -~ 4 4 

(0121) (0121) _I _I 1 1 -~ 4 4 4 

(0012)(0012) 1 -I 
4 4 

(0012)(0012) 1 -I 
4 4 

11../3 11../3 11,J2 1Iv'IOS 

vious case belongs to a subspace, irreducible with respect to 
the subgroup. 

Every SU(5) weight, m = (m l ,m2,m3,m4 ), corre­
sponds to a definite subgroup weight v = (V IV2 )(V3 )(V4 ) giv­
en by 

v = mP = (m l + m2,m3 + m4 ) (m2 + m3) 

X (2m l - m2 + m3 - 2m4 ) , (5.1) 

where the parentheses indicate the SU (3), SU (2), and U ( 1 ) 
weights, respectively, and Pis given in (2.8). 

Each subgroup weight vector belongs to one irreducible 
subspace. This subspace is generated from the highest 
weightbytheoperatoril = [fl,.t;),j; = [f3,!J] forSU(3); 
i=[!2'/3] for SU(2); and h=2h l -h2+h3-2h4 for 
U(1). 

We also have the charge conjugation operators and re­
flections rj and RiO where ilabels a root ofSU(3) or SU(2). 
In this case there are more dominant weights and Tables 
VIII-X are bigger. We have omitted the U( 1 )-part of each 
weight to simplify the notation. 

We present some examples. In the tables, the first line of 
each column indicates the SU (5) irreducible subspace. The 
second line gives the highest weight of each irreducible sub­
space with respect to the subgroup. The third line corre­
sponds to a dominant weight of that subspace. Finally, the 
following lines give the linear combinations of the corre­
sponding vector as a function of the tensorial product basis 
vectors, as in Sec. IV. 

For the subspace of weight (2002), the highest weight is 
now (22)(0). The weight (1112), which is not a dominant 
weight in the group basis, corresponds in the subgroup basis 
to the dominant weight (03) (0). In Table VIII we find 

[~ ~][~] = (1001) (1001) , (5.2) 

[~ ~][~] = 2-
1

/
2 il [~ ~][~] 

= 2- 1
/
2 {[f1'/2]}(1001) (1001) 

= - 2 - 112 [(1001 )(0111) + (0111) (1001)] . 
(5.3 ) 

Similarly, 

[~ ~][~] = 2-1/2i[~ ~][~] 
= 2- 1

/
2 {[/z'/3]}(1101) (1101) , (5.4) 
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-~ -~ -i ! ~ -! -! -! 
-~ ~ -1 ! ! ! -! -! 
-i ~ -i -! -! -! ! -! 

~ -i ! -! ! -! 
~ -1 -! ! -! -! 

1Iv'IOS 1Iv'IOS 11..[7 1Iv's 1Iv's 1Iv's 11../3 11./6 

where the expression of the vector [g~ ] n] is given in Table 
VIII. 

There are also degenerate weights. We consider the fol­
lowing example in the weight subspace (0102) in Table IX. 
In the subalgebra with highest weight ( 12) ( 1 ), there are two 
vectors belonging to the subspace weight (01) (1). Their ex­
pressions are 

(5.5) 

(5.6) 

For the weight vectors which are not dominant, we can 
apply the charge conjugation operators, R p" R p2 , and Ry to 
the vectors of the subs paces of SU (3) and SU (2), respec­
tively. 

Thus, in the weight subspace of (2002), we can take the 
vector m] [l ] corresponding to (0320). We have 

[~ ~][~] =Rp2[~ ~][~] 
= Ra3 +a.(2- 1

/
2( 1(01) (1101) 

+ 2- 112 (1101) (1001)) 

= 2- 1
/
2[ (1110)(1210) + (1210) (1110)] . 

(5.7) 

Another method is 

[~ ~][~] = 2-lii[~ ~][~] 
= 2- 1 {i2F(2- 1

/
2(1001)(l101) 

+ 2- 1
/
2(1101) (1001») 

= 2- 1
/
2 i2(2- 1 [(1001 )(1210) + (1210)( 1(01) 

+ (1110)(1101) + (1101)(1110)]), (5.8) 

where we have used the expression of the vector [: ~ ] [: ] or 
[~~ ] [: ] accordingly to Table IX; and finally acting with!2' 
we get (5.3). 

VI. CONCLUSIONS 

An extensive use of the Verma algorithm has been made 
through all the computations. Because of the high degener­
acy of some weight subspaces, the difficulties of finding a 
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basis are overcome by using this algorithm. This method can 
be used with other Lie groups, different from SU(n). 
Though only CGC corresponding to dominant weights have 
been computed, the other ones can be found easily through 
charge conjugation operators. The results presented in this 
article complements those of Refs. 4 and 5, about CGC in 
unification theories. Some other calculations are found in 
recent papers9 about CGC in supersymmetric theories. Our 
method can be easily applied to these cases. 
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Finite-dimensional representations of the Lie superalgebra 51(1,3) 
in a Gel'fand-Zetlin basis. II. Nontypical representations 

Tchavdar D. Palev 
Institute of Nuclear Research and Nuclear Energy. 1184 Sofia. Bulgaria 

(Received 7 October 1985; accepted for publication 27 August 1986) 

All nontypical irreducible representations of the special linear Lie superalgebra sl ( 1,3) are 
considered. Explicit expressions for the transformation of the basis under the action of the 
generators are given. The results ofthis paper together with those obtained in Paper I [T. D. 
Palev, J. Math. Phys. 26, 1640 (1985) ] solve the problem of the finite-dimensional irreducible 
representations of sl( 1,3). The results are compared with those obtained by the Young 
supertableau technique. A mapping of the supertableau basis on the Gel'fand-Zetlin basis is 
given. 

I. INTRODUCTION 

In Ref. 1 (hereafter referred to as I) we gave explicit 
expressions for all typical representations of the basic Lie 
superalgebra (LS) sl(1,3) in a Gel'fand-Zetlin basis. In the 
present paper we solve this problem for the nontypical repre­
sentations. 

We recall that the finite-dimensional irreducible repre­
sentation (lR's) of any basic LS resolve into two classes: 
typical and nontypical. 2 The module V over the LS A (and, 
hence, the corresponding representation of A in V) is said to 
be typical, if, whenever Vis a submodule of a larger A mod­
ule W, there always exists a complement to V subspace V', 
which is also anA module, i.e., W = VEa V',AV'C V'. If this 
is not the case, i.e., there exists anA module W, containing V 

as a submodule and in the same time, it is impossible to 
determine a complement to a V submodule, then V (and also 
the representation of A in V) is called nontypical. 

Let A be a basic LS, U its universal enveloping algebra, 
Ao the even subalgebra, P + the linear span of all odd positive 
root vectors, and P the subspace sum of Ao and P +, 

P=AoEaP +. Consider an arbitrary Ao module Vo and ex­
tend it to a P module, assuming P + Vo = O. Let V be the 
factor space of the tensor product U ® Vo with respect to the 
linear envelope I of all elements up ® v - U ® pv, UEU, pEP, 
VEVo, i.e., 

(1.1 ) 

The space V is turned into an A module in a natural way: 

g(U®V) =gu®v, gEA, U®VEV. ( 1.2) 

TheA module Vis said to be induced from theAo module Vo. 
Let F be the family of A modules V, induced from all 

irreducible finite-dimensional Ao modules Vo. The family F 
carries information about all finite-dimensional irreducible 
representations of the LSA (strictly speaking the statement 
below is true for the type I LS's, but with minor modification 
it holds for all other basis LS's) in the following sense. De­
note by F, CF (resp. Fred CF) those induced A modules 
VEE that contain no (resp. that do contain) nontrivialinvar-

iant subspaces: F = F, UFred . If VEEred and I is the maximal 
invariant subspace in V, then the factor module V = V;I is 
irreducible. Let Fn , be the set of all such modules, 
Fn, = {V I V = V II, VEEred}' Then it turns out that all A 

modules from F, are typical, whereas those from F n, are 
nontypical. The relevance of this construction stems from 
the observation that every typical (resp. nontypical) repre­
sentation of A can be realized in a certain A module from F, 
(resp. from Fn , ) •

2 

In I we have worked out the induced representations of 
the LS sl (1,3), whose even subalgebra is gl( 3 ). We wrote 
the results in two different bases: the induced basis and the 
Gel'fand-Zetlin basis (GZ basis). Both of them may be as­
sumed to be orthonormed. The transformation properties of 
the vectors from the induced basis are relatively simple [see 
I, (4.14)] and this is its advantage. This basis is inconve­
nient, however, for the construction of the nontypical repre­
sentations, because most of the basis vectors have nonzero 
projections both on the maximal invariant gl( 3) module I 
and on its orthogonal complement. This was the reason to 
introduce a new basis, which is reduced with respect to the 
even subalgebra. To this end we considered Vas a represen­
tation space of gl (3) C sl ( 1,3) and represented it as a direct 
sum of its irreducible gl (3) submodules Vn , 

(1.3 ) 
n 

As a basis r n within every Vn we chose the Gel'fand-Zetlin 
basis3 and defined an orthonormed Gel'fand-Zetlin basis in 
V to be r = unrn.1t turned out that n<:;;8. 

In Sec. II we collect some of the results from I and give 
the action of the superalgebra generators on the GZ basis 
vectors. These relations, which in fact determine all typical 
representations, will serve as a starting point for the con­
struction of the nontypical representations (Sec. III). In 
Sec. IV we show in a matrix form the lowest-dimensional 
nondecomposible representations. In Sec. V we relate our 
results with those obtained in the frame of the Young super­
tableau approach.4

-
9 We establish a mapping of the super­

tableau basis (Weyl basis) on the Gel'fand-Zetlin basis in a 
similar way as this was done for the Lie algebra sl(n) (Ref. 
10). This mapping is one to one for all nontypical represen­
tations. 

II. INDUCED REPRESENTATIONS OF sl(1,3) 

Let eAB , A,B = 0,1,2,3, be a 4X4 matrix with 1 on the 
A th row and B th column and zero elsewhere. The LS sl ( 1,3 ) 
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can be defined as the linear span of the even generators 

Eij = eij + /)ij eoo, i,j = 1,2,3, (2.1) 

which are the generators of the Lie algebra gl( 3 ), and the 
odd generators 

(2.2) 

The induced sl( 1,3) modules are labeled by three com­
plex numbers [m 13,m23,m33 ] == [m b with the only restric­
tion that m13 - m 23,m23 - m33 are non-negative integers, 
i.e., m13 - m 23EZ+, m 23 - m33EZ+. By V( [mb)eFwe de­
note the corresponding to [m] 3 sl( 1,3) module. In I we have 
shown that V( [mb) is typical (and, hence, irreducible) iff 

m i3 =/=i - 1, i = 1,2,3. (2.3) 

There are three classes of reducible (but not completely re­

ducible) modules 

V( [O,m 23,m33 ] ),V( [m 13,I,m33 ] ),V( [m 13,m23,2] )eFred • 

(2.4) 

In order to determine the corresponding nontypical repre­
sentations, we have to factorize each space (2.4) with re­
spect to its maximal nontrivial invariant subspace 

I( [O,m 23,m33 ]), I( [m 13,I,m33 ]), I( [m I3 ,m23,2]), 
(2.5) 

respectively. 
Every induced sl( 1,3) module from the family F is a 

direct space sum of (no more than) eight finite-dimensional 
irreducible gl(3) modules V( [m]3)' As a basis in each 
V( [mb) we choose a GZ basis3 

m13 m 23 m33) [m b) 
m 12 m 22 == [m]2 . 

m ll m ll 

(2.6) 

The numbers [m 12,m22 ] == [m ] 2 and m II label the basis vec­
tors in V( [mb). They run over all possible values, consis-

I 

tent with the "betweenness condition" 

m13 - m 12,m 12 - m23,m 23 - m22,m 22 - m 33, 

m 12 - mll,m ll - m 22EZ+. (2.7) 

Introduce the abbreviations 

[m]n±i = [min ± /)1i>m2n ± /)2i> .. ·,mnn ± /)ni]' (2.8) 

[m + c]n = [min + c,m2n + c, ... ,mnn + c]. (2.9) 

Then the sl( 1,3) module V( [mb), induced from the gl(3) 
module V([mb), reads 

3 

V( [mb) = V( [mb) al L al V( [m - 1];) 
;= 1 

3 

alL alV([m-lb- i)alV([m-2b), 
;=1 

(2.10) 

with 
3 

Vo([mb) = V([mb) al L al V([m - 1]3- i
), (2.11 ) 

i=1 

and 
3 

VI([mb) = V([m - 2b) al L al V([m -1];> 
i=1 

(2.12) 

being the even and the odd subspaces of V( [m b), respec­
tively. 

In order to write the transformation properties of the 
GZ basis under the action of the generators, it is convenient 
to introduce the notation 

.. {I, fori<j, 
S(l,}) = 1 fi . . 

-, orl>}, 

Eijk an antisymmetric tensor with El23 = 1. 

Then one has I 

(2.13 ) 

(2.14 ) 

(2.15) 

(2.16) 

I 
II~"'j=I(lk2 -/ll)(lk2 -li3 -1)IIi,.,i=l(lk3 -lf2 ) 1112 

x (112 -/22 - j + 1) (112 -/22 - j + 2)IIi ,.,i= I (lkJ -/i3 ) 

[m -1];) 
[m - Ig , 
mil 

(2.17) 

273 

x I (lf2 -Ill + 1)II~ ,.,j= I (lk2 -li3 - 1) IIi ,.,i= I (lkJ -lj2 ) 1112 

(112 -/22 - j + 1) (112 -/22 - j + 2)IIi ,.,i= I (lkJ -/iJ) 
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[m -1];) 
[m - Ig , 
m ll -l 

(2.18 ) 
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[m - 1];) 
[m - Ib ' 
m ll -l 

xl TIL"j= I (lk2 -III + 1)(lk2 -ls3 )TIl",s= I (lk3 -IJ2) 1112 

(l12- /22+j-l)(l12- /22+j-2)TIl",s=l(lk3 -ls3) 

[mb ) 
[m+ Ib- j 

, 

m ll 

e
03 

[mb = (ls3 + 1) 3 k=1 k2 s3 
[m - I

g
) 1 TI2 (I -I) 1112 

TIk",s=1 (lk3 -ls3) 
mil 

[m] ) 
[m + Ib , 

274 

m ll +l 

xl (ls3 -IJ2 )(I/3 -IJ2 -1)TI~"'j=I(lk2 -/1I )(lk2 -1;3) 1112 

(112 -/22 - j + 1)(112 -122 -j + 2)TIl",;= I (lk3 -1;3) 

xl (111 -IJ2 - 1) (ls3 -IJ2 ) (1/3 -IJ2 - 1 )TI~ ",j= I (lk2 -1;3) 11/2 

(112 -122 - j + 1) (112 -/22 - j + 2)TIl "';= 1 (lk3 -1;3) 

[m - 1]3~) 
[m - Ig , 

mil 

[m -lb~) 
[m - 1]~ , 

m ll -l 

x 1 (1,"3 -IJ2) (ls3 -.IJ2 - 1)TI~ ",j= 1 (~k2 -/
113 

+ 1) (lk2 -//3 + 1) 1112 
(112 -/22 + J - 1) (112 -/22 + J - 2)TIk "'1= 1 (lk3 -//3) 

[m - I
g ) 

[m + 1]2- j 
, 

mil 
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(2.20) 

(2.21) 

(2.22) 

(2.23 ) 

(2.24) 

(2.25) 

(2.26) 
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x I (li3 -Ip )(153 -Ip. - 1) (lp -/lI )TIL"j= I (lk2 -113 + 1) 1112 
(112 -/22 +j - 1)(/\2 -/22 +j - 2)TIi~/= I (lk3 -113 ) 

[m-l]3) 3 3 ITI2 (I -I +1)1 112 
~ "" 1 1 k=1 k2 j3 e03 [mJz = £.. £.. (j3 + )€sji --3 ---~--
i=lj=1 TIk~j=l(lk3 -lj3 ) 

mJl 

[m - 1]~) 
[m + 1]2 ' 
m ll +1 

x I m #-j= I (lk~ -111) (lk2 -ls3 ~ 1)m t= I (lk3 - ~'3) 1112 
I (/12- /22-1+ 1)(/12-/22-1+2)TIk~s=I(lk3 -ls3) 

[m - 19 ) 
[m+lb- j

, 

m ll +1 

[m - 2]3) 
[m - Ig , 
m ll 

x I (/j2 -111 + I)TIi~j= I (/k2 -ls3 + I)TIi~s= I Uk3 -lj2 - 1) 1112 
I (/\2 -/22 - j + 1)(/12 -/22 - j + 2)TIi#-s= I (/k3 -153) 

[m -2b) 
[m - Ig , 
mll - 1 

[m-1 13 ) ITI2 (I -I +1)11/2 [m-2 h ) 
[ 1 - k = I k2 53 [ _ 11 

e30 m 2 - 3 m 2' 
TI k #-s=l(/k3 -Is3) 1 mJl mJl-

xl TIi#-J=I(h2 -/11+ 1)(lk2 -113 +2)TIi~/=I(lk3 -lj2 -1) 1112 
(/\2 -/22 + j - 1) (1\2 -/22 + j - 2)TIi ~/= I (/k3 -113) 

[m - 1]3-) 
[m + 1]2- j 

, 

m ll 

xl (/j2 -/1I)TI%~j=l(lk2 -113 +2)m~/=I(lk3 -Ip -1) 11/2 
(112 -/22 + j - 1)(1\2 -122 + j - 2)TIi~/= I (/k3 -1[3) 

[m"':'" 2b) 
ekO [m 1z = 0, k = 1,2,3. 

mil 
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[m - 1]3) 
[m + 1];-j , 

m ll +1 
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(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33 ) 

(2.34) 

(2.35) 
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We do not write here the action ofthe even generators. 
These relations are known, they have been given in I, Eq. 
(3.22) and can be easily derived from the anticommutators 

Eij = {e.o,eOj }' (2.36) 

The dimensions of V( [mb), its even subspace 
Vo( [m]3)' and its odd subspace VI ([m]3) are 

dim V( [mb) = 2 dim Vo( [mb) 

= 2 dim VI([mb) 

= 4(m 13 - m33 + 2)(m23 - m33 + 1) 

(2.37) 

For any admissible triple [m13,m23,m33] formulas 
(2.16)-(2.35) define an induced representation ofsl( 1,3) in 
an orthonormal GZ basis. If in addition the condition (2.3) 
holds, the representation is irreducible. Hence, the family F t 

of all typical sl(1,3) modules is determined with Eqs. 
(2.16)-(2.35) and (2.3). This solves the problem aboutthe 
typical representations of sl ( 1,3). 

III. NONTYPICAL (IRREDUCIBLE) REPRESENTATIONS 

Ifone of the conditions (2.3) is not fulfilled, the induced 
representation is indecomposible. The corresponding 
sl( 1,3) module V( [mb) contains a maximal invariant sub­
space I( [mb), such that its orthogonal complement is not 
an invariant subspace. The factor module V([mb)1 
I( [mb) carries an irreducible nontypical representation of 
sl( 1,3). In order to write the formulas (2.16)-(2.35) in the 
corresponding factor spaces, we now proceed to determine 
the maximal invariant subspaces (2.5). To this end we first 
prove some preliminary assertions. 

Proposition 1: Let V be a finite-dimensional irreducible 
gl( 3) module and U be the universal enveloping algebra of 
gl (3). Then for any nonzero vector xe V, 

Ux=V. (3.1) 

The proof is evident, since all finite-dimensional repre­
sentations of gl (3) are completely reducible. Indeed, if 
Ux C Vand in the same time if (3.1 ) is not true, then Ux will 
be a proper gl(3) submodule in V, which is impossible. 

Proposition 2: Let I ( [m ] 3) be the maximal (nontrivial) 
invariant subspace in V( [mb). Then [see (2.10)] 

V( [m - 2b) CI( [mb). (3.2) 

Proof It is easier to carry out the proof using the in­
duced basis [I, (4.12)]. Suppose O#xel( [m b). Then 

x = L L a(01,02,03;(m)3) 
0,,0,,0,=0,1 (m), 

(3.3) 

where the second sum is over the basis in Vo( [mb), i.e., over 
all admissible GZ patterns (m)3 in Vo( [mb) [remember 
that Vo( [mb) is the gl(3) module, inducing V([mb)]. 
Suppose that all coefficients a(01,02,03;(m)3) are equal to 
zero if 01 + O2 + 03 <k, and that for certain O~,O~,O~, 
O~ + O~ + O~ = k and for a certain GZ pattern (mo)3' 

a(0~,0~,0~;(mo)3)#O. Then the first sum in (3.3) is over 
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all 01,02,03 such that 01 + O2 + 03>k. One can easily derive 
from [I, (4.12)] and [I, (5.12)] that 

O I - O?( ) I - O~( ) I - o~ # (e lO ) e20 e30 x 

Ee loe2oe30® Vo( [mb) == V( [m - 2b). (3.4) 

Thus, 

O~( )I-O?( )I-O~( )I-O~ r e lO e20 e30 x 

el( [mb) n V( [m - 2b) (3.5) 

and, therefore, according to Proposition 1, (3.2) holds. 
Proposition 3: The maximal invariant subspace I ( [m ] 3) 

has zero intersection with the gl (3) module V( [m] 3): 

I([mb) n V( [mb) = O. (3.6) 

Proof Suppose 

O#xel( [mb) n V( [mb), 

then, according to Proposition 1, 

V([mb)==1® Vo([mb)CI([mb). 

Hence, also 

[ L (elO)O'(e20)0'(e30)O,] (1 ® Vo( [mb» 
0,,0,,0, 

= L (elO)o'(e20)0'(e30)o,® Vo( [mb) 
8,.82 .83 

= V( [mb) CI( [mb), 

(3.7) 

(3.8) 

i.e., V([mb) = I([mb), which is impossible, since 
I([mb) is a proper subspace ofV( [mb). • 

Let g be a linear operator in a (finite-dimensional) Hil­
bert space V, I be a proper g-invariant subspace of V with a 
basis/w .. ,fm' and W = Vel be the orthogonal complement 
toIin V with a basis el, ... ,en • Then 

n m 

gej = L Ajiej + L Bpj /p, 
j=1 p=1 (3.9) 

m 

gt;, = L Cqp / q • 
q=1 

Consider the factor space V;J and denote by x'eV II the 
equivalence class containing xe V. The mapping/(x) = x' of 
Von V II is linear. Moreover, its restriction on W is one-to­
one. Indeed, letx,yeWand suppose that/ex) =/(y). Then 
/(x - y) = 0 and, therefore, x - ye/. Since, on the other 
hand, x - yJl, one concludes that x = y. Thus, the linear 
spaces Wand V;J are isomorphic. The classes e; , ... ,e~ con­
stitute a basis in V II, whereas all/; = O,p = 1, ... ,m. In the 
factor space the operator g acts by definition as gx' = (gx)'. 
Therefore, 

n 

= L Ajje;. 
j=1 

(3.10) 

As usually we shall identify the spaces Wand V II, denoting 
with the same symbol, for instance x, both a vector from W 
and the corresponding to it equivalence class from V II. Then 
g, considered as operator in the factor space (or, which is the 
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same, in W), transforms the basis as 
n 

gei = L Ajiej • (3.11) 
j= I 

Corollary: To obtain the transformation of V /i = Wun­
der the action of the operator g one has simply to replace in 
(3.9) allflo".,jm by zero. 

A. The class m13=O nontypical representations 

As we have already proved in I, Proposition 3, the in­
duced sl ( 1,3) module V( [0,m 23,m33 ] ) is reducible. 

Proposition 4: The subspace I([0,m 23,m33 ]) of 
V( [0,m 23,m33 ]) defined as 

I( [0,m 23,m33 ]) 

= V( [0,m 23 - l,m33 - 1]) 

ED V( [ - 2,m23 - 2,m33 - 2]) 

ED V( [ - l,m23 - l,m33 - 2]) 

ED V( [ - l,m23 - 2,m33 - 1]) ( 3.12) 

is an sl(1,3)-invariant subspace of the maximal invariant 
subspace I( [0,m 23,m33 ]). 

Proof Using the transformation relations (2.16)­
(2.35) one shows in a straightforward way that 
I( [0,m23,m 33 ] ) is an invariant subspace ofV( [0,m 23,m33 ] ). 
It remains to show that 

(3.13) 

Since [see (3.2)] 

V( [ - 2,m23 - 2,m33 - 2]) CI( [0,m 23,m33 ]), 

then 

In particular, 

- 2, m23 - 2, m33 - 2) 
e03 - 2, m23 - 2 

-2 

- 1, m 23 - 1, m33 - 2) _ 
= CI - 1, m23 - 1 =Y, 

-1 

where 

C
I 
= (/33 + 1) 1 (/12 -/33 + 2) (/22 -/33 + 2) 11/2 #0. 

(1 + 133 ) (/23 -/33) 

Proposition 1 now yields that together with the nonzero vec­
tor yeV( [ - l,m23 - l,m33 - 2]) nI( [0,m 23,m33 ]), 

277 

V([ -1,m23-1,m33-2])CI([0,m23,m33])' (3.14) 

In the equality 
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0, m23 - 1, m33 - 1) 
= c2 0,m23 - 1 , 

° 
the constant C2 is different from zero (if, certainly, 
V( [0,m23 - l,m33 - 1]) #0) and, therefore, 

V( [0,m23 - l,m33 - 1]) CI( [0,m 23,m33 ]). 

The last inclusion we need is 

(3.15 ) 

V([ - l,m23 - 2,m33 - 1]) CI( [0,m23,m33 ]), (3.16) 

which follows, for instance, from 

0, m23 - 1, m33 - 1) 
e03 m 23 - 1, m 23 - 1 

mll 

- 1, m 23 - 2, m33 - 1) 
= C3 m23 - 2, m 23 - 2 , 

mll -l 

where C3 #0 if V( [ - l,m 23 - 2,m33 - 1]) #0. 
From (3.2), (3.14), (3.15), and (3.16) one concludes 

that also the sum (3.12) is a subspace of I( [0,m23,m33 ]), 
i.e., 

(3.17) 

which completes the proof. 
PropOSition 5: The linear subspace I( [0,m 23,m33 ] ) is the 

maximal sl(1,3 )-invariant subspace in V( [0,m 23,m33 ]). 
Proof For simplicity we introduce the abbreviations 

V( [0,m 23,m33 ]) = V, I( [0,m 23,m33 ]) = 1, 
I( [0,m23,m33 ]) = I. 

Let x be an arbitrary vector from 1, 

(3.18 ) 

(3.19) 

From (2.10) it follows that every vector from Vand, in par­
ticular, the vector x can be represented uniquely as a sum 

3 3 

x=xo + LXi + L X_i +X4 (3.20) 
i=1 i=1 

of its projections 

XOEV( [0,m23,m33 ]), X4EV( [ - 2,m23 - 2,m33 - 2]), 

x ± iEV([ - 1 ± 5w m23 - 1 ± 52om 33 - 1 ± 53i ). (3.21) 

Proposition 4 asserts that 

XI +x_2 +x_3 +X4Ei, 

and, therefore, also 

(3.22) 

Xo + X2 + X3 + x_lEi. (3.23) 

We now proceed to show that each term in the sum (3.23) is 
equal to zero. Suppose first that x _ I # ° and choose 
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ge U (gl ( 3 ») (Proposition 1) to be such that 

- 2, m23 - 1, m33 - 1) 
gX_I = - 2, m23 - 1 . 

-2 

Acting on both sides of (3.23) with g one has 

Therefore, also 

An explicit computation gives (c3 #0) 

e03E32e03 g(xo + X2 + X3 + X -I) 

- 2, m23 - 1, m33 - 1) 
= e03E32e03 - 2, m23 - 1 

-2 

(3.24) 

(3.25) 

(3.26) 

0, m23, m33) 
= C3 0, om23 Ein V( [0,m23,m 33 ]), (3.27) 

i.e., V([0,m 23,m33 ]) nl( [0,m 23,m33 ]) #0, which, accord­
ing to Propositions 3 is impossible. Thus, the assumption 
that X_I #0 is wrong, i.e., 

(3.28) 

To go further we shall use the relations 

- 1, m23, m33 - 1) 0, m23, m33) 
e03 - 1, m23 - 1 = CI 0, m23 , 

-1 0 

(3.29) 

- 1, m23 - 1, m33) 0, m23, m33) 
e03 - 1, m23 - 1 = C2 0, m23 , 

-1 0 

c2 #0. (3.30) 

Assume that in (3.23) x 2 #0. ChoosegeU(gl(3») such 
that 

- 1, m23, m33 - 1) 
gX2 = - 1, m23 - 1 

-1 

(3.31) 

and represent gX3 as a sum of the highest weight vector (if 
gX3 has a nonzero projection on it) of 
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V( [ - l,m23 - l,m33 ]) and an orthogonal-to-it vector Y3' 

- 1, m23 - 1, m33) 
gX3 = a-I, m23 - 1 + Y3' 

-1 
(3.32) 

Then 

g(xO +X2+X3) =gxO +Y3 

- 1, m23' m33 - 1) 
+ -1, m23 -1 

-1 

- 1, m23 - 1, m33) _ 
+ a-I, m23 - 1 El. 

-1 
(3.33) 

In order to eliminate the last term in (3.33), we act on both 
sides with the operator e03E32E23. Since 

- 1, m23 - 1, m33) 
E23 - 1, m23 - 1 = 0 

-1 

(3.34) 

and 

- 1, m23, m33 - 1) 
= {3 - 1, m23 - 1 , 

-1 
{3 #0, (3.35 ) 

we obtain from (3.33) 

(3.36) 

Because of the special choice of Y3 [see (3.32)], the term 
e03E32E23 Y3 in (3.36) is a linear combination of weight vec­
tors from V( [0,m 23,m33 ] ), which does not contain the high­
est weight vector ( = has zero projection on the highest 
weight vector). Therefore, z #0, which is impossible. Hence, 
the assumption that X 2 # 0 cannot be true, i.e., 

(3.37) 

Supposethatx3#0 [see (3.23)] andchoosegeU(g1(3») 
so that 

- 1, m23 - 1, m33) 
gX3 = - 1, m23 - 1 . 

-1 

(3.38) 
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Then (c#O) 

(3.39) 

which completes the proof. 
Let 

W( [0,m 23 ,m33 ]) 

= V([0,m23,m 33 ]) Ell V([ - l,m23,m33 - I]) 

Ell V( [ - l,m23 - l,m33 ]) 

Ell V([ -2,m23 -I,m33 -1) (3.45 ) 
Ein V( [0,m 23,m33 ]), 

which is impossible. Hence, 

X3 =0 

and, therefore, 

xoEin V( [0,m23,m33 ]) 

has to be also zero, 

(3.40) 

(3.41) 

be the orthogonal complement to I in V( [0,m 23,m33 ). 
Then, according to the corollary, in order to obtain the 
transformation of the irreducible nontypical sl ( 1,3) -module 
V( [0,m 23 ,m33 ) );/( [0,m 23 ,m33 ) = W( [0,m23,m33 ), one 
has to insert mI3 = ° (/13 = - I) in (2.16)-(2.35) and to 

replace everywhere in these relations the vectors 

xo=O. (3.42) 

Inserting (3.28), (3.37), (3.40), and (3.42) into 
(3.20), we finally conclude that every vector xEi can be rep­
resented as 

[m - Ig) 
[mlz ' 

[m - Ih-
2

) 

[m)2 ' 

mIl mIl 

(3.43 ) 

Therefore, xEl (Proposition 4), i.e., I([0,m23,m33 ]) 
CI( [0,m23,m 33 ]). This inclusion together with the inverse 
(3.17) implies that by zero. The final result is the following. 

(3.44) Nontypical representations with mI3 = ° 

0, m 23, m33) 3 2 I (I + 1)11 . (I -I )112 
. (I -I )(1 -/ -I) 1112 _ '" '" S(' ')S( '1) j2 k7"I=2,3 k3 j2 k7"J=1 k2 II k2 13 e lO m12' m 22 - L L l,j j, .. 

i=2j=1 (/iJ + 1)(/12- /22-j+ 1)(/12- /22-j+2)(/23- /33) 
mIl 

-I, m 23 + /j2i - I, m33 + /j3i - I) 
X m I2 +/jlj -l, m 22 +/j2j-1 , 

mil 

-I, m23 + /j2i - I, m33 + /j3i - I) 
X m 12 + /jlj - I, m22 + /j2j - I , 

mIl-1 

- I, m 23 + /j2i - I, m33 + /j3i - I) 
m 12 - I, m22 - I , mll-I 
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(3.46) 

(3.47) 

(3.48 ) 

( 3.49) 

(3.50) 
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-1, m23 + ~2s - 1, m33 + ~3. - 1) 
m 12' m22 = (1.3 + 1) jtl S(s,j)S(j, 1) 

mil 

-1, 

-1, 

-1, 

-1, 

-1, 

J. Math. Phys .• Vol. 28. No.2, February 1987 

X/ (1ft + l)nk #.=2.3 (lk3 -1ft )n~#j= I (lk2 -III + 1)(lk2 -ls3) /112 

(/.3 + 1) (112 -/22 + j - 1) (112 -/22 + j - 2) (123 -/33) 

0, m23' m23 ) 
X m l2 - ~Ij + 1, m 22 - ~2j + 1 , 

mil 

s= 2,3, 

X / (1ft + 1) (1,2 -/1I)nk #s= 2.3 (lk3 -1'2 )n~ #j= I (lk2 -1.3) \112 

(ls3 + 1)(112 -122 + j - 1)(112 -122 +j - 2)(/23 -/33) 

( 3.51) 

(3.52) 

s=2,3, 

I 
(ls3 -lft)(/,2 +2)n~#j_.</k2 -/1I)(lk2 -li3 ) /112 

X (li3 + 1 )(/12 -In - j + 1 )(112 -/22 - j + 2) (/23 -/33) 

- 2, m23 - 1, m33 - 1 ) 
X ml2 + ~Ij - 1, m22 + ~2j - 1 , 

mil 

s= 2,3, 

\ 

(/,2 + 2)(/11 -1ft - 1) (/s3 -1,2 )n~ #j_ I (lk2 -li3 ) \112 

X (/i3 + 1) (112 -/22 - j + 1) (112 -/22 - j ~ 2) (123 -/33) 

- 2, m23 - 1, m33 - 1 ) 
X m l 2 + ~Ij - 1, m 22 + ~2j - 1 , s = 2,3, 

mll -l 

- 2, m 23 - 1, m33 - 1) 
m l2 - 1, m22 - 1 , 

m ll -l 

Tchavdar D. Palev 

(3.53 ) 

(3.54) 

(3.55 ) 

s=2,3, 

(3.56) 
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-2, 

-2, 

-2, 

1 

(//2 + 2)(/,"3 -1/2 ) IIi ;&)= I (/k2 -III + 1 )(lk2 -//3 + 1) 1112 

X (1/3 + 1)(/12 -/22 + j - 1)(/12 -/22 + j - 2)(/23 -/33) 

- 1, m23 + [)2i - 1, m33 + [)3i - 1) 

X m12 - [)Ij + 1, m22 - [)2j + 1 , 

mil 

1 

(1/2 +2)(li3 -lj2 )(lJ2 -/II)Ili;&J=I(/k2 -//3 + 1) 1 

X (//3 + 1) (/12 -/22 + j - 1) (/12 -/22 + j - 2) (/23 -/33) 

- 1, m23 + [)2i - 1, m33 + [)3i - 1) 

X m12 - [)Ij + 1, m22 - [)2j + 1 , 

m ll +l 

m 23 - 1, m33 - 1) 3 3 1 Il2 (I -1 + 1) 1112 
~ ~ I 1 k = I k2 }"3 

m 12, m22 =.£.. .£.. Elji(j3 +) (1 + 1)(1 -1 ) 
, = I J = I j3 23 33 mil 

- 1, m 23 + [)2i - 1, m33 + [)3i - 1) 

X m l2 + 1, m22 + 1 , 

mil + 1 

- 2, m 23 - 1, m33 - 1) 
ekO m 12, m22 = 0, k = 1,2,3. 

mil 

B. The class m23 = 1 nontypical representations 

In a manner similar to the previous section one proves the following. 

Proposition 6: If m 23 = 1, the maximal invariant subspace I( [ml3,l,m33]) ofV( [m 13,I,m33]) is 

I( [m 13,I,m33 ]) = V( [m 13 - 1,I,m33 - 1]) Ell V( [m 13 - 2,0,m33 - 1]) 

Ell V( [m 13 - 1,0,m33 - 2]) Ell V( [m 13 - 2, - l,m33 - 2]). 

(3.57) 

(3.58) 

(3.59) 

(3.60) 

(3.61 ) 

In order to obtain the irreducible nontypical representaions of sl( 1,3) from this class one has, according to the corollary, to 
insert m23 = I (/23 = - 1) everywhere in (2.16)-(2.35), assuming in addition 

ml3 - 1, 1, m33 - 1) 
m 12, m 22 = 0, 

mil 

m 13 - 2, - 1, m33 - 2) 
m 12, m22 =0, 

mil 

m 13 - 2, 0, m33 - 1) 
m 12, m 22 =0, 

mil 

ml3 - 1, 0, m33 - 2) 
m 12' m22 =0. 

mil 

(3.62) 

The result gives all the nontypical representations with m23 = 1: 

(3.63) 
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x I (1,2 + 1)lli7"j= I (lk2 -/1I)(lk2 -li3 - l)llk7"i= 1,3 (lk3 -1,2) 1112 

(li3 + 1)(l12- /22-j+ 1)(l12- ln-j+2)(l13- /33) 

ml3 + 8)j - 1, 0, m33 + 83i - 1) 
X m l2 + 81j - 1, m 22 + 82j - 1 , 

mil 

X I (1,2 + 1) (1,2 -III + 1 )lli 7"j= I (lk2 -li3 - 1)llk 7"i= 1,3 (lk3 -/j3) 1112 

(li3 + 1) (112 -/22 - j + 1) (112 -/22 - j + 2) (113 -/33) 

ml3 + 8)j - 1, 0, m33 + 83i - 1) 
X m l2 + 81j - 1, m 22 + 82j - 1 , 

m ll -l 

ml3 + 81s - 1, 0, m33 + 83s - 1) 
eOI m 12, m 22 = (ls3 + 1) jtl S(s,j)S(j,1) 

mil 

(3.64) 

(3.65) 

(3.66) 

X I (1,2 + l)lli7"j= I (lk2 -/~I + 1) (lk2 -ls3 )~k7"S= 1,3 (lk3 -1,2) 1112 

(ls3 + 1) (112 -/22 + J - 1) (112 -/22 + J - 2) (113 -/33) 

m 13' 1, m33 ) 
X m 12 - 81j + 1, m 12 - 82j + 1 , 

mil 

s= 1,3, (3.67) 

ml3 + 81s - 1, 0, m33 + 83s - 1) 
e02 m 12, m 22 = (ls3 + 1) jtl S(s,j) 

mil 

X I (1,2 + 1)(lj2 -/1I)lli7"j=l(lk2 -ls3 )llk7"S=1,3(1k3 -1,2) 1112 
(ls3 + 1) (112 -/22 + j - 1) (/12 -/22 + j - 2) (113 -/33) 

s= 1,3, (3.68) 

ml3 + 8 1s - 1, 0, m33 + 83s - 1) I ll2 (I -I) 1112 
(I 1) k=1 k2 s3 

e03 m 12, m 22 = s3 + (l + 1)(1 I) 
mil s3 13 - 33 

s= 1,3, 

(3.69) 
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I 
(ls3 -1}2)(/j2 +2)I1i#j=l(lk2 -/11 )(lk2 -li3 ) 11/2 

x (112 -/22 -j + 1)(112 -122 -j + 2)(113 -/33 )(/i3 + 1) 

m13 - 1, - 1, m33 - 1 ) 
X m l 2 + 8 1j - 1, m22 + 8 2j - 1 , 

m l1 

s= 1,3, 

m13 + 81s - 1, 0, m33 + 8 3s - 1) 3 2 

e20 m 12, m 22 = i~1 j~1 €2isS (i,j) 

ml1 

I 
(1ft + 2)(/11 -1}2 - 1) (ls3 -1}2 ) I1i,'6j = I (lk2 -li3 ) 11/2 

X (/i3 + 1) (/12 -/22 - j + 1) (/12 -/22 - j + 2) (/13 -/33) 

m13 - 1, - 1, m33 - 1 ) 
X m 12 +81j -1, m 22 +82j -1 , 

m l1 -1 
s= 1,3, 

m13 + 8 1s - 1, 0, m33 + 8 3s - 1) 3 I I12 (I -I.) 1112 
~ k= I k2 13 

e30 m12, m22 =.~€2iS (I -I )(1 +1) 
I = I 13 33 i3 ml1 

s= 1,3 

X I (/}2 + 2) (/i3 -1}2 ) IIi #j= I (/k2 -/11 + 1) (/k2 -//3 + 1) 1112 

(//3 + 1)(/12- /22+j-1)(/12- /22+j-2)(/13- /33) 

m13 + 81i - 1, 0, m33 + 83i - 1) 
X mi2 -8lj + 1, m22 -82j + 1 , 

m l1 

m13 - 1, - 1, m33 - 1) 3 3 2 

e02 m12' m22 = i~1 I~I j~1 €2li (//3 + 1)S(/,j) 
m l1 

X I (/}2 + 2) (/i3 -1}2) (/ft -/l1 )I1i #j= I (/k2 -//3 + 1) 1112 

(//3 + 1)(/12 -/22 +j - 1)(/12 -/22 +j - 2)(/13 -/33) 

m 13 +8li -1, 0, m 33 +83i -1) 

X ml 2 - 8lj + 1, m22 - 82j + 1 , 

ml1 +1 

m l3 + 8Ji - 1, 0, m33 + 83i - 1) 
X ml2 + 1, m22 + 1 , 

m
l1 

+ 1 . 
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(3.70) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 
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m l3 - 1, - 1, m33 - 1) 
ekO m12, m 22 = 0, 

mll 

k = 1,2,3. 

c. The class m33 = 2 nontypical representations 

Proposition 7: If m33 = 2 the maximal sl( 1,3 )-invariant subspace I( [m 13,m23,2]) ofV{ [m 13,m23,2]) is 

I( [m 13,m23,2]) = V( [m 13 - l,m23 - 1,2]) EB V( [m 13 - l,m23 - 2,1]) 

EB V( [m 13 - 2,m23 - 1,1]) EB V([m 13 - 2,m23 - 2,0]). (3.76) 

According to the corollary, one obtains this class of nontypical irreducible representations of sl ( 1,3) by inserting m33 = 2 
in (2.16)-(2.35) and assuming that 

m13 - 1, m 23 - 1, }o. m13 - 2, m 23 - 2, }o. m 12, m 22 m 12, m 22 
m ll m ll 

m13 - 1, m 23 - 2, 
l)~O. m13 - 2, m 23 - 1, l)~O m 12, m 22 m12, m 22 

m ll m ll 

As a result one obtains all the nontypical representations with m33 = 2: 

284 

(3.77) 

1 

(lj2 + 1)II~ ;;<j= 1 (lk2 - 111 )(lk2 -/'"3 - 1)II~ ;;<;= 1 (lk3 - 1j2) 1112 

(112 -/22 - j + 1)(112 -122 -j + 2)(113 -123)(1;3 + 1) 

m13 + 8li - 1, m 23 + 82; - 1, 1) 
X m 12 + 81j - 1, m 22 + 82j - 1 , 

mll 

} 

Xl (lj2 + 1)II~;;<j= I (lk2 -/11 + 1)(lk2 -ls3 )II~;;<s= I (lk3 -/j2) 1112 

(112 -/22 + j - 1)(112 -122 + j - 2)(113 -/33 )(ls3 + 1) 

m 13, m23, 2 ) 
X m l2 - 81j + 1, m 22 - 82j + 1 , 

mll 

s= 1,2, 
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(3.78) 

(3.79) 

(3.80) 

(3.81) 
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m13 + 8 1s - 1, m 23 + 82s - 1, 

1) 2 
= (ls3 + 1) j~1 S(s,j) 

x I (lp. + 1) (lj2 -/\1)U~ #j= I (lk2 -ls3 )U~ #s= I Uk3 -1j2) 1112 

(l12-/22+j-1)(l12-/22+j-2)(I\3-/23)(ls3 + 1) 

(3.82) 

e03 m 12, m 22 s = 1,2, 

mll 

m13 + 8 1s - 1, m 23 + 82s - 1, 

m13 + 81s - 1, m 23 + 815 - 1, 

I 
(ls3 -1j2) (lj2 + 2)U~ #j= I (lk2 -/\1 )(lk2 -/;3) 1112 

X (112 -/22 - j + 1) (112 -/22 - j + 2) (/13 -/23)(/;3 + 1) 

m13 - 1, m 23 - 1, 0 ) 
X m 12 + 8 1j - 1, m22 + 82j - 1 , 

m\1 

s= 1,2, 

I 
(lj2 + 2) (1\1 -lj2 - 1) (ls3 -1j2 )Ui #j-l (lk2 -Ii) 1112 

X (112 -122 - j + 1)(/12 -/22 - j + 2)(/13 -=-/23 )(/;3 + 1) 

m13 - 1, m 23 - 1, 0 ) 
X m l2 + 8 1j - 1, m 22 + 82j - 1 , s = 1,2, 

m\1-1 

(3.83) 

(3.84) 

(3.85) 

s= 1,2, 

m3 - 1, m 23 - 1, 
eOI m 12, m22 

m ll 

Xl (/j2 + 2) (/;3 ~ 1j2 )Ui #j= I (/k2 .-/ll + 1) (/k2 -//3 + 1) 1112 
(/12 -/22 + ] -1)(/12 -/22 + ] - 2)(/\3 -/23 )(//3 + 1) 

X 

m13 + 811 - 1, m 23 + 82; - 1, 

m 12 - 81j + 1, m 22 - 82j + 1 ). 
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(3.86) 

(3.87) 
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m13 - 1, m23 - 1, 

e02 m 12, m 22 
mll 

m13 - 1, m23 - 1, 

e03 m12' m22 

mll 

m)3 - 1, m23 - 1, 

ekO m12' m 22 

mll 

xl (lj2 + 2) (lo -1,2) (lj2 -/lI )llL"j= I (lk2 -//3 + 1) 1112 
(l12- /22+j-1)(l12- /22+j-2)(l13- /23)(l/3 + 1) 

m13 + 6Ji - 1, m 23 + 62i - 1, 1) 
X m l2 - 6 1j + 1, mzz - D2j + 1 , 

mll +1 

m13 + DJi - 1, m 23 + 62i - 1, 1), 
X ml2 + 1, m22 + 1 

mll+1 

k = 1,2,3. 

IV. NONDECOMPOSIBLE REPRESENTATIONS OF 
LOWEST DIMENSION 

/([1,1,1)) = V([O,O, - I)) 

$ V( [ - 1, - 1, - 1]) 

and an orthogonal complement 

(3.88 ) 

(3.89) 

(3.90) 

(4.7) 
It was already shown that the induced sl( 1,3) modules 

V( [0,m23,m33 ]), V( [m)3' 1,m33 ]), and V( [m 13,m23,2]) are 
reducible, but not completely reducible. Here we consider 
the lowest dimensional cases. There are three such modules, 
each one of dimension 8. 

W([l,l,l)) = V([l,l,l)) $ V([l,O,O)); (4.8) 

( 1) The space 

V([O,O,O)) = W([O,O,O)) $/( [0,0,0)), (4.1) 

with a maximal invariant subspace 

1([0,0,0)) = V( [ - 1, - 1, - 2)) 

$ V([O, - 1, - I)) 

$ V( [ - 2, - 2, - 2)) 

and an orthogonal complement to 1( [0,0,0]) 

W([O,O,O)) = V([O,O,O)). 

In this case 

diml( [0,0,0)) = 7, dim W([O,O,O)) = 1. 

(4.2) 

(4.3) 

(4.4) 

Therefore, in a proper homogeneous basis the elements of 
sl( 1,3), written as matrices, will have the form 

(

a 11 

a21 
sl(1,3) = : 

aSI 

° a~.). 
ass 

(4.5) 

(2) The space 

V([l,l,l]) = W([l,l,l)) $1([1,1,1]), (4.6) 

with a maximal invariant subspace 
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diml([l,l,l)) = dim W([l,l,l)) =4. (4.9) 

In this representation the elementsofsl( 1,3), written as ma­
trices, will have the form 

a l4 ° ° 
sl( 1,3) = a41 a44 ° ° a54 a55 a5S 

aS4 aS5 ass 

( 3) The space 

V( [2,2,2]) = W( [2,2,2]) $1( [2,2,2]), 

with a maximal invariant subspace 

1( [2,2,2)) = V( [0,0,0)) 

and an orthogonal complement 

W( [2,2,2)) = V([2,1,1)) 

$ V([l,l,O)) $ V([2,2,2)); 

dim 1( [2,2,2]) = 1, dim W( [2,2,2]) = 7. 

In a matrix form this representation reads 

~
1I 

sl(1,3) = : 
a71 

SI 

:). 
aS7 aS8 

Tchavdar D. Palev 

(4.10) 

( 4.11) 

(4.12) 

(4.13) 

(4.14 ) 

( 4.15) 
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v. A MAPPING OF THE YOUNG SUPERTABLEAU BASIS 
(WEYL BASIS) ON THE GEL'FAND-ZETLIN BASIS 

In Refs. 4 and 5 it has been shown that the Young tab­
leau technique can be generalized also in the case of LS's. 
This approach has been developed in more detail for the LS 
sl(m,n) (Ref. 6) and along this line several important prop­
erties of the finite-dimensional representations of sl(m,n) 
have been derived.7

-
9 In this section we translate our results 

in the Young supertableau language.5 In a manner similar to 
that of Ref. 10 we construct a mapping ofthe Young super­
tableau basis on the GZ basis. 

To begin with we recall that a given irreducible sl( 1,3) 
module W([mb) is characterized in our notation by the 
coordinate m I3,m23,m33 of its highest weight A: 
mj3 = A(Ejj ), which are the eigenvalues ofthe Cartan gen­
erators (2.1) on the highest weight vector x A' i.e., 

EjjXA=mj3XA' i=I,2,3. (5.1) 

In the notation of Kac2 the same module is represented by a 
Kac-Dynkin diagram 

(5.2) 

where (aO,al>a2) are the coordinates of A in the dual to 
ho = Ew hi = Ell - E 22, h2 = E22 - E33 basis, i.e., 
aA = A(hA ), A = 0,1,2, and, therefore, (see 1.4.23) 

ao = m 13, a l = m13 - m 23, a 2 = m 23 - m 33. (5.3) 

The defining ( = the fundamental) representation of 
sl( 1,3), given with the matrices (2.1) and (2.2) is realized in 
the space 

W([I,I,I]) = i 0 0 
8'---(0)---0· (5.4) 

In the Bars-Balantekin notation W( [ 1,1,1]) is denoted IZI 
and its elements are called covariant tensors of first rank. 
The conjugate to W( [ 1,1,1] ) module W( [0,0, - 1] ) is de­
noted 0 and its elements are the contravariant tensors offirst 
rank. Thus, we have 

Notation of 

Present Kac Balantekin 
paper Bars 

Fundamental 
1 0 0 sl(1,3) module: W(1,I,I]) = e---o---o - IZI (covariant tensors), 

Conjugate to the 
0 0 i fundamental: W([ 0,0, - 1]) = a.----o---o = 121 (contravariant tensors). 

The above relations indicate that the covariant and the 
contravariant tensors are transformed according to nontypi­
cal representations ofsl(1,3). These representations [con­
trary to the case ofthe LA sl(n)] are inequivalent. Both IZI 
and 0 spaces are four dimensional. One can introduce a 
grading in them in two ways. Choose a basis e A in IZI (resp.gA 
in 0), A = 0,1,2,3 in such a way that the B th coordinate of 
e A is {jAB' i.e., 

(5.6) 

The representation of sl (1,3) in IZI (resp. in 0) is said to be 
class I, if the degree (A) of e A (resp. of gA) is 

(A) = ° for A = ° and (A) = 1 for A = 1,2,3. (5.7) 

If 

(A) = 1 for A = 0 and (A) = 0 for A = 1,2,3, (5.8) 

the representation is said to be of class II. The class I and the 
class II representations in IZI (resp. in 0) are equivalent. 
Therefore, without loss of generality we consider only class I 
representations. 

The sl( 1,3) generators transform the basis in 121 as fol­
lows (we write eij instead of Eij, i,j = 1,2,3): 

(5.9) 

From (5.9) and (3.63)-(3.75) one obtains the relation 
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between the basis eA and the GZ basis in IZI: 

1,1,1) 
eo = 1,1 , 

1 

1,0,0) 
el = 1,0 , 

° 

Similarly, 

e gC_ ( 1)[(A) + (B)](C)£ -JJ 
AB - - - UAcS, 

which together with (3.47)-(3.60) yields 

-1, -1, -1) 
gO = -1, -1 , 

-1 

0, 0, -1) 
gl =J3 0, -1 , 

-1 

0, 0, -1) 
g2 = - J3 0, - 1 , 

o 0, 0 -1) 
g3 = J3 0:0 0 . 

Tchavdar D. Palev 

(5.5) 

(5.10) 

(5.11) 

(5.12) 
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A. Covariant representations 

The sl ( 1,3) modules corresponding to these representa­
tions are tensor products of covariant rank-l tensors. The 
pth tensor power of /ZI, namely 

W(O;p) = 0.0 .... aD 121 (p times) , (5.13) 

is a carrier space of the covariant tensors of rank p with a 
homogeneous basis 

(5.14 ) 

In general this space is reducible. The key point for decom­
posing it into a direct sum of irreducible modules comes 
from the observation4

•
5 that the LS commutes with the group 

Sp of graded permutations, where Sp gives a faithful repre­
sentationofthegermutationgroupSp in W(O,p). The opera­
tor 11'U,i + 1 )ESp , corresponding to the neighbor transposi­
tion U,i + 1 )ESp , acts as 

11'(i,i + 1) [ ... ®e
Ai 

®e
Ai

+
1 

® •.. ] 

= - (_I)(A i)(A i + 1)["'®e ®e ®"']. (5.15) 
Ai+l Ai 

To determine the action of any other permutation it suffices 
to represent it as a product of such neighbor transpositions, 
which is always possible. Thus, W( O,p) is turned into an Sp 
module. Decompose it into a direct sum of irreducible Sp 
modules W(O,[A ]p)' 

W(O,p) = ~ ED W(p;[A ]p)' 
tn 

(5.16) 

Then each term W(O; [A ]p) turns to be an irreducible mod­
ule over the LS (which is sl ( 1,3) in our case) and it can be 
represented as 

( 5.17) 

where the Young symmetrizer Y(O;[A ]p) is a projection 
operator, corresponding to the Young tableau [A ]p, which, 
following Ref. 5, will be called a supertableau. The decompo­
sition (5.16) is rather standard. The sum is over all legal 
Young supertableaux. A given supertableau [A ]p, 

contains p covariant boxes, where 

bi counts the boxes ofthe row i, 

cj counts the boxes of the columnj, 

and 

bl >b2>"'>bm >0, 

CI >C2>'" >cn > O. 

For sl(1,3) the supertableau [A ]p is legal if 

b2 <3¢X'4<1. 

(5.18 ) 

(5.19) 

(5.20) 

The boxes are enumerated with the numbers from I to p 
( I ,2, ... ,p) lexically: the numbers in each row increase as read 
from left to right and in column as read from top to bottom. 

Turn now to the basis labeling problem in W(O; [A ]p)' 
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The action of the symmetrizer YeO; [A ]p) is defined in a 
similar way as for the LA's (see, for instance, Ref. 10), how­
ever, because of the sign factor in (5.15) the odd indices 
appearing in one and the same row (resp. column) are anti­
symmetrized (resp. symmetrized). Therefore, the basis in 
W(O;[A ]p) is in one-to-one correspondence with the stan­
dard Weyl patterns (A)p containingp boxes. For sl(1,3) a 
Weyl pattern (A)p is a Young supertableau [A ]p in which 
the boxes have been "filled in" with integers selected from 
1,2,3, and O. It is convenientto assume that 

(5.21) 

In this ordering the Weyl pattern (A)p is standard if the 
sequence of integers 1,2,3 appearing in each row of [A ]p is 
strictly increasing as read from left to right followed by any 
admissible (from the shape of the diagram) number of zeros 
and the sequence of integers 1,2,3 appearing in each column 
is nondecreasing as read from top to bottom, followed by no 
more than one O. For instance, if p = 15, then the table 

(5.22) 

is an example of a Weyl pattern, i.e., a Weyl basis vector in 
W(0;[A]15)' 

We are now ready to define a mapping F of the Weyl 
basis of a given irreducible sl ( 1,3) module onto the G Z basis. 
The idea is the same as developed in Ref. 10 for the LA 
gl (n). The mapping F may be defined by three projection 
operators FI, F2, and F3• To determine them take any weight 
vector xEW(O;[A ]p)' 

( 1) Consider all nonzero projections of x on the gl ( 3 ) 
irreducible submodules from W( 0; [A ] p ). Then F3X is the 
projection of x on those gl(3) submodule V( [m]3)' which 
has the biggest gl (3) -highest weight. 

(2) Similarly, F2F3X is the projection of F3X on that 
gl(2) submodule V( [mb) C V( [mb) which has the big­
gest highest weight among all those s1(2) submodules in 
V( [m] 3) on which F3X has nonzero projections. 

(3) FIF2F3X is the projection of F2F3X on that gl (1 ) 
submodule V( m II) C V( [m ] 2) which has the biggest high­
est weight among all those gl ( I) submodules from V( [m ] 2) 

on which F~3X has nonzero projections. 
Then Fx is the normed to unity vector FIF2F3X, i.e., [see 

(2.6) ] 

[m b) 
Fx = [m]2 . 

ml1 

(5.23) 

The operator F defines one to one mapping of the Weyl pat­
tern basis onto the GZ basis. To write down the action of F 
explicitly one has to take into account the following. 

(a) Each index k = l,oo.,n appearing in the k th column 
of the Weyl pattern (A) p can be transferred into k by a prop­
er action of the g1(n) generators, n = 1,2,3. 

(b) The basis vectors in /ZI are weight vectors. The corre-

Tchavdar D. Palev 288 



                                                                                                                                    

spondence with their weight is 

eo+-+(1,I,I), el+-+(1,O,O), 

e2+-+(0,1,0), e3+-+(0,0,1). 

As a result one has 

(5.24) 

(5.25) 

where mij is equal to the number ofthe 1 's, 2's, ... ,j's, which 
appear in the ith column of (A) p plus the number of all zeros 

in (A)p' 
From (5.25) one derives that the set of all Young super-

tableaux with two covariant columns corresponds to the 
class m33 = 2 nontypical modules. More precisely, 

~ ~ W([m",m",2]). (5.26) 

r :23 - 1 boxes in the second column 

m 13 - 1 boxes in the first column 

B. Contravariant tensor representations 

The representation space W(q;O) of the contravariant 
tensors of rank q is 

W(q;O) = 121 ~ 1:21 e ... e 0 (q times), (5.27) 

and it decomposes into a direct sum of irreducible sl( 1,3) 
modules W( [1 1q;0): 

W(q;O) = ~ ffi W( [1 1q;0). 
[ lq 

(5.28) 

The sum is over all contravariant legal Young supertableaux 
[1 1 q' The supertableau [1 1 q contains q boxes 121 ordered as 

(5.29) 

and it is legal if the inequaIities (5.19) and (5.20) hold forb;, 
cj , i = 1, ... , n andj = 1, ... , m. All boxes of [1 1q are enumer-
ated lexically with 1,2, ... , q from right to left and from top to 
bottom:....The definition of the Weyl pattern (1) q correspond­
ing to [A 1 q is as in the case of the covariant boxes. The only 
difference is that one "fills in" 1,2,3,0 from right to left. All 
(1)q corres~nding to [11q constitute a basis, the Weyl 
basis, in W( [A 1q;0). The diagram 

(5.30) 

is an example ofa Weyl basis vector in W( [1 bo;O). 
The mapping F of the Weyl patterns basis (1) q onto the 
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GZ basis is easily derived if one takes into account that the 
correspondence between the basis vectors g4 in 121 and their 
weight is 

gO +-+ ( - 1, - 1, - 1), gl +-+ ( - 1,0,0), 

g2 +-+ (0, - 1,0), t +-+ (0,0, - 1). 
(5.31) 

Then 

m 13' m23, m33) 
F(1)q = m12, m 22 , 

mil 

(5.32) 

where ( - mij) is equal to the number ofthe l's, 2~s, ... ,j's, 
which appears in the (j - i + 1) + th column of (A) q plus 
all zeros in (1)q' For instance, 

, 
-1 -4 -7) 

F ~ 2 = ~ 2, ~ 4 EW( [0, - 4, - 6]). 
o 3 - 3 

3 
I (5.33) 

The correspondence in this case is also one to one. The set of 

all Young supertableaux with two contravariant columns 
gives the class ml3 = 0 nontypical modules: q ~ W([O,m",m,,]). (5.34) 

11:331 boxes in the first column 

Im231 boxes in the second column 

C. Mixed covarlant-contravarlant tensor 
representations 

The representation space of the tensors with q contra­
variant and p covariant indices is 

W(q;p) = (219···@080@ .. ·®0. (5.35) 
" ~ 

q times p times 

It resolves into a direct sum of sl( 1,3) invariant subspaces 
W( [1 1q;0) ® W(O; [A 1p): 

W(q;p) = _ L ffi W( [1 1q;0) ® W(O;[A 1p)' (5.36) 
[A J .. [A lp 

The sum is over all legal Young supertableaux [1 1q and 
[A 1p. Each mixed tensor 

tEW([1 1q;0) ® W(O;[A 1p), p,qi=O, (5.37) 

can be uniquely decomposed in terms of the tensor basis: 

t= ~ tA, •... ,Aq..A,® ••• ®gAq®e ®···®e. 
£.. B, •...• B p ~ B, Bp 

A, •... ,Aq 

(5.38) 

Let 

w([1 1q; [A 1p) C W([1 1q;0) ® W(O;[A 1p) (5.39) 

be the subspace of all tensors such that the supertrace with 
respect to any two pairs of covariant and contravariant in-
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dices vanishes, i.e., 
3 

" (_l)(Cl t ····A,-I.C.A,+I·· .. =O 
~ ...• BS_1,C.BS + l....' 

C=O 

V r = 1, ... , q, s = 1, ... ,p. (5.40) 

Then W([X 1q;[A 1p) is either an irreducible or nondecom­
posible sl( 1,3) module. 7

-
9 The Young supertableau corre­

sponding to it is 

(5.41 ) 

Such a supertableau is legal if 8 

hi + h2,3, or h2 + h l ,3 

and its contravariant and covariant boxes are enumerated 
with the numbers 1, 2, ... , q and 1, ... , p as this was already 

described for the pure contravariant and pure covariant ten­
sors. The mixed tensors with one covariant and one contra­
variant rows describe all nontypical representations from 
the class m23 = 1. The correspondence is 

, ~ W([m".l.m,,]). (5.42) 

f :n 13 covariant boxes 

1 - m33 contravariant boxes 

In this case one cannot define a Weyl pattern in the way 
this was done for the purely covariant or purely contravar­
iant tensors. One possible generalization of this concept is 
the following. Consider for simplicity only Young supertab­
leaux of the shape (5.42). The tensor product of the Weyl 
patterns, 

contravariant boxes ..... 

i 
-L 

+- covariant boxes, 

(5.43) 

constitute a basis in W( [X 1q;0) ® W(O;[A 1p)' We set 

i1 j1 i1 jl 1 1 

i2 j2 i2 j2 (ill 
GI -c\ j (:-1) (5.44) 

1 1 

jp ~ 
& i i 

The patterns (5.44) correspond to traceless tensors and con­
stitute a basis in W([X 1q;[A 1p)' We call them Weyl pat­
terns. Then the one-to-one mapping of the Weyl pattern ba-
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sis onto the GZ basis is defined as 

il jl 

i2 j2 
F .. F + F . . 

jp 

ts- i 

For instance, 

~ 
2 2 

F 0 : '" 
F 0 + F 2 

3 

i 
-t-

covariant boxes 

contravariant boxes 

- 1, - 1, - 1) 
= -1, -2 + 

-1 

3, 0, 0) 
2, 0 

o 
2, - 1, - 2) 

= -1, - 2 
-1 

(5.45) 

(5.46) 

We conclude that the Young supertableaux describe all 
nontypical representations of the Lie superalgebra sl ( 1,3). 
With this technique one can construct several other repre­
sentations, irreducible or nondecomposible, all of them cor­
responding to integer coordinates [m13,m23,m331 of the 
highest weight. 

VI. CONCLUDING REMARKS 

In Ref. 1 and in the present paper we have constructed 
all finite-dimensional irreducible representations of the Lie 
superalgebra sl( 1,3). More precisely, we wrote down explic­
it expressions for the transformation of the basis within ev­
ery finite-dimensional irreducible sl ( 1,3) module under the 
action of the generators. In solving the problem we have 
essentially used the results of Kac2 on the induced represen­
tations of the basic Lie superalgebras. The main difficulty we 
had to overcome was to introduce a basis in such a way that 
every basis vector has a nonzero projection only on one irre­
ducible gl( 3) submodule. To this end, we have essentially 
used the tensor properties of the odd generators under the 
adjoint representation of the even subalgebra gl (3). This al­
lowed us to establish that every induced sl( 1,3) module 
V{ [m 13,m23,m33 1 ) can be considered as a direct sum offour 
gl ( 1,3) -invariant subspaces, each such subspace being a ten­
sor product of two irreducible gl( 3 ) modules. Therefore, the 
coefficients, connecting the tensor-product basis (the in­
duced basis) with the basis we were looking for (the GZ 
basis), can be chosen to be Clebsch-Gordan coefficients of 
gl ( 3 ). Since we knew the action of the generators on the 
induced basis, the problem to express the transformation of 
the GZ basis was reduced to a rather standard transforma-
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tion from one basis (the induced one) to another basis (the 
GZ one). The main difficulty along this way was of a techni­
cal nature--one had to sum several terms (the coefficients in 

front of the basis vectors) and it was not clear from some 
general considerations that the summation can be carried 
out. Luckily, because of several, presumably not accidental 
cancellations, we succeeded in writing the final result in a 
rather simple form. The similarity of the formulas (2.16)­
(2.35) suggests that it should be possible to go further and to 
unify them (as in case of Lie algebras), expressing all of 
them in terms of only two relations-one for the positive 
root generators and one for the negative root generators. We 
leave this task for the future. 

The method that has been used here can be immediately 
applied also to the Lie superalgebra sl ( 1 ,n), since in this case 
the necessary for the computation Clebsch-Gordan coeffi­
cients are known. From a technical point of view the prob­
lem will be more difficult. We believe, however, that also in 
this more general case it will be possible to carry out all 
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summations and to write down the final results in a closed 
form. 
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Using the method of extended Cartan matrices and extended Dynkin diagrams, a classification 
of maximal regular semisimple subalgebras of the basic classical Lie superalgebras is obtained. 
Especially in the case of exceptional Lie superalgebras, some curious inclusion relations are 
discovered. . 

I. INTRODUCTION 

Since the work of Corwin, Ne' eman, and Sternberg, I Lie 
superalgebras have become increasingly important in theo­
retical physics. 2 Simple Lie superalgebras were classified 
completely,3,4 and it was shown that basic classical Lie su­
peralgebras can be described by a Cartan matrix or, equiv­
alently, by a Kac-Dynkin diagram. 

In this paper we make a first step in the classification of 
subalgebras of basic classical Lie superalgebras, Besides hav­
ing a mathematical interest, the investigation of subalgebras 
of Lie superalgebras is also important for physicists. Indeed, 
in physical models where Lie algebras or Lie superalgebras 
are used, one is very often concerned with a chain of subalge­
bras. 

The first class of subalgebras to be considered are the so­
called regular subalgebras. These are generated by some root 
vectors of the original Lie superalgebra L. The aim of this 
paper is to obtain a classification of all maximal regular 
semisimple subalgebras of basic classical Lie superalgebras. 
The method we use is similar to the one introduced by Dyn­
kin5 in his classification of regular subalgebras of simple Lie 
algebras. The Lie superalgebras we investigate here are 
A(m,n) (m=ln), spl(m,m), B(m,n), C(n), D(m,n), 
D(2, I;a), G(3), andF( 4), where we have used the notation 
of Kac.3 Note the difference in notation between a Lie alge­
bra and a Lie superalgebra: C(n) is the Lie superalgebra 
osp (2,2n - 2), whereas C n is the Lie algebra sp ( 2n ) . All Lie 
algebras are denoted by means of an index. 

In his classification, Dynkin used the method of ex­
tended simple root systems and extended Dynkin diagrams. 
In Sec. II we show that a similar method can be used here, 
There is, however, one main difference: for simple Lie alge­
bras, all simple root systems are Wequivalent (W = Weyl 
group). For Lie superalgebras this is not the case: in fact 
there exists a so-called distinguished choice of the simple 
root system such that only one simple root is odd.3,6 Besides 
the distinguished choice, there are other choices possible, 
which give rise to a different Cartan matrix and Dynkin dia­
gram. In our analysis, all possible simple root systems have 
to be taken into account. But we shall give details only for the 
distinguished choice, and simply state the results for all oth­
er choices. 

In Secs. III-VIII we analyze systematically the semi­
simple regular subalgebras of the basic classical Lie superal­
gebras. The main results are summarized in Table I, and are 

aJ Senior Research Assistant N.F.W.O. (Belgium). 

particularly remarkable in the case of inclusions among ex­
ceptional Lie superalgebras. The construction of the ex­
tended Cartan matrices and Dynkin diagrams for the basic 
Lie superalgebras may also be important from another point 
of view. Indeed, it is well known that the extended pynkin 
diagrams and the extended Cartan matrices of the simple Lie 
algebras are precisely the Dynkin diagrams and Cartan ma­
trices of the so-called nontwisted affine Kac-Moody alge­
bras. 7 It seems natural to ask whether there correspond any 
infinite-dimensional "affine" Lie superalgebras with the 
Cartan matrices listed in this paper. This question, however, 
falls beyond the scope of the present work. 

Let us finally mention that the Lie superalgebra bracket 
is always denoted by [x,y] throughout the paper. Whether 
[x,y] must be interpreted as a commutator or as an anticom­
mutator depends on the degree of x and y, and is always clear 
from the context. 

II. GENERAL METHOD TO CONSTRUCT REGULAR 
SUBALGEBRAS 

Throughout this paper, a simple Lie superalgebra L is 
always a basic classical Lie superalgebra of type A (m,n) 
(m=ln), B(m,n), C(n), D(m,n), D(2,I;a), G(3), or F(4). 
These Lie superalgebras and their properties have been de­
scribed by Kac? We say that a Lie superalgebra is semisim­
pie if it is the direct sum of components which are either of 
the previously mentioned simple type, or simple Lie alge­
bras, or else of type spl(n + I,n + 1). Then the semisimple 
Lie superalgebras coincide3 with the finite-dimensional con­
tragredient Lie superalgebras G(A,r), described by a Cartan 
matrixA and a subset roftheindex setI= {l, ... ,r} (for the 
notation, see Ref. 3). The matrix A satisfies 

aij = O¢:}ajj = O. 

Moreover, if 

Vi,jEl, there exists a sequence il, ... ,ite/ 

for which au, a j ,j2 •• 'aj,j =10, 

(2.1) 

(2.2) 

then the contragredient Lie superalgebra is either simple or 
else of type spl (n + I,n + I). If (2.2) is not satisfied, then A 
splits into the direct sum of matrices of type (2.2), and hence 
G(A,r) is semisimple (according to our definition of semis­
implicity) . 

Definition 1: A subalgebra L ' of a simple Lie superalge­
bra L is regular if, for a proper choice of the Cartan subalge­
bra H of L, the relation 
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( h + Lea) eL " heH, eaeL a, 
ael!. 

where 11 is the set of roots of L relative to H and L a is the root 
space, implies that 

heL' and eaeL'. 

An equivalent defintion is given by the following. 
Definition 1': A subalgebra L' of L is regular if there 

exists a basis of L ' consisting of elements of some Cartan 
subalgebra H of L, and of root vectors of L relative to H. 

Let L be a simple Lie superalgebra and L ' a regular sub­
algebra. Then L ' can be written in the following form: 

(2.3) 

withH'CH, l1'cl1. Ifa,/3el1', and ea,eparecorresponding 
root vectors, then [e a ,e p ] eL '. Hence if a + pel1, it also be­
longs to 11'. If a and - a belong to 11', then e ± a eL " and 

[ea,e -a] = (ea,e -a )ha· (2.4) 

Herein, ( , ) is the unique (up to a constant factor) nonde­
generate invariant supersymmetric bilinear form (see Prop­
osition 2.5.5 of Kac3

) , and ha is defined by 

(ha,h) = a(h), 'tIheH. (2.5) 

In (2.4), ha eL ' nH, hence ha eH'. Therefore, if L ' is a regu­
lar subalgebra written in the form (2.3), then the following 
conditions are valid: 

(a) a,/3el1' and a +pel1~a + {3el1'; 

(b) a, - ael1'~haeH'. 
(2.6) 

Conversely, suppose that L' is a subspace of L ofthe form 
(2.3) such that (2.6) are satisfied. Then [h ',h "] = 0eL', for 
all h ',h "eH'. Further, [h,ea ] = a(h)eaeL' for heH', 
ael1'. Finally, for a,/3el1', [ea ,ep ] = 0 if a + pEI1, [ea ,ep ] 

= ea + p if a + pel1, but then also a + pel1', and [ea ,ep ] 

- ha if 13 = - a. Hence L ' is a subalgebra, and obviously it 
is regular. 

A Cartan subalgebra of L is a Cartan subalgebra of its 
even part, the Lie algebra Lo. All Cartan subalgebras of Lo 
are conjugate under inner automorphisms of Lo. Hence, in 
order to find all regular subalgebras (up to conjugacy) of L, 
we can use the following procedure: (1) consider a particu­
lar Cartan subalgebra H of L and the corresponding root 
system 11; (2) consider all possible subspaces of the form 
(2.3); and (3) determine which subs paces also satisfy (2.6) . 
From now on, we may suppose that H (and consequently 
also 11) is fixed. 

Definition 2: Let 11 be the root system of L. A subset r of 
11 is called a regular subsystem if 

(a) a,/3er~a - pEI1; (2.7) 
(b) r is linearly independent. 

Proposition: Let H be the Cartan subalgebra and 11 the 
root system of L. Let r = {a h ••• ,am } be a regular subsystem 
of 11, and let L ' be the subalgebra of L generated by the root 
vectors ea, , ... ,earn ,e _ a, , ... ,e _ am' Then L ' is a regular semi­
simple subalgebra of Land r is a system of simple roots for 
L '. Conversely, every regular semisimple subalgebra L ' of L 
(up to conjugacy) can be obtained by such a construction. 
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Proof: The subalgebra L' is regular since (2.6) is ful­
filled. Put 

(2.8) 

The elements hi are linearly independent, since r is a regular 
subsystem. Then L ' is the contragredient Lie superalgebra 
G(A,1") with A determined by 

(2.9) 

and 1" consisting of those i for which a i is an odd root. From 
(2.8) it follows that A satisfies (2.1). Hence, L ' is semisim­
pIe, and obviously r is a set of simple roots of L '. Conversely, 
let L ' be a semisimple regular subalgebra of L. We may sup­
pose that the Cartan subalgebra of L ' is contained in H: 

L'.=H' + L La, (2.10) 
ae41' 

and (2.6) is satisfied. Since L ' is semisimple, we have 

ael1' <=> - ael1'. (2.11) 

Let r be a set of simple roots for L '. Then r is linearly 
independent and a,/3er implies a - pEI1'. But if a,/3er, 
then (2.11) gives a, -{3eI1'. Now (2.6a) implies 

a, -pel1', a + (-13) EI1'~a + ( -p)el1. (2.12) 

Hence (2.7a) is valid and r is a regular subsystem. Obvious­
ly, L ' is generated by the root vectors of the simple roots and 
their negatives. 

The problem of finding semisimple regular subalgebras 
of L is now reduced to the following: determine all the regu­
lar subsystems r of the root system 11 of L. When L is a Lie 
superalgebra of rank n, every regular subsystem will always 
be contained in a regular subsystem of order n. Hence, we 
only have to classify the "maximal" re~ular subsystems. 

Definition 3: A regular semisimple subalgebra L ' ( =/=L) 
of L is called maximal if there does not exist any other regu­
lar semisimple algebra L " such that L ' CL " CL (all inclu­
sions are strict). 

Let n be a simple root system of L: obviously, n is a 
regular subsystem. Extend n by a root r of 11 to ne 

= nu{y} such that (2.7a) is still satisfied. We call n e the 
extended simple root system. It follows from the following 
sections that there is in general only one way to extend n 
( only in some situations n can be extended by either r or else 
by 2r, if both rand 2r belong to 11). Then, one obtains a 
maximal regular subsystem r(J) by deleting one root from 
ne. Now, r(1) can be extended by a root r', and again deleting 
a root gives another regular maximal subsystem r(2l, and so 
on. All possible maximal regular subsystems are obtained in 
this way. However, the regular subalgebra determined by 
r(2) is contained in the one determined by r(J). Hence, in 
order to find the maximal semisimple regular subalgebras, 
only the first extension has to be considered, unless r(J) gives 
rise to a subalgebra isomorphic to L. 

The method to find all maximal semisimple regular su­
balgebras of L is now clear. The only difference with Lie 
algebras is the following: for Lie algebras all simple root 
systems are Wequivalent (W = Weyl group), whereas for 
Lie superalgebras there are in general several nonequivalent 
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simple root systems. In Sees. III-VIII we shall construct the 
extended simple root systems, the corresponding extended 
Cartan matrices, and the extended Dynkin diagrams for the 
distinguished choice3

,6 ofn for all basic classical Lie superal­
gebras L. Moreover, we shall state the results for all other 
simple root systems, and hence obtain all maximal semisim­
pIe regular subalgebras of L. 

III. THE LIE SUPERALGEBRAS A(m,n) (m;6n) OR 
spl(n+1,n+1) 

The special linear Lie superalgebras are defined by 

spl(m + l,n + 1) 

={x=[: !llstr(x)=tr(o)-tr(d)=o}, (3.1) 

where 0, b, c, and dare (m + I) X (m + 1), (m + 1) 
X (n + 1), (n + 1) X (m + 1), and (n + 1) X (n + 1) ma­
trices,respectively. The even elements are of the form [g~] , 
and the odd elements of the form [~g] . The Cartan subalge­
bra H is a subspace of diagonal matrices of (3.1). For a 
diagonal matrix D = diag(dwdzz, ... ,dm + n + 2.m + n + 2), we 
define 

Ej(D) =djj (i= 1, ... ,m + 1), 

OJ (D) = dm + j + I,m+j+ 1 (i = 1, ... ,n + 1). 
(3.2) 

Then the even roots of spl( m + l,n + 1) are 

ao = {Ej - Ej (iJ = 1, ... ,m + 1); OJ - OJ 

(i,j= 1, ... ,n + 1)}, 

and the odd roots are given by 

(3.3 ) 

al = { ± (Ej - OJ); i = 1, ... ,m + 1, j = 1, ... ,n + n. 
(3.4) 

The distinguished positive simple root system n is deter­
mined by3 

0 2 m+ 1 

0 I 1 0 I - - I - - - - -
-1 2 -1 

-, - - -. - -
0 

I 
1- 1 2 -1 

-1 
-1 2 1-1 

- 01,01 - 02, .. ·,On - on + I}' 

The corresponding root vectors are 

ej =Ej,j+I' /; =Ej+I,j (i= 1, ... ,m+n+ 1). 

Then, one can check that [eo!;] = oijh;. with 

(3.5) 

(3.6) 

hj = E jj -Ej + I,j+ 1 (i = 1, ... ,m,m + 2, ... ,m + n + 1), 

(3.7) 

In (3.6) and (3.7), Eij stands for the matrix of 
spl(m + l,n + 1) with zeros everywhere, except a 1 in the 
entry (iJ). From (3.6) and (3.7) the Cartan matrix and 
Dynkin diagram of spl (m + l,n + 1) can be determined. 

Now, we shall extend n. It is easy to see from (3.3)­
(3.5) that the only root r by which n is extended such that 
(2.7 a) is still satisfied, is 

(3.8) 

We call r the zero root of ne. In order to find the extended 
Cartan matrix, we have to construct the root vectors corre­
sponding to rand - r, and their (anti-) commutation rela­
tions with the spl (m + l,n + 1) generators. One finds 

and 

eo=Em + n + 2,1' io=E1,m+n+2' 

[h;.eo] = - c5 j ,1 eo - c5j ,m +" + 1 eo, 

[ho,e j ] = c5j,1 el - c5j,m + n + 1 em + n + 1 

(i= 1, ... ,m +n + 1). 

(3.9) 

(3.10) 

In fact, (3.10) determines the "zero row and column" of the 
extended Cartan matrix A. We obtain 

o 
m+n+ 1 
-1 

, l' = {O,m + I}. (3.11) 
- -1- , - - ~ - - - - - - - - - - - - - -o 1 - - - - - - - - - --1 
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-1 

- - - - - - - - - - - -
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1-1 I 2 -1 
1-1 2 
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Hence, the extended Dynkin diagram is 

1 Z m m+1 m+Z m+n+1 
(3.12) 

When a single node is deleted from (3.12) (which corre­
sponds to deleting a root from IIe), the corresponding dia­
gram is again a Dynkin diagram for spl( m + 1,n + 1). 
When two adjacent nodes are deleted, the remaining Dynkin 
diagram is that for spl{m,n + 1) or spl(m + 1,n). When 
two nonadjacent nodes are deleted, there remains the Dyn­
kin diagram of spl(k,l) EIlspl(i,j) with k + i = m + 1 and 
1+ j = n + 1. Note that i or j can be zero: 
spl{r,O) = spl(O,r) = sl(r) = A,_ I' 

The most general system of simple roots of 
spl{m + 1,n + 1) is determined3 by two increasing se­
quences S={1,SI<S2<"'} and T={1,t l <t2 <···} 

and a sign, 

IIs.T = ± {E I - E2,E2 - E3,· .. ,Es , - ~I'~I 

(3.13 ) 

Let ± (7]i -7]}) be the last element ofIIs.T (7] and 7]'can be 
E or ~). Then r = ± (7]; - E 1)' and it is again uniquely de­
termined. Deleting one node from II~,T gives rise to a Dyn­
kin diagram for spl(m + l,n + 1), and we find similar re­
sults as for the distinguished choice of II. 

The conclusion is the following: for 
L = spl{m + 1,n + 1), the only semisimple regular subalge­
bra of rank m + n + 1 is the algebra L itself. Hence, the 
maximal regular semisimple subalgebras are of rank m + n 
and are of the form spl{k,l) EIlspIU,j) with k + i = m + 1 
and I + j = n + 1. 

IV. THE ORTHOSYMPLECTIC SUPERALGEBRASB(m,n) 

B(m,n) = osp{2m + 1,2n) is the subalgebra of 
sp1(2m + 1,2n) consisting ofthose~ = [~~] for which the 
even and odd components Xs (s = 0, 1) satisfy 

x{B+(-l)SBxs =O, (4.1) 

wherexT = [:"d--;C'] is the supertranspose of x, and 

o 1m 0 I 
I 

1m 0 0 I 

B= 0 o 1 , 

lOIn , 
,-In 0 

(4.2) 

Consider first the situation with m > O. The Cartan subalge­
bra is spanned by diagonal matrices D, and we put 

Ei(D) = d ii U = 1, ... ,m), 

~i{D) =d2m+i+I.2m+i+1 (i= 1 .... ,n). 
(4.3) 

One can check that the even roots are given by 

Ao = {± (E'j - Ek ). ± (Ej + Ek ). ± E'j (l,j <k<m); 
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± (~j - ~k)' ± (~j + ~k)' ± ~j (l<j <k<n)}. 
(4.4) 

and the odd roots by 

AI = {± (Ej - ~k)' ± (Ej + ~k)' ± ~k' 
O<j<m. l<k<n)}. 

The distinguished set of simple roots is equal t03 

II = {151 - ~2.152 -153 ..... l5n - E1.E I - E2 ... ·.Em _ I 

(4.5) 

(4.6) 

The corresponding root vectors. in the same notation as in 
Sec. III. are 

e i = E 2m +i+ 1.2m+ i+2 - E 2m + n+i+ 2.2m+n+i+ I' 

/; = E 2m +i+2.2m+ i+ I - E 2m + n+i+ 1.2m+n+i+ 2 

U = 1 ..... n - 1); 

en = Em+ 1,2m+2n+ I + E 2m + n + 1.1. 

In = E I•2m +n+ I - E 2m + 2n + I.m + I; 

e n + i = E i•i + I - E m + i + I.m+i> 

(4.7) 

In+i =Ei+I,i -Em+i,m+i+1 U= 1 ..... m -1); 

en + m = .,fi{Em•2m + I - E 2m + 1.2m). 

In+m = .,fi(E2m + I.m - E 2m•2m + I)' 

Then. with [eiJj] = l5ijhj • one obtains 

hi = E 2m + i + 1.2m+i+ I - E2m+i+2.2m+i+2 

- E 2m + n + i + 1.2m + n + i + I 

+E2m + n +i+2.2m+n+i+2 (i= 1 ..... n -1). 

h n =E\1-Em + l•m + 1 +E2m+n+I.2m+n+1 

- E 2m + 2n+ 1.2m+2n + I' 
(4.8) 

hn+i =Eii -Ei + l•i + 1 -Em + i•m + i 

+Em+i+l.m+i+1 U= l .... ,m -1). 

hn+m =2(Em.m -E2m•2m )· 

These elements determine the Cartan matrix and hence also 
the Dynkin diagram of B{m.n) completely. 

Let us now try to extend II by a root r such that (2.7 a) is 
still valid. It turns out that there are two solutions: either 
r = - ~I' or else r = -151, Consider first the situation 
with r = - ~I' Then 

eo = E2m+n+2.2m+ 2. 10 = E2m+2.2m+n+2' (4.9) 

and 

ho = E 2m + n + 2.2m + n + 2 - E 2m + 2.2m + 2 

+ ... +hn+m_1 +~hn+m' 

Here, one finds 

[ho,eo] = 2eo• 

[ho.e;] = - ~i.lei' 

[hi.eO] = - ~i.1 eo U = 1 .... n + m). 

Therefore. the extended Cartan matrix is 

Joris Van der Jeugt 
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0 

2 1-1 --2 I 2 

0 1_1 
I 

0 

-1 

2 . . . 

n 

I - - - - - - - - - -I I 

I 

2 -1 I 

n+m 

o 

I _ 1 2 I - 1 I , r = {n}. (4.12) - - , - - - - - - - - - - :i '- -0- 1- i - - - - - - - - - -
~ - - - - - - - - - - - -1- - -1- - - - - - - - -
I -1 I 2 -1 

1-1 2 

2 - 1 

o -2 2 

This corresponds to the following Dynkin diagram: 

~ ... --o----®--O-- ... ~ (4.13 ) 
o 1 2 n n+m 

The subalgebras obtained by deleting the Oth, 1st, 2nd, ... , 
(n + m)th node are B(m,n), Al $B(m,n - 1), C2 

$B(m,n - 2), ... , Cn_ 1 $B(m,1), Cn $Bm, C(n + 1) 
$Bm_ l , D(2,n) $Bm_ 2, ... ,D(m - l,n) $A I, D(m,n). 
Note that these subalgebras are all of the form osp(0,2k) 
$ osp(2m + 1,2n - 2k) or osp(2j,2n) $ osp(2m + 1 
- 2j,0), where osp(2r + 1,0) = so(2r + 1) = Br and 

osp(0,2r) = sp(2r) = Cr. 
Next, consider the situation where r = - 81, Then 

eo = ..[i(E2m + 1,2m + 2 - E2m + n + 2,2m + I)' 

10= -..[i(E2m + 2,2m+l +E2m + 1,2m+n+2)' 

ho = - 2(h l + h2 + .. , + hn - hn + 1 - •• , 

-hn+m-I -~hn+m)' 
and the relations (4.11) become 

[ho,eo] = 2eo, 

(4.14) 

[ho,e;] = -28i.1e;. (4.15) 

[hi,eO] = - 8/,1 ei (i = 1, ... ,m + n). 

The new extended Cartan matrix has obviously the same 
(n + m) X (n + m) part as in (4.12), and hence it is deter­
mined by 

o 1 n+m 

1 
2 1-2 0 ... 0 

----+-------~---------------1 I 
I o I same as 
I 
: (4.12) 

o : 
The corresponding Dynkin diagram is 

, r= {O,n}. 

(4.16 ) 

e4===0==O----O- --o-®--O- ~. 
o 1 2 n n+m 

( 4.17) 

Now, the subalgebras obtained by deleting the Oth, 1st, 
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2nd, ... ,(n + m)th node are B(m,n), B(O,I) $B(m,n - 1), 
B(0,2) $B(m,n - 2), ... ,B(0,n) fBBm, B(1,n) $Bm _ to ... , 

B(m - l,n) $AI,B(m,n). Note that every subalgebra from 
the previous series with r = - 281 is contained in one of the 
algebras of the series with r = - 8 1, This is not remarkable, 
since [e _ 6"e _ 6, ] = - 4e _ 26, • 

Another system of simple roots is of the form ITS,T (see 
Kac3

), and detailed investigations show that the most gen­
eral maximal semisimple regular subalgebras of B(m,n) are 
B(k,l) fBB(i,j), with k +; = m, I + j = n, and D(m,n). 

The Lie superalgebras B(O,n) = osp( 1,2n) form a spe­
cial case of the algebras B(m,n). We treat them separately 
because the distinguished choice of the simple roots for 
B(O,n) is different than the analog of (4.6). The roots of 
B(O,n) are, in the same notation as in (4.4), 

Ao={±(8j-8k),±(8j+8k),±28j (l<j<k<n)}, 

Al = {± 8j (1<j<n)}. 

The distinguished set of simple roots is given by 

IT = {81 - 82,82 - 83,· .. ,8n -I - 8n,8n}. 

The B (O,n) generators are 

(4.18) 

(4.19) 

(4.20) 

ei = Ei+ l,i+2 - En+ i + 2,n+i+ I' 

/;=Ei+2,i+I-En+i+I,n+i+2 (i=I, ... ,n-l), 

and 

en = ..[i(EI,2n + I + En + 1,1 ), (4.21) 

In = ..[i(EI,n + I - E 2n + 1,1 ), 

+En+ i + 2,n+i+2 (;= 1, ... ,n -1), 

hn = 2(En+ l,n+ I - E 2n + 1,2n+ I)' 

(4.22) 

From (4.21) and (4.22), the usual Cartan matrix and Dyn­
kin diagram of B(O,n) are obtained. 

Just as in (4.9) and (4.14), IT can be extended in exactly 
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two different ways, eitherbYr = - 281 orelsebYr = - 8 1, 

Because the extension with - 281 gives rise to a series of 
subalgebras which are all contained in subalgebras of the 
series with - 81, we consider only the second extension. 
Hence, r = - 81> and 

eo = {2(E I •2 - En + 2,1 ), 

10= -{2{EI ,n+2+ E 2,1)' (4.23) 

° 1 I 
2 -2 ° - - _1- _ 

-1 I 2 -1 
1-1 2-1 

_I _ 

n 

° _ _ _ _ _ 1 

2 -1 
I 

-1 2 1-1 
-:'f i -2-

and the corresponding Dynkin diagram is given by 

~o---o-~. (4.26) 
o 1 n 

Hence, the regular subalgebras obtained from (4.26) by de­
leting one node are of the form B (O,k) $ B (O,n - k). The 
regular subalgebras derived from nu{ - 281} are of the 
form Ck $B{O,n - k), and are all contained in the former 
series. However, for k = n we find the inclusion Cn 

CB{O,n), and this is also maximal since the series with 
r = -131 only gives the algebra B{O,n) itself as "greater 
than" Cn. Here, any other choice of simple roots for B{O,n) 
is Wequivalene to n, and consequently the list of maximal 
regular subalgebras is exhausted. 

V. THE ORTHOSYMPLECTIC SUPERALGEBRAS O(m,n} 
(m~1) AND C(n} 

The Lie superalgebraD{m,n) = osp{2m,2n) is the sub­
algebra ofspl{2m,2n) consisting of those x for which 

xfB + ( - l)sBxs = 0, (5.1) 

with 

B = [1: 1; : - - _j. ° 1m 
I_I ° I m 

As usual, we define the forms EI and 131 by 

EI{D) = d;; (i = I, ... ,m), 

81 (D) =d2m + I,2m+1 (i= l, ... ,n). 

The roots of D(m,n) are given by 

~o={±(Ej-Ek),±(Ej+Ek) (1<j<k<m); 

(5.2) 

(5.3) 

± (13j -13k ), ± (8j + 13k ), ± 28j (I<j <k<n)}, 
(5.4) 

~I = {± (8] - Ek ), ± (13j + Ek ), (1<j<n, I<k<m)}. 
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ho = -2{hl +h2 +"'+hn _ 1 +!hn )· 

The relevant (anti-) commutation relations are 

[hooeo] = 2eo, 

[ho,el ] = - 281,1 el , 

[hl,eo] = -81•l eO (i= I, ... ,n). 

Hence, the extended Cartan matrix is 

• T= {O,n}, 

(4.24) 

(4.25) 

The distinguished choice for the simple root system n is 
given by3.6 

n = {131 -132,132 -133, ... ,13n - EI,EI - E2,· .. ,Em _ 2 

-Em_I,Em _ 1 -Em,Em _ 1 +Em}' (5.5) 

The corresponding root vectors are determined by 

el = E 2m +1.2m+ 1+ I - E 2m + n+ l + 1,2m+ n+O 

J: = E 2m + 1+ 1,2m + I - E 2m + n + 1.2m + n + I + I 

(i = I, ... ,n - I); 

en = Em+ 1.2m+2n + E 2m + n,I' 

In = E I •2m + n - E 2m + 2n,m + I; (5.6) 

en+ 1 = E I•I + I - E m+ l + l.m+O 

/"+1 = E I + 1,1 - E m+ l •m+ l + I (i = I, .. ,m - I); 

en + m = Em - 1,2m - E m,2m - I , 

In+m =E2m,m_1 -E2m - I ,m' 

Then [ejj] = I3ljhj , and the hj span the Cartan subalgebra 
H, 

hi =E2m + i,2m+1 - E 2m + i+ 1,2m+i+ I - E 2m + n+ I,2m+n+i 

+ E 2m + n+ i + 1,2m+n+i+ I (i = I, ... ,n - I), 

h n =El1 -Em+ l,m+1 +E2m + n,2m+n -E2m+2n.2m+2n' 

hn+i =E;; -Ei+ I,i+ I -Em+i,m+1 (5.7) 

+ Em+ i + I.m+i+ I (i = I, ... ,m - 1), 

hn+m =Em_l,m_1 + Em,m -E2m - I ,2m-1 -E2m,2m' 

The Cartan matrix for D(m,n) is obtained from (5.6) and 
(5.7) and the relations [hoe]] = aljej • 

Let us now investigate the extension of n. We find that 
there is only one solution for n- = nU{r}, namely 
r = - 281, Hence, 

eo = E 2m + n+ 1,2m+ 1> 10 = E 2m + 1,2m+,,+ I' (5.8) 

and 
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Then, the relevant relations to determine the extended Car­
tan matrix are 

o n 
21 -1 0 

- -I - - - - - - - -
-2

1 
2 -1 

-I - I 

0 1 - 1 2 

2 -1 I 1 

- _1-

- _1- _ 

-1 21_11 
- - - -I - - T 

- 1 0 __J __ ,-

[ho,eo] = 2eo, 

[h;oeo] = - Uii,l eo, 

[hO,ei ] = - ~i,1 ei (i = 1, ... ,m + n). 

This gives rise to 

n+m 

o 

, T= {n}. 

(5.10) 

1 -1 1 2 -1 
1 -1 2 

I 

01 I 

Hence, the extended Dynkin diagram is given by 

. . . 
2 

-1 

-1 

(5.11) 
-1 -1 

2 0 
0 2 

0===90---0--
o 1 

~hm-l 
n~ 

(5.12) 

The regular subalgebras of D (m,n) obtained by deleting the 
Oth, 1st, ... , (n + m)th node from (5.12) are D(m,n), 
Al fiBD(m,n -1), C2 fiBD(m,n - 2)"",Cn _ , fiBD(m,I), Cn 

fiBDm , C(n+ 1)fiBDm _ l , D(2,n)fiBDm _ 2 , ... ,D(m-2,n) 
fiB A I fiB A I' D(m,n), D(m,n). All these subalgebras are of the 
form osp(0,2k) fiBosp(2m,2n - 2k) or osp(2k,2n) 
fiB osp (2m - 2k,0). There is one regular subalgebra of rank 
m + n - 1 which is not contained in a proper regular subal­
gebra of rank m + n, namely spl(m,n). This subalgebra is 
found by deleting node 0 and node n + m. 

For D(m,n), however, several choices are possible for 
the simple root system. 3 They are determined by two in­
creasing sequences S and T and a number: II1:~ (i = 1 or 2). 
Detailed investigations of the extensions ofthose nondistin­
guished simple root systems showed that the most general 
maximal semisimple regular subalgebras are of the form 
D(k,l) fiBD(i,j) with k + i = m, / + j = n, or are equal to 
spl(m,n). Of course, the latter notation includes all "degen­
erate" cases such as D(1,r) = C(r - 1), D(O,r) = C" 
D(r,O) = Dr' D(2,0) =AI fiBA}> etc. 

The Lie superalgebras C(n) = osp(2,2n - 2) form a 
special case of the D(m,n) series. The roots of C(n) are 
given by (there is only one € form, hence we omit the index) 

Ao = {± (~j - ~k)' ± (~j + ~k)' ± Uij 

(1<,j<k<,n - 1)}, (5.13) 

AI={±(€+~j)'±(€-~j) (1<,j<,n-l)}. 
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n+m 

The distinguished set of simple roots is 

II = {€ - ~I'~I - ~2'~2 - ~3'''''~n - 2 - ~n _ I ,Uin - I}' 

(5.14 ) 

and the corresponding root vectors are determined by 

el =E13 -En+ 2,2' il=E2,n+2 +E31 ; 

ei =Ei + I,i+2 -En+i+l.n+;o 

/; = Ei + 2,i+ I - En+i,n+i+ I 

en = En+ 1.2n' /,. = E2n,n+ I' 

(5.15 ) 
(i = 2, ... ,n - 1), 

Then [e;o!j] = ~ijhj' and the hj span the Cartan subalgebra 
H, 

hi = Ell - E22 + E33 - En+ 2,n+2' 

hi = Ei+ I,i+ I - E i + 2,i+2 - En+i,n+i + En+ i + I,n+i+ I 

(i= 2, ... n - 1), ( 5.16) 

From (5.15) and (5.16), the Cartan matrix of C(n) can be 
constructed. 

For the extension of II, it turns out that there is again 
only one possibility, namely, r = - € - ~I' This implies 

eo = E23 - En+ 2,1, 

fa = E I,n+2 + E32, 

ho = [eo,fa] = -hi +2(h2+'" +hn). 
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The zero row and column of the extended Cartan matrix are 
determined by 

[ho,eo] = 0, 

° 1 
I 

2 oJ -= 2_ 
-2 I ° 
-1 1-1 

° I 

1 

1 
2 

-1 

° 
° -1 

2 

2 -1 

n 

° 

-1 2-2 

-1 2 

The Dynkin diagram corresponding to a Cartan matrix of 
this form is given by 

o~_"'----. ~o (5.20) 
~ ... ,n' 

1 

It is easy to check that the regular subalgebras of C(n) 
obtained from (5.20) by deleting the Oth, Ist, ... ,nth node 
are C(n), C(n),A(1,O) eCn _ 2 ,C(3) eCn _ 3 , ... ,C(n-1) 
eAt> C(n). These are all of the form osp(0,2k) e osp(2,2n 
- 2k - 2), since osp(0,2k) = Ck and osp(2,2) = sp1(2,1) 
=A(1,O). There are two other nonequivalent choices for 
the simple root system,3 but the regular subalgebras ob­
tained by means of these alternative choices coincide with 
the previous series. 

VI. THE EXCEPTIONAL SERIES 0(2,1 ;u) 

For the exceptional Lie superalgebra D(2,I;a) 
(aeC,\ {a, - I}), we use the realization given in Ref. 8. Here 
D(2,I;a) is determined by its Cartan matrix 

A = [ - ~ ~ ~], T = {l}, (6.1 ) 

-1 ° 2 
and the corresponding generators ei,/;, hi (i = 1,2,3). From 
now on, we use the following shorthand notation: 

eii ... ,' = [ , .. [[ei ,ei ] ,ei ] ... ,ei ,] 
12 s 1 2 3 s 

(6.2) 

and similarly for/; ... j • The roots ofD(2,I;a) are expressed 
in termsoflinearf~ciions3 EI, E2, E3 (of A I eA, eA I = Lo)' 

ao = {± 2EJ (i = 1,2,3), (6.3) 

a, = { ± EI ± E2 ± E3} (independent ± signs). 

The distinguished system of simple roots n, corresponding 
to the Cartan matrix (6.1), is given by3 

n = {E I - E2 - E3,2E2,2E3}. (6.4 ) 

The only root by which n can be extended turns out to 
be r = - 2E I' The corresponding root vectors can be chosen 
as follows8

: 
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[h,.,eo] = - ~i,1 eo -/)/,2eO' (5.18) 

[ho,e,.] = - ~i,1 ei + /)i,2 ei (i = 1, ... ,n). 

Hence, we find 

, T = {O,I}. (5.19) 

eo = [1/(1 +a)]/123I' 10= - [1/(1 +a)]eI231 · 
(6.5) 

Then 

ho = [eo,Jo] = - [1/(1 + a) ](2h , - h2 - ah3)' 
(6.6) 

The relevant commutation relations are given by 

[ho,eo] = 2eo , 

[hi,eo] = - (1 +a)/)i,leO' (6.7) 

[ho,e,.] = -/)i,1 ei (i = 1,2,3). 

Hence, the extended Cartan matrix is 

-1 

° -1 
-1 

° 0] 1 a 
2 ° ' T = {l}. 

° 2 

(6.8) 

To this Cartan matrix, there corresponds the following Dyn­
kin diagram: 

(6.9) 

3 
Deleting node 1 from (6.9) gives rise to the subalgebra 
A I e A I e A I' Deleting node 0, 2, or 3 gives rise to the Dynkin 
diagram for D(2,I;a), D(2,1; - 1 - a), and D (2,1; - a/ 
(1 + a»), respectively, but these are all three isomorphic. 
Hence, the only nontrivial regular subalgebra of rank 3 is 
A I e A I e A I' the even subalgebra of L. The regular subalge­
bras of rank 2 areAl eA, andA(1,O). Note thatA(1,O) is 
not contained in any semisimple regular subalgebra of rank 
3, and so it is also maximal. It is easy to check that the other 
choice for the simple root system does not give rise to any 
new regular subalgebras. 

VII. THE EXCEPTIONAL LIE SUPERALGEBRA G(3) 

The Lie superalgebra 6(3) is a contragredient Lie su­
peralgebra, and it is determined by the following Cartan ma­
trix: 
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1 

2 
-1 

(7.1) 

The roots of G(3) are given by3 

ao = {Ej - Ek' ± Ej ; ± 28} 

a l = { ± (Ej + 8), ± (Ej - 8), ± 8} 
(j,k = 1,2,3), 

(7.2) 

where Ej - Ek, ± Ej are the roots of G2 (satisfying 
EI + E2 + E3 = 0) and ± 28 are the roots of AI in G(3)0 
= G2 EaA I. The simple roots corresponding to (7.1) are 

n = {8 + EI,E2,E3 - E2}. (7.3) 

Then, it is easy to verify that the only root by which n can be 
extended is y = - 28. Using the same convention as in 
(6.2), one can verifythat/1232 is a root vector with root - 8. 
Hence, we put 

eo = HiI232,J1232]' 

10 = - HeI232,eI232]' 

One can compute that 

ho = [eo,Jo] = - !(h l - 2h2 - 3h3)· 

Now, the relevant commutations relations are 

[ho,eo] = 2eo, 

(7.4) 

(7.5) 

[hoeo] = - 48;.1 eo, (7.6) 

[ho,e;] = - 8;,1 e; (i = 1,2,3). 

This gives rise to the following extended Cartan matrix: 

[-~ ~ i _; -~]. T~{J}. (7.7) 

with corresponding Dynkin diagram 

~~o 

o 1 2 3 
(7.8) 

Deleting node 0 gives the Dynkin diagram for G (3). When 
node 1 is deleted, the corresponding regular subalgebra is 
AI Ea G2• When node 2 is deleted, we find the Dynkin dia­
gram of A (1,0) EaA I. Finally, deleting the last node in (7.8) 
corresponds to omitting the last row and column in (7.7). 
The remaining matrix is one of type D -4 (see proposition 
2.5.6 of Ref. 3). Hence, the corresponding regular subalge­
bra is D(2, 1; - 4), which is isomorphic3,s to D(2, 1;3). In a 
previous paper,s we have shown thatD(2,1;3) contains a 14-
dimensional representation [in general, D(2,I;a) has a 
(4a + 2) -dimensional irreducible representation for aEN] . 
So, we can check on the dimensions that G(3) :JD(2,1;3): 
the dimension of D(2,1;3) is 17, and 17 + 14 = 31, which is 
the dimension of G ( 3 ) . 

For G(3), there exists another choice for the simple 
roots which is not equivalent to (7.3), namely 

(7.9) 

Then, the corresponding Cartan matrix and Dynkin dia­
gram are given by 
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3 

o 
-2 

O--a!l®==)"' •• 

-~]. T~{2.3}. (7.10) 

(7.11) 

Actually, this situation is not being described in Ref. 3. In 
this case, y = E2 - E3, and after extending (7.9) by y, one 
arrives at the following extended Cartan matrix: 

[ -~ -1 0 

-~l 2 3 
l' = {2,3}, 

-1 0 

0 -2 

(7.12) 

with Dynkin diagram 

~ (7.13) 
0 1 2 3 

When node 1 is deleted, the corresponding regular subalge­
bra is A I Ea B ( 1,1 ), which actually contains the previously 
found A I Ea A ( 1,0). When node 2 is deleted, we find the regu­
lar subalgebra A2 EaB(O,l). Finally, deleting node 3 gives 
rise to the regular subalgebra A(2,0). Up to equiValence, 
(7.3) and (7.9) are the only simple root systems for G(3), 
hence we find as maximal regular subalgebras: A I Ea G2, 

D(2,1;3), AI EaB(1, 1), A2 EaB(O,1), and A (2,0). 

VIII. THE EXCEPTIONAL LIE SUPERALGEBRA F(4) 

The Lie superalgebra F( 4) is determined by its Cartan 
matrix: 

2 
-1 

o 

o 
-2 

2 

-1 

(8.1 ) 

The roots are expressed in terms oflinear functions E I' E2, E3, 
corresponding to B3, and 8, corresponding to A I in F( 4)0 
=B3EaA I, 

ao = { ± (Ej + E k ), ± (Ej - E k ), ± Ej 

(1<j<h;;3); ± 28}, (8.2) 

a l = {± 8 +!( ± EI ± E2 ± E3)} (independent ± signs). 

The system of simple roots corresponding to (8.1) is3 

n = {8 + ~( - EI - E2 - E3),E3,E2 - E3,EI - E2}' (8.3) 

There is a unique way by which n can be extended, namely 
y = - 28. Using the same convention as in (6.2), we can 
choose the following form for the root vectors corresponding 
to - 28 and + 28, respectively: 

eo =! [/1232,/1234], 

10 = ~ [e1232,e I234 ]· 

After some calculations, one finds 

(8.4) 

ho = [eo,Jo] = - j (2h l - 3h2 - 4h3 - 2h4 ). (8.5) 

Then, the relevant commutation relations are 

[ho,eo] = 2eo, 
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[hi,eO] = - 315i.1 eo, 

[hO,ei ] = -l5i.1 ei (i = 1,2,3,4). 

Hence, the extended Cartan matrix becomes 

2 -1 0 0 0 
-3 0 0 0 

0 -1 2 -2 0 
0 0 -1 2 -1 
0 0 0 -1 

with corresponding Dynkin diagram 

~o--o 

o 1 234 

2 

, 

(8.6) 

T={l}, 

(8.7) 

(8.8) 

Deleting node 0 gives the original algebra F( 4 ). When node 
1 is deleted, we find A I Ell B3 , which is the even subalgebra of 
F( 4 ). When node 2 is deleted, the corresponding regular 
subalgebra is A(1,O) EIlA 2 • Deleting node 3 corresponds to 
omitting row 3 and column 3 in (8.7): the remaining Cartan 

TABLE I. Maximal regular semisimple subalgebras of the basic classical 
Lie superalgebras. 

L 

spl(m,n) 
B(m,n) 

C(n) 
D(m,n) 

D(2,I;a) 

G(3) 

F(4) 
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L' 

spl(k,/) e splUJ), k + i = m, 1+ j = n; 
B(k,/) eBUJ), k + i = m, 1+ j = n; 
D(m,n); 
C(k)eC}, k+j=n; 
D(k,/) eD(iJ), k + i = m, 1+ j = n; 
spl(m,n); 
AleAleAJt 
A(l,O); 
A l eG2, 

D(2,1;3), 
AleB(l,l), 
A2 eB(O,l), 
A(2,O); 

AleB" 
A(1,O) eA2' 
D(2,1;2) eAI' 
C(3). 

J. Math. Phys .• Vol. 28, No.2, February 1987 

matrix is one of type D _ 3 Ell (2). Hence, the corresponding 
regular subalgebra is D(2,1; - 3) EIlA 1, or D(2,1;2) EIlA 1• 

We have already noted that D(2,1;2) contains a ten-dimen­
sional irreducible representation [10], and obviously A I has 
a two-dimensional representation [2]. So, we can check the 
dimensions again: dim(D(2,1;2) EIlA 1 ) = 17 + 3 = 20, 
dim ( [ 10] ® [2]) = 20, and 20 + 20 = 40 = dim F( 4 ). 
Finally, one can verify that deleting the last node in (8.8) 
again gives rise to a Dynkin diagram of F(4). However, 
F( 4) has a regular subalgebra of rank 3 which is not con­
tained in any proper regular subalgebra of rank 4, namely, 
C ( 3 ). This algebra is obtained by deleting node 0 and 4 in 
(8.8). Also, note that any other choice for the simple root 
system of F( 4) does not yield any new regular subalgebras. 

IX. CONCLUSION 

In Table I we list all the maximal regular semisimple 
subalgebras of the basic classical Lie superalgebras. Note 
that isomorphisms such as C1 =AI and D(2,O) =D2 

= A I Ell A I have to be taken into account. 
As far as the Lie superalgebras spl(m,n), B(m,n), 

C(n), andD(m,n) are concerned, Table I does not yield any 
surprises. The results are more exciting when the exception­
al Lie superalgebras are considered, with inclusions such as 
G(3):JD(2,1;3) andF(4):JD(2,1;2) EIlA 1• 
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The well-known evolution equations associated to the homogeneous Heisenberg algebras of 
Kac-Moody algebrasg(1) (AKNS systems) are extended by differential-difference equations 
that can be written in zero curvature form. 

I. INTRODUCTION 

It is well known that the Toda lattice and the nonlinear 
Schrodinger equation are intimately related, see, e.g., Jimbo 
and Miwa I and Flaschka.2 In Ref. 3 we showed how in the 
representation theoretic approach to soliton equations one 
can associate in a natural way a hierarchy of differential­
difference equations to the homogeneous Heisenberg alge­
bra of the Kac-Moody algebra A ~I). The first and second 
nontrivial members of the hierarchy are the equation for the 
Toda lattice and the nonlinear Schrodinger equation, respec­
tively. 

In a different approach soliton equations are obtained as 
conditions of commutativity of a set of covariant derivatives 
D t , (see for example Newell 4 and Drinfeld and Sokolov5

). In 
this paper we extend these equations by introducing, apart 
from the variables ti and associated covariant derivatives Dt" 

a lattice and covariant derivatives D~ on the lattice. The 
equations [Dt,.D~] = 0 are the differential-difference equa­
tions supplementing the evolution equations of the form 

[Dt"D~] = O. 
In this setup the continuous covariant derivatives are 

constructed from the positive generators of the homogen­
eous Heisenberg algebra of an affine Kac-Moody algebra 
g(l). The lattice covariant derivatives are defined using ele­
ments of the centralizer of this Heisenberg algebra in the 
loop group associated to g(l). At the same time the structure 
of the centralizer forces the lattice introduced here to be the 
coroot lattice of the underlying finite-dimensional Lie alge­
brag. 

For the case of A ~ I) we once more find the connection 
between the Toda lattice and the nonlinear Schrodinger 
equation, but from a point of view apparently completely 
different from that in Ref. 3. 

II. CONTINUOUS ZERO CURVATURE EQUATIONS 

In this section we recall the construction of evolution 
equations related to the homogeneous Heisenberg algebra of 
an affine Kac-Moody algebra g(l). For background we refer 
to the review by Drinfeld and Sokolov.5 

Let g be a simple finite-dimensional Lie algebra, h a 
Cartan subalgebra of g, (I) the Killing-Cartan form on g, 

and 

L (g) = $ ti i ® g, (2.1) 
iEZ 

the loop algebra associated to g. The algebra L (g) contains a 
maximal Abelian subalgebra 

5= $tii®h. (2.2) 
iEZ 

In the sequel we will often suppress the tensor product sym­
bolfor elements of (2.1) or (2.2). 

Let {h a, a = 1,2, ... ,rank g} be an orthonormal basis of 
h. Then 5 is generated by 

h, p~=tiiha, if!=ti -iha/i, i>O. (2.3) 

[The p~ and q~ together with a central element c generate the 
homogeneous Heisenberg algebra of g(1) = L( g) $ ICc $ Cd, 
the affine Kac-Moody algebra of type k = 1 associated to g, 
see Ref. 6. In the rest of this paper we will only work with 
L(g), not with the full affine algebra g(l).] 

On L (g) we define a bilinear form 

(tiJxlti ky) = OJ+k,Q (xly). (2.4) 

With respect to (2.4 ), we have an orthogonal decomposition 

L(g) = 5 $ 51. (2.5) 

An element h of h is called regular iff or all roots a in h* 
we have (a,h) #0. Fix some regular vector h = h I, extend 
this to an orthonormal basis {h a, a = 1,2,oo.,rank g} of h, 
and introduce a covariant derivative 

Dx = ax -tih - vex) = ax - Rx. (2.6) 

The field v (x) takes values in the orthocomplement of h in g. 
We want to introduce other covariant derivatives 

Dt = at - Rt such that the condition [Dx,Dt] = 0, which 
can be rewritten as 

(2.7) 

gives an evolution equation for the field v. 
The construction of Rt's leading to sensible evolution 

equations is well known (see, e.g., Refs. 5 and 7). One first 
constructs a resolvent8 R (x) of D x' This is a function with 
values in L(g) such that 

(2.8) 
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[To be more precise the resolvent takes values in the Lie 
algebra 

g( (A -I») = q (A -I») ® g, 

with q (A -I») the algebra of formal power series of the form 

'" ~ 1 n-i ',ro 
£.. CiA 'Ci In 'U, 

i=O 

and n some positive number.s We will be somewhat careless 
about the distinction between L (g) and g (A -I»).] 

Then one makes a decomposition 

R = R_ + R+, (2.9) 

where R _ contains only negative powers in A and R -+' only 
non-negative powers. Finally one proves that one can take 
for R, in (2.7) the partR+ or - R_ of any resolvent R. 

To construct resolvents we perform a gauge transforma­
tion on the covariant derivative Dx. As is well known there 
exists a unique function k(x) taking values in Sl of the form 
k =A -Ik l +A -2k2 + .. ·,suchthatthegaugetransformed 
covariant derivative 

Dx =eadk(Dx ) =ax -Rx' (2.10) 

has a gauge potential Rx that takes values in S (see, e.g., Ref. 
5, Proposition 4.1 ). We refer to the situation after the gauge 
transformation by ek as "the diagonal gauge." Objects in the 
diagonal gauge will be distinguished by an overbar, as in 
(2.10). 

The resolvents of Dx can be shown to be the constant 
elements ofs and hence the resolvents of Dx are of the form 

R(s) = e-adk(s), SES. (2.11 ) 

Only resolvents of Dx containing positive powers in A will 
give nontrivial equations (2.7). Hence these equations are 
linear combinations of 

a'f(v) = [Dx,R+ (pn]· 

A short calculation yields 

Rx = R+(Ah), 

and hence a/ax = a/at: . One can also show that 

(2.12) 

(2.13 ) 

[Dtf,D'J] =0, [D'f,R(pJ)] =0, (2.14) 

and that in the diagonal gauge all D a are diagonal, with 
" 

(2.15 ) 

Note that we can also concentrate on covariant derivatives 

D'f = atf + R_ (pf), (2.16) 

without changing the above results. 

III. COVARIANT DERIVATIVES ON A LATTICE 

Consider an m-dimensionallattice. On the vertices we 
have fields tli, with I in zm, taking values in some representa­
tion space of a gauge group. Under (local) gauge transfor­
mation we have 

(3.1) 

In the continuum covariant derivatives define infinitesimal 
parallel transport. On the lattice parallel transport is defined 
by specifying a collection of parallel transport operators U ~ 
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taking values in the gauge group, with t) a step (i.e., a path) 
on the lattice. Parallel transporting the field ",I by U ~ yields a 
field ¢J + 6 in the point I + t): 

¢J+6 = u~t/I. (3.2) 

The field t/I is called covariantly constant if we have 

t/I+6 = u~t/I. (3.3) 

Then define the covariant derivative on the lattice by 

D ~t/I = (U~) -It/I+ 6 - t/I. 
Under gauge transformations we have 

I I -1.iJ ,.J 1.IJ D 6'" -D 6'f' =sD 6'f', 

if and only if under gauge transformations 

U~-U~ =t+6U~(t)-I. 

(3.4) 

(3.5) 

(3.6) 

Now suppose that the field t/I also depends on a continuous 
parameter t and that there is a covariant derivative 
D: = at - R :. If we demand that the field ",I is covariantly 
constant both in a lattice direction t) and in the continous t 
direction, we must have 

D6t/1=0, D,t/I=O. (3.7) 

The compatibility condition for (3.7) is 

R:+6=at(U~)(U~)-1 + U~(R:)(U~)-I. (3.8) 

IV. DIFFERENTIAL-DIFFERENCE ZERO CURVATURE 
EQUATIONS 

In this section we will extend the theory of Sec. II by 
introducing, apart from the continuous variables t~, discrete 
variables I belonging to some m-dimensionallattice zm, with 
m as yet unspecified. 

In every point of the lattice we have a field Vi and a 
covariant derivative 

(4.1 ) 

There exists a unique k I = ~i>ok ~A - i in Sl such that 

k' I -k' -I -I' 
e D xe = ax - R x' R xtn S. (4.2) 

Resolvents R I(S) of D ~ are given by 

RI(S) =e-k'sek', sin s. (4.3) 

Using the positive part of R I(p~) we define covariant deriva­
tives 

D!r = atf - R 1+ (pf). (4.4) 

The zero curvature conditions [D~,D!r] = ° give evolu­

tion equations for the fundamental fields Vi of the form 

atfvl = F(vl,axvl, ... ). (4.5) 

The theory of this section is up to now just a trivial 
extension of the theory of Sec. II; we have provided all fields 
with a multi-index I, but the fields Vi and Vi + 6 are completely 
unrelated. We will change this situation by introducing as in 
Sec. III a covariant derivative D ~ and by imposing the com­
patibility condition 

[D~,D~] =0, (4.6) 
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or, equivalently [see (3.8)] 

R l:s(Ah) = (axU~)(U~)-1 + U~R 1+ (Ah)(U~)-I. 
(4.7) 

This equation tells us how the field Vi + S is coupled to the 
field Vi. 

In order for ( 4. 7) to be a sensible equation, we will have 
to make a suitable choice for the parallel transport operators 
U ~. We will be able to choose the U ~ 's such that the compa­
tibility conditions [ Ds ,D

tf
] = 0 are automatically satisfied. 

Then these conditions will not lead to new relations between 
the fundamental fields Vi and Vi + s, in the same way as in the 
continuum the conditions [D a,D b] = 0 do not lead to new 

tit j 

equations. 
To find U ~ 's we proceed in a similar way as in Sec. II. 

There we introduced a resolvent R as an element of the loop 
algebra that gives a trivial evolution of the fundamental field 
v [see (2.7)]. Here we define what we will call-for lack ofa 
better name--a lattice resolvent U I as an element of the loop 
group L (G), with G the simply connected Lie group whose 
Lie algebra is g. We demand that the lattice resolvent substi­
tuted in (4.7) gives a trivial evolution 

R 1+ (Ah) = ax u l ( U l ) -I + UI(R 1+ (Ah»)( UI)-I. 

(4.8a) 

[To be more precise; the lattice resolvent will take its values 
notin the 100pgroupL (G) associated toL(g) (see, e.g., Ref. 
9), but in the group G( C( (A -I»)) associated to the Liealge­
bra g( (A -I»). Again we will be careless about this distinc­
tion.] 

In Sec. II we saw that - R 1_ (Ah) plays essentially the 
same role as R 1+ (Ah), and therefore it is natural to require, 
in addition to (4.8a), 

-R 1_ (Ah) =ax(UI)(UI)-I- U/(R 1_ (..th»)(UI)-I. 

(4.8b) 

U I_ = 1 + UI_IA -I + UI_2A -2 +"', 
u l

+ = U~ + U~A + U~A2+ .... (4.13) 

The inverses of u l
_ ,U I+ will also have the form (4.13). 

The factorization (4.12) which takes place in the loop group 
is the analog ofthe decomposition (2.9) on the level of the 
loop algebra. If it exists it is unique. 

Substituting (4.12) in (4.8a) we find 

ax U I+ (U I+ ) -I + U I+ R 1+ (..th)( U I+ )-1 

=ax(UI_ )-IUI_ + (U I_ )-IR 1+ (Ah)U I_. 
(4.14 ) 

The left-hand side of this equation contains only non-nega­
tive powers orA, while the right-hand side hasAh as the term 
containing the highest power of A. Therefore (4.14) is an 
expression of the form Ao + ..th. Using this we find, see ex­
pansion (4.13), 

(ax U I+ )( U I+ ) -I + U I+ R 1+ (Ah)( U I+ )-1 

=Ah+vl + [h,UI_d· (4.15 ) 

Since [h,U I_ I ] belongs to hl we can choose U~ = U I+ in 
( 4. 7). We obtain 

( 4.16) 

and Vi +s takes value in hl. 
The rest of this section will be devoted to the calculation 

A 

of the commutators [D~,D!d and [Dc5,Dtd' where 
Al I 
D tf = atf + R _ (p~). (4.17) 

First of all we remark that the condition [D ~ ,D ~] = 0 
implies that the expression U I+ R I(Ah)(U I+ )-1 

= (U I_ )-IRI(Ah)UI_ isaresolventforD~+c5. Inparti­
cular we have 

[D ~+c5, (U I_ ) -IR I(Ah) ul_ ] = O. 

Therefore we must have in the diagonal gauge 

(U l_ )-I..th(UI_ ) in s, 

( 4.18) 

(4.19) Combining (4.8a) and (4.8b) we find 

R I(Ah) = UIR I(Ah)(UI)-I. (4.9) whereU I_ =ek'UI_e-k'+".HereUI_ and (U l_ )-Ihave 
expansions 

In the diagonal gauge (4.9) reads 

Ah = UI..th(UI)-I, 

where U l = ekIUle-kl. 

(4.10) 

So U I must belong to the centralizer of ..th. Because h is 
regular, we may conclude that U l is an element of the (Abe­
lian) centralizerS of the whole algebra s (see Ref. 9). Com­
bining this with equations (4.8a) and (4.8b) in the diagonal 
gauge and recalling that R I± (Ah) take values in s we con­
clude that Ul must be a constant element of S. All lattice 
resolvents are therefore of the form 

UI=e-kISek', S constant in S. (4.11) 
Conversely it is not difficult to show that ( 4.11 ) implies both 
equations (4.8a) and (4.8b). 

Now suppose that we have found some lattice resolvent 
U I and that moreover U I admits a factorization 

(4.12) 
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ul
_ = 1 + i: V;A -i, (U l

_ )-1 = 1 + i: WiA -i. 
i=1 i=1 

The V; and Wi'S are related by 

W1 + VI =0, 
i-I 

Vi + Wi + I Wk V; _ k = 0, ; > 1. 
k=1 

Using this in (4.19) we find 

[h,Vl l in h, 
i-I 

[h,v;] + I Wdh,Vi _ k ] in h ;>1. 
k=1 

(4.20) 

( 4.21) 

(4.22) 

Using the regUlarity of h we prove inductively that Vi be­
longs to the universal enveloping algebra of h, therefore, 
[h, V;] = 0 and (4.19) yields 

(U l_ )-I(Ah)UI_ =Ah. (4.23) 

Again using the regularity of h we find that U 1_ belongs to 
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the centralizer S of s. Since U I also does, this is even true for 
-U l • +. 

U I+ (p~)(UI+ )-1 = (U I_ )-I(p~)UI_ =p~. (4.24) 

From this it follows that 

R 1+6(p~) = U l+ R l(p~)(UI+ )-1 

= (U l_ )-IRI(p~)UI_. (4.2S) 

Using (4.2S), thedecompositionR I = R 1_ + R 1+ and the 
factorization U l = U l_ U I+, one easily derives 

R 1+6(pa) _ a u l (U l )-1 _ U l R I (pa)(u l )-1 + j ,~+ + + + j + 

= -R I!6-a'f(UI_ )-IUI_ 

(4.26) 

Since the left-hand side of (4.26) contains only non-negative 
powers of A. and the right-hand side only negative powers, 
both sides must be equal to zero, which is equivalent to 

[D~.D:d = [D~,D:d =0. (4.27) 

V. PRODUCTS OF FACTORIZING LATTICE 
RESOLVENTS 

With (4.11) we have constructed all lattice resolvents. 
However, it is not at all clear that these admit a factorization 
of the form (4.12). In this section we show that if two lattice 
resolvents U I(SI) and U I(S2) factorize their product 

UI(SIS2) = U I(SI)U I(S2) = U I(S2)U I(SI)' (S.1) 

also does and that there are simple relations between all fac­
tors. 

Let 81,2 be the steps on the lattice associated to parallel 
transport operators U I

+ (SI,2)' Since in the diagonal gauge 
[jl+ (S1,2) belongs to 5, and S is Abelian we have 

SI = [jl+ (S2)SI[jI+ (S2)-I, (S.2) 

and therefore 

U
I
+ 62 (SI) = U I+ (S2)U I(SI)U I+ (S2)-I. (S.3) 

Performing the factorization of both lattice resolvents in 
(S.3) we obtain 

U
I
_+62(SI) U

I
: 62(SI) U I+ (S2) 

= U I+ (S2)U I_ (SI)U I+ (SI)' (S.4) 

,. 
t 

FIG. 1. The commutativity oflattice covariant derivatives. 
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Next consider the resolvent (S.I). Using (S.4) and the equa­
tion obtained by interchanging I and 2, we see that (S.I) 
admits a factorization with 

U I_ (SIS2) = U I_ (S2)U
I
!62(SI) 

= U I_ (SI)U
I
!6'(S2)' 

U I+ (SIS2) = U I
:

62
(SI)U I+ (S2) 

(S.S) 

Note that with (S.S) we have proven the commutativity of 
covariant lattice derivatives (see Fig. I). This means that the 
imposition of conditions [D6,.D62 ] = 0 does not lead to 
new equations; they are automatically satisfied. 

VI. STRUCTURE OF S AND OF THE LATTICE 

In the previous section we found that the product of two 
factorizing lattice resolvents again factorizes. Ifwe can write 
any element S of 5 as the product of some Sj'S with factoriz­
ing lattice resolvent we have proven that any U I (S) factor­
izes. 

The group 5 can-according to Kac and Peterson9 -be 
described as follows. Let a be an element of the coroot lattice 
Q v of 9 and fJ an arbitrary element of h. Then S is the collec­
tion ofloops h(a, fJ) (A.) in the 100pgroupL(G) of the form 

h(a, fJ)(A.) = exp(i¢a + 21Ti fJ), A. = exp i¢. (6.1) 

First consider the subgroup ofloopsp = h (0, fJ). The lattice 
resolvent associated to p certainly factorizes, since P is A. 
independent: 

UI(P) =e-k'pek'= (U I(P)P-l)(P). (6.2) 

Consider the transformation ( 4.7) induced by 
U 1+ (P) = p. Since p is constant we have 

R I +6 =pA'R IfJA -I 
x x' 

or, in terms of the field Vi, 

Vi +6 =pv'lJ -I. 

(6.3) 

(6.4) 

This is a trivial linear transformation on the components of 
the field Vi. Therefore we will discard these transformations 
by quotienting the group S by {h (0,/3)}. The resulting group 

T = {exp i¢ala in QV}, (6.S) 

is a discrete group called the translation group.6 It is isomor­
phic to the coroot lattice and generated by the elements cor­
responding to a set of simple coroots a j in Q v: 

Tj = exp i¢a/. (6.6) 

The lattice introduced in Sec. IV will therefore be taken to be 
the coroot lattice Q v of g. 

Next we should show that the lattice resolvents UI(Tj) 
factorize. We have not yet proved this in full generality. In 
the next section we will discuss the case of A \ 1) • 

VII. LATTICE EQUATION ASSOCIATED TO A\1) 

We now concentrate on the case 9 =Al = sl(2,C). The 
covariant derivative (2.S) is taken to be 

(7.1 ) 
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The first terms of the diagonalizing element k I of (2.10) are 

kl = (0 l\A. -I + (0 axq)A. -2 +... . (7.2) 
-r 0) axr 0 

The element TI corresponding to the single simple coroot a I 
is 

The lattice resolvent associated to TI is 

UI(T) = (1 0)..1. + (0 q~ 
I 0 0 r 0) 

( 
-qlr 

+ -ar x 

This lattice resolvent admits a factorization with 

I (A. - ax In l q) 
U + (TI ) = I . 

-l/q 0 

(7.3 ) 

(7.4) 

(7.5) 

The differential-difference equation (4.16) obtained from 
(7.5) reads 

ql+8= _ (ql)2r +la! In(ql), 

r+ 8= -l/l· 
Substituting ql = eul we find 

the equation for the Toda lattice. 2 

(7.6) 

(7.7) 

The first nontrivial evolution equation (2.12) associat­
ed to the covariant derivative (7.1) is a system of coupled 
nonlinear SchrOdinger equations, see Ref. 4. 

Note that U I+ will become singular if we let l become 
zero in (7.5). One can take two points of view on this prob­
lem. 

First, one can consider l,r to be elements of a differen­
tial algebra (generated by ql,r, and a derivation ax)' Then 
U I+ will belong to the field offractions of this algebra. In 
this purely algebraic interpretation ql cannot become zero 
and there will be no problem. 

On the other hand, if one is interested in solutions to 
soliton equations one is forced to interpret l (x) as an honest 
function. The conclusion then is that as soon as ql (or r if one 
considers the lattice resolvent associated to T I-I), becomes 
zero, the buildup of the lattice stops and the lattice will be of 
finite extent. 

This can also be understood in terms of T functions. A T 

function for the AKNS hierarchy has components ";,1 in Z 
(see, e.g., Ref. 3) and is related to the fields l,r by 

ql =,,; + 1/";, r = _ ";-1/";. 

In general, most of the components will be zero and hence 
only a finite number of fields ql,r will make sense. For in­
stance, the vacuum solution has a T function with ".0 = 1, 
,,; = 0, i =1= 0, corresponding to qO = 0, ,P = 0 and the other 
qi,r undefined. 
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VIII. REMARKS 

( 1) It would be interesting to investigate whether the 
Hamiltonian structures and conservation lawss of the equa­
tions (2.12) can be extended to cover the lattice equations 
introduced in this paper. Also other aspects of soliton equa­
tions, such as the dressing method, Miura transformations, 
two-dimensional Toda field equations, etc. deserve further 
study in the light of the results obtained above. 

(2) The equations described in this paper are related to 
the homogeneous Heisenberg algebra of g(l). Recently Kac 
and Peterson9 have classified all conjugacy classes of Heisen­
berg algebras of any affine Kac-Moody algebra g(A). In a 
forthcoming paper lO we will use this result to associate a 
hierarchy of zero curvature equations to any such conjugacy 
class, containing in general also lattice equations. In the case 
of the principal Heisenberg algebra one obtains the equa­
tions of Drinfeld and Sokolov, II without any lattice equa­
tions, because of the special structure of the centralizer of 
this Heisenberg algebra. 

( 3) Kac and Peterson 9 also show that one can associate 
to any conjugacy class of Heisenberg subalgebras a vertex 
realization of the basic representation L (Ao) of g(A). Each 
realization will, we expect, lead to a realization of the defin­
ing equations of the group orbit through the vacuumvector 
in L (Ao), i.e., it will lead to a new hierarchy of soliton equa­
tions (Jimbo and Miwa 12 and Kac6

). This is presently under 
investigation. 

( 4) It has become increasingly clear that there are many 
similarities between the zero curvature construction of soli­
ton equations and the representation theoretic approach. 
The major difference seems to be the absence of the central 
extension of L ( g) in the zero curvature construction. The 
precise connection remains to be clarified. For attempts in 
this direction see Refs. 4 and 13. 

1M. Jimbo and T. Miwa, Physica D 2,306,407 (1981); D 4,26 (1981). 
2H. Flaschka, in Non-Linear Integrable Systems-Classical Theory and 
Quantum theory, edited by M. Jimbo and T. Miwa (World Scientific, Sin­
gapore, 1983). 

3A. P. E. ten Kroode and M. J. Bergvelt, Lett. Math. Phys.12, 139 (1986). 
4A. C. Newell, Solitons in Mathematics and Physics (SIAM, Philadelphia, 
1985). 

5y. O. Drinfeld and Y. Y. Sokolov, J. SOY. Math. 30,1975 (1985). 
6y. O. Kac,lnfinite Dimensional Lie Algebras (Birkhiluser, Boston, 1983). 
10. Wilson, Ergod, Theory Dynamical Systems, 1, 361 (1981). 
sL. A. Dickey, Commun. Math. Phys. 82, 345 (1981). 
9y. O. Kac and D. H. Peterson, "112 constructions of the basic representa­
tions of the loopgroup ofEs," to appear in proceedings, Anomalies, Geom­
etry, Topology (World Scientific, Singapore). 

HIM. J. Bergvelt and A. P. E. ten Kroode, in preparation. 
"y. O. Orinfield and Y. Y. Sokolov, SOY. Math. Ook!. 23, 457 (1981). 
12M. Jimbo and T. Miwa, Publications R.I.M.S. 18, 1077 (1982), 19,943 

(1983 ). 
130. Wilson, C. R. Acad. Sci. Paris 299,587 (1984). 

M. J. Bergvelt and A. P. E. ten Kroode 306 



                                                                                                                                    

On invariance properties of the wave equation 
George Blumsn 
Department 0/ Mathematics. University 0/ British Columbia. Vancouver. British Columbia. Canada V6T 
1Y4 

Sukeyuki Kumei 
Faculty o/Textile Science. Shinsu University. Tokida 3-15-1. Ueda. Japan 

(Received 5 December 1985; accepted for publication 8 October 1986) 

A complete group classification is given of both the wave equation c2(x)uxx - Utt = 0 (I) and 
its equivalent system VI = Ux ' c2(x)vx = U I (II) when the wave speed c(x) ,t:const. Equations 
(I) and (II) admit either a two- or four-parameter group. For the exceptional case, 
c(x) = (Ax + B)2, equation (I) admits an infinite group. Equations (I) and (II) do not 
always admit the same group for a given c(x): The group for (I) can have more parameters or 
fewer parameters than that for (II); moreover, the groups can be different with the same 
number of parameters. Separately for (I) and (II), all possible c(x) that admit a four­
parameter group are found explicitly. The corresponding invariant (similarity) solutions are 
considered. Some of these wave speeds have realistic physical properties: c(x) varies 
monotonically from one positive constant to another positive constant as x goes from - 00 

to + 00. 

I. INTRODUCTION 

In this paper we consider invariance properties of sec­
ond-order hyperbolic partial differential equations (PDE's) 
(wave equations) 

c2 (x)Uxx - Utt = 0 (1.1 ) 

and corresponding hyperbolic systems 

v, = Ux ' U, = c2(x)vx ' ( 1.2) 

Their invariance properties are used to construct solutions of 
these PDE's for various classes of wave speeds c(x). 

An important related equation is 

(c2(x)vx )x - Vtt = O. (1.3) 

Many physical problems lead to (1.1 )-( 1.3). Equation 
( 1.1) arises in the study of small transverse vibrations of a 
string with variable density, system (1.2) in the study of 
transmission lines with variable capacitance or variable re­
sistance, and Eq. (1.3) in the study of small longitudinal 
vibrations of a rod with variable Young's modulus. 

Equations (1.1 )-( 1.3) are equivalent in the following 
senses [( 1.4 )-( 1.7)]: 

if{u (x,t), v(x,t)} satisfy (1.2), 

then U (x,t) solves (1.1) 

and v(x,t) solves (1.3); 

if U = F( x ,t) satisfies (1.1), 
then (u,v) = (F,.Fx ) solves (1.2) 

and v = Fx solves ( 1.3); 

if v = G(x,t) satisfies (1.3), 

then (u,v) = (c2 (x)Gx ,G,) solves (1.2) 

and U = c2(x)Gx solves (1.1). 

Under the transformation 

y = fC2 (X)dX, 

( 1.4) 

( 1.5) 

( 1.6) 

Eq. (1.3) can be rewritten as an equation of the form (1.1), 
namely, 

( 1.7) 

In spite of the apparent equivalence of a single PDE and 
a corresponding system ofPDE's it does not necessarily fol­
low that their respective invariance groups of point transfor­
mation are the same. It could happen that the group of point 
transformations leaving invariant the system is larger than 
that leaving invariant the single equation; also the converse 
could be true. We will show that this is indeed the case for the 
single equation (1.1) and the corresponding system (1.2). 
For example we show that if c(x) = (Ax + B)2, then (1.1) 
is invariant under an infinite Lie group of point transforma­
tions, whereas the Lie group of point transformations leav­
ing invariant ( 1.2) has only four parameters; if 

c(x) = ~A + Bekx
, then the Lie group of (1.1) has two pa­

rameters and that of (1.2) has four parameters. 
Consequently it follows that invariant (similarity) solu­

tions of a system ofPDE's lead to noninvariant solutions of a 
corresponding equivalent single PDE and vice versa. In Sec. 
IV of this paper we construct such noninvariant solutions 
for (1.1). 

It is important to note that under the hodograph trans­
formation (the interchange of dependent and independent 
variables), system (1.2) is equivalent to the nonlinear sys­
tem 

( 1.8) 

Consequently if {u(x,t),v(x,t)} solve (1.8) then v(x,t) 
solves 

(c2(v)vx )x -Vtt =0, (1.9) 

and introducting the potential ,p(x,t), where (u,v) 
= (,p",px), the system (1.8) reduces to 

c2(,px ),pxx -,ptt = O. (1.10) 

The rest of this paper is organized as follows. 
In Sec. II the Lie group of point transformations ad­

mitted by (1.1) is derived for all possible wave speeds c(x). 
The corresponding invariant solutions are constructed. 

In Sec. III the Lie group of point transformations ad-
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mitted by (1.2) is derived for all possiblec(x). If c(x) satis­
fies the ordinary differential equation 

cc'(c/c') " = ±,.i2, ,.i ~O, (1.11) 

then (1.2) admits a larger group than (1.1). (Throughout 
this paper a prime denotes differentiation of a function of a 
single variable.) Invariant solutions of ( 1.2) and hence solu­
tions of (1.1) are constructed for c(x) satisfying (1.11). 

In Sec. IV we discuss the differences between the invar­
iance properties of the single equation (1.1) and the system 
( 1.2). We show that in general the Lie group of point trans­
formation leaving invariant ( 1.2) [( 1.1 ) ] does not necessar­
ily correspond to a Lie group of point transformations or 
Lie-Backlund transformations leaving invariant ( 1.1 ) 
[( 1.2)]. 

In Sec. V we find the equivalence classes of wave speeds 
e (x) for the wave equation (1.1). 

II. THE INVARIANCE PROPERTIES OF THE WAVE 
EQUATION AS A SINGLE EQUATION 

Lie t ,2 proved that a second-order linear hyperbolic PDE 
with two independent variables admits a group of point 
transformations containing at most four parameters ifit does 
not admit an infinite group. Lie did not study specifically the 
wave equation (1.1). 

A. Infinitesimal transformations 
By using Lie's algorithm,2,3 one can find the generators 

of the invariance group of point transformations of ( 1.1 ). If 
the point transformation 

X=X+ES(X,t) +O(e2), 

T= t + er(x,t) + O(e2), 

U = u + E/(X,t)U + O(e2), 

(2.1 ) 

leaves (1.1) invariant, then its infinitesimals {s,1',f} satisfy 
the determining equations 

S, - c2 (x)1'x = 0; 

c(x) [1', - Sx] + c'(x)S = 0; 

1'1t - 2/, - c2 (x)1' xx = 0; 

Sit + e2(x) [2fx Sxx] = 0; 

/" - c2 (x)/xx = O. 

Solving (2.2a) for 1'x and (2.2b) 
1',x = 1'xt' one finds that 

Sxx - (l/e2 )slt - [H(x)s lx = 0, 

whereH(x) = e'/c. 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

(2.2e) 

for '1", and setting 

(2.3) 

The solution of (2.3), (2.2c), and (2.2d) for/ leads to 

/= Vis + s, s = const. (2.4) 

Substituting (2.4) into (2.2e), one obtains 

[(2H' +H2)S2]x =0. (2.5) 

From Eq. (2.5) there follow three cases. 
CaseL'2H' +H 2 =0 
In this case 

c(x) = (Ax +B)2, (2.6) 

whereA andB are arbitrary constants. It is easy to show that 
here an infinite group leaves invariant (1.1). In particular 
for any solution s (x,t) of the corresponding equation (2.3), 
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one can find {r(x,t),/(x,t)} solving (2.2a)-(2.2e), 

1'= J(Sx -Hs)dt, /= ~~(:~. (2.7) 

Case IL' 2H' + H2~0, s ~O 
From (2.5) it follows that S can be expressed in the 

separable form 

s(x,t) = a(x)/3(t), (2.8) 

where 

(2.9) 

and /3(t) is to be determined. 
Substituting (2.4) and (2.8) into (2.2d), one finds that 

/3" (t) e2(a' - Ha)' --= = const = u'l. (2.10) 
/3(t) a 

Note that a, u could be real or imaginary. 
Case II{a}: The subcase u = 0 
Here c(x) must satisfy the differential equation 

(a'-Ha)'=O (2.11) 

and correspondingly 

/3(t) = p + qt, (2.12) 

where p and q are arbitrary constants. 
The substitution of (2.4) and (2.8) into (2.2e) leads to 

(aH) " = O. (2.13) 

Thus it is necessary and sufficient that the wave speed 
e(x) satisfy Eqs. (2.11) and (2.13). The general solution,of 
these equations is 

a=Bx2+Cx+D, 
aH=A +2Bx, 

(2.14 ) 
(2.15) 

where {A, B, C, D} are arbitrary constants. Consequently 

e(x) = (Bx2 + Cx + D) 

xexp(A - C) J(Bx2 + Cx +D)-tdX). (2.16) 

It is easy to show that 

'1" = (C - A ) (Pt + ~ qt 2) + q J:z dx + r, (2.17) 

where r is another arbitrary constant. 
If B = 0 in Eq. (2.16), then this expression reduces to 

the general form 

c(x) = (Ax +B)c, (2.18) 

where {A, B, C} are arbitrary constants, C ~O, 2. 
If B = C = 0 in (2.16), then the corresponding wave 

speeds are of the general form 

e(x) =AeBx
, (2.19) 

where A and B are arbitrary constants. 
Case II{b): The subcase u~O 
Here Eq. (2.10) leads to c(x) solving 

c2(a' - Ha)' = u'la, (2.20) 

whereH = e'le and a is given by (2.9). Equation (2.20) can 
be integrated to give 

(a' - Ha)2 - (ua/c) 2 = const = K. (2.21) 
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{3(t) solves {3" = a2{3, i.e., {3 = peu, + qe - u'. 

Thus in this subcase the infinitesimals of (2.1) become 

5" = a(x) [peut + qe- ut], 

l' = CT- 1 [a' - Ha] [peut - qe- ut ] + r, 
! = !aH [peut + qe - ut] + s, 

(2.22) 

where the group parameters {p, q, r, s} are arbitrary con­
stants. The solution ofEq. (2.9), (2.21) for the wave speed 
c(x) is given in Appendix A. In Case II, if 5" #0, the wave 
equation (1.1) is invariant under a four-parameter Lie 
group of point transformations. 

Case III: 5" = 0 
From the determining equations (2.2a)-(2.2e) it fol­

lows immediately that 

l' = const = r, ! = const = s, 
and hence ( 1.1) is invariant only under translations in t and 
scalings of u. In particular for any wave speed c(x) that does 
not solve the system (2.9), (2.20) for any CT (zero or non­
zero), the wave equation (1.1) is invariant only under this 
trivial two-parameter Lie group of point transformations. 

Hence the following theorem has been proved. 
Theorem: The wave equation (1.1), whose wave speed 

c(x) is a solution of system (2.9), (2.21) for any CT (zero or 
nonzero), is invariant under a four-parameter Lie group of 
point transformations. The group becomes infinite if and 
onlyifc(x) = (Ax + B)2. All other wave speeds c(x) admit 
the two-parameter group of translations in t and scalings 
ofu. 

B. Group generators and their Lie algebras In the finite 
parameter cases 

If (2.1) leaves invariant ( 1.1 ), the corresponding group 
generator is 

a a a 
L = 5"(x,t)- + 1'(x,t)- + !(x,t)u- . 

ax at au 
(2.23) 

To the parameters {p, q, r, s} of the group there correspond 
generators {Lp,Lq,Lr,Ls}. The generators form a Lie alge­
bra. The generators for all possible wave speeds c(x) follow. 
Cases (i)-(iv) relate to CT = O. 

Case (i): c(x) = (Bx2 + Cx + D)exp(A - C)f(Bx2 
+ Cx + D)-Idx) 

309 

Here 

Lp = [Bx2 + Cx + D ] ~ 
ax 

a 1 a 
+ [C-A ]t-+- [A + 2Bx]u-, 

at 2 au 
a 

Lq = t [Bx2 + Cx + D ] -
ax (2.24) 

+ [J...(C -A)t 2 + f Bx
2 
+ Cx +D dX] ~ 

2 ~~) ~ 

1 a 
+-t [A + 2Bx]u-, 

2 au 
a a 

L =-, L =u-. rat s au 
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The commutator table for the Lie algebra is 

[Lp,Lq] = (C -A)Lq; [Lp,Lr] = (A - C)Lr; 

(2.25) 

[Lq,Lr ] = - Lp; [L:,Ls] = O. 

It is easy to show that this group is isomorphic to SO (2,1 ) 
when A - C # O. An interesting special case is A = C where 
c(x) =Bx2 + Cx +D. 

Case (ii): c(x) = (Ax + B)c, C #0,1,2 
Here 

L = (Ax+B) ~+A(1-C)t~+J...ACu~, 
p ax at 2 au 

a 
Lq = (Ax+B)t-

ax 

+ J...[AO _ C)t 2 + (Ax + B) 2-2C] ~ (2.26) 
2 A(1- C) at 

+J...ACtu~ 
2 au ' 

a a 
Lr =-, Ls =u-

at au 
The commutator table for the Lie algebra is the same as 

(2.25) with (C -A) replaced by A( 1 - C). 

Case (iii): c(x) = Ax + B 
Here 

a 1 a 
Lp = (Ax+B) -+-Au-, 

ax 2 au 

Lq = (Ax +B)t~+ [J... Iog (Ax +B)] ~ 
ax A at 

1 a 
+2"

Atu Tu' 
a a 

L =-, L =U-. 
r at s au 

The corresponding commutator table is 

[Lp,Lq] =Lr; [Lp,Lr] =0; 

[Lq,Lr] = -Lp; [L:,Ls] =0. 

Case (iv): c(x) =A~x 
Here 

L =A~-ABt~+J...ABu~, 
p ax at 2 au 

L =At~- J...[ABt2 + _1_ e - 2Bx ] ~ 
q ax 2 AB at 

+J...ABtu~ 
2 au ' 

a a 
Lr = -, Ls = u - . 

at au 

(2.27) 

(2.28) 

The commutator table is the same as (2.25) with A - C 
replaced by AB. 

Cases (ii)-(iv) can result as limiting cases for the con­
stants {A, B, c, D} of case (i). 
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Case (v): c(x) for u¥O 
From (2.22) 

L 0"[ a -1(' U) a 1 H a] p =e a-+u a -na -+-a U-, 
ax at 2 au 

L =e-ut[a~-u-I(a'-Ha)!.-
q ax at 

+~aHu~] 
2 au ' 

a a 
Lr =-, Ls = U-. 

at au 

The corresponding commutator table is 

[Lp,Lq] =2u- I KLr; [Lp,Lrl = -uLp; 

[Lq,Lr 1 = uLq; [L;,Ls] = O. 

(2.29) 

(2.30) 

Recall that K is given by (2.21). 
Clearly this group is isomorphic to SO( 2,1) when K ¥ o. 

When u is imaginary, appropriate linear combinations of Lp 
and Lq will yield the corresponding real Lie algebra. 

Case (iv): All other c(x) 
Here the generators are only 

a a 
Lr =-; Ls =U-. 

at au 

c. The Infinite group case: c(x)= (AX+B)2 

In this case the wave equation (1.1) becomes 

(2.31) 

(Ax + B)2uxx - Utt = O. (2.32) 

Equation (2.32) can be mapped into the wave equation 
(A ¥O) 

UXT=O 

by the transformation4 

X= [l/(Ax+B)] +At, 

T= [l/(Ax + B)] -At, 

U= (Ax +B)-IU• 

Hence the general solution of (2.32) is 

u = (Ax + B) [F(X) + G(T)], 

(2.33 ) 

(2.34) 

(2.35) 

where F and G are arbitrary twice differentiable functions of 
their respective arguments. 

D. Similarity solutions of the wave equation (1.1) 

A similarity solution (invariant solution) 2.3 of ( 1.1 ) is a 
solution u = O(x,t) of (1.1) satisfying the characteristic 
equations 

dx dt du 
--- = --- = ---, 
s(x,t) 1'(x,t) /(x,t)u 

(2.36) 

corresponding to an admitted group (2.1). The similarity 
variable z(x,t) is the constant of integration of the first equa­
lityof (2.36). 

For all of our cases, similarity solutions for r¥O can 
always be obtained from similarity solutions for r = 0 by 
replacing t by t + r. For the cases where u = 0, the class of 
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similarity solutions for {q = 1, r arbitrary, s arbitrary, 
p = O} is identical to the class of similarity solutions for 
{q = 1, p,r,s, arbitrary} since the commutator of Lq with Lr 
generates Lp. Next we discuss similarity solutions of (1.1 ) 
keeping in mind the above remarks. 

Case (i): Similarity solutions of (1.1) for p = q = 0, 
r = 1, s arbitrary 

Here (2.36) becomes 

dx dt du 
-=-= o 1 

(2.37) 
su 

The similarity variable z = x, and the similarity form for the 
similarity solutions is 

u = estF(x;s) , (2.38) 

where F(x;S) is a function of x and the parameter s. Substi­
tuting (2.38) into (1.1), one find that F(x;S) satisfies the 
ordinary differential equation (ODE) 

(2.39) 

If {FI(x;s), F2 (x;S)} are linearly independent solutions of 
(2.39) for any s, then any linear superposition 

(2.40) 

solves (1.1) for arbitrary {AI (s),A 2 (s)}. Note that the sum 
in (2.40) can be replaced by an integral with respect to s. 

Now we consider all cases for invariance of ( 1.1) under 
a four-parameter group. The following cases (ii)-(v) corre­
spond to u = 0 in Eq. (2.10). 

Case (ii): c(x) = xc, C¥0,1,2 
The substitutions Ax + B ..... x, t ..... A -It, make the POE 

(Ax + B)2Cuxx - Utt = 0 

equivalent to the POE 

x2Cuxx - Utt = O. 

1. Similarity solutions of (2.42) for q=r=O, P= " 
sarbltrary 

Here (2.36) becomes equivalently 

dx dt du 

x (l - C)t su 

The similarity variable is 

z=XC-1t. 

The similarity form for the solutions is 

u = x'F(z;s). 

F(z;s) satisfies the ODE 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

[1 - (C - 1)2z2]Fzz (z;S) + (l - C)(s + C - 1 )zFz (z;s) 

+ s(l - s)F(z;S) = O. (2.46) 

Linearly independent solutions of (2.46) are 

FI (Z;S) = F(a,/3;y;;) 

and (2.47) 
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where F(a,/3;r;t) is the hypergeometric function, 

s s-1 1 (2s+C-2) 
a=I_C' /3=I_C' r=2" C-l ' 

1 1 (2.48) 
t=-+- (C-l)z. 

2 2 

2. Similarity solutions of (2.42) for p=r=O, q= 1, 
sarbltrary 

In this case (2.36) is equivalent to 

dx dt 
-= 
2tx [X2- 2C /(1 - C)] + (1 - C)t 2 

du 

(Ct+ [s/(C-l)])u 

The similarity variable is 

Z= (C_1)2t 2x C-I_ X I-C. 

The similarity solutions are of the form 

u = xC12esxc-l,/zF(z;S). 

F(z;s) satisfies the ODE 

4(C-1)2[Z2Fzz(z;s) +2zFz (z;S)] 

+ [C(C - 2) - 4sz- 2]F(z;s) = O. 

(2.49) 

(2.50) 

(2.51 ) 

(2.52) 

If [1I( C - 1)] #integer, then linearly independent solu­
tions of (2.52) are 

F(z;S) =z-I/2I ±,,(t), (2.53) 

where I" (t) is a modified Bessel function of order v, 
1 SZ-I 

v=2(C_l)' t=C_l' (2.54) 

Case (iii): c(x) = x 
Here we consider the PDE 

(Ax + B)2uxx - U/t = 0 

equivalent to the PDE 

x 2uxx - U/t = O. 

3. Similarity solutions of (2.56) for q=r=O, p= 1, 
sarbltrsry 

(2.55) 

(2.56) 

The characteristic equations (2.36) are equivalently 

dx dt du 
-=-

x 0 su 

The similarity variable is 

z=t 

with corresponding similarity form 

U =rF(t;S). 

F(t;S) satisfies the ODE 

F/t (t;s) + s(1 - s)F(t;s) = O. 

The resulting superposition of similarity solutions is 

(2.57) 

(2.58) 

(2.59) 

U(x,t) = L r[AI (s)e,JS(S- 1)1 + A2(s)e -,Js(s- 1)1]. 

(2.60) 

These solutions are of the form (2.40). 
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4. Similarity solutions of (2.56) for p=r=O, q= 1, 
sarbltrsry 

Now (2.36) is equivalently 

dx =~= du (2.61) 
2tx 2 log x (t + 2s)u 

The similarity variable is 

z = t 2 - (logX)2. (2.62) 

The corresponding form of the similarity solutions is 

U =xl
/
2 1Iogx + t ISF(z;S). (2.63) 

F(z;s) satisfies the ODE 

16z2Fzz (Z;S) + 16(1 + s)zFz (z;s) - zF(z;s) = O. 
(2.64) 

If2s#integer, linearly indepedent solutions of (2.64) are 

F(z;s) = z'12I± " (t), (2.65) 

where 
v=s, t=!ZI/2. (2.66) 

Case (iv): c(x) = e - x12 

The substitutions X-+ - x/lB, t-+t /lAB, make the 
PDE 

A 2e2BXuxx - U/t = 0 

equivalent to the PDE 

e-Xuxx - U/t = O. 

5. Similarity solutions of (2.68) for q=r=O, p= 1, 
sarbltrary 

(2.67) 

(2.68) 

The characteristic equations (2.36) are equivalent to 

dx dt du 
-=-=- (2.69) 

2 t 2su 

The similarity variable is 

z=te- x12. 

The similarity solutions are of the form 

U = e'xF(z;S). 

F(z;s) satisfies the ODE 

(2.70) 

(2.71) 

(4-r)Fzz(z;s) + (4s-1)zFz (z;s) -4s2F(z;s) =0. 
(2.72) 

Linearly independent solutions of (2.72) are of the hyper­
geometric form (2.47), where 

a=/3= -2s, r=!(1-4s), (2.73) 

and 

6. Similarity solutions of (2.68) for p=r=O, q= 1, 
sarbitrary 

Now (2.36) is equivalent to 

dx dt du 
-=-:---
4t t 2+4e" (s-t)u 

The similarity variable is 

z = t 2e - x/2 _ 4e"12. 
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The corresponding similarity solutions are of the form 

U = exp( - [Ax + stz- 1e- x/2 ] )F(z;S). (2.77) 

F(z;S) satisfies the ODE 

4rFzz (Z;S) + 8zFz (Z;S) + (1 - 1nrz-2)F(z;s) = o. 
(2.78) 

This equation has linearly independent solutions 

where {I(~), K(~)} are modified Bessel functions of order 
O,and 

8. Slmllllrlty solutions of (2.81) for p=O, r= 1/4A, q= 1, 
s IIrbltrllry 

The characteristic equations are 

dx 4A dt 
t(l+x2) _4A2t2_e-4AY+1 

du 

[teA + x) + s]u 

The similarity variable is 

z = 2A 2t 2e2AY - cosh 2Ay, 

where 

y = arctanx. 

(2.90) 

(2.91 ) 

(2.92) 

(2.80) The resulting similarity form is 

Case (v): c(x) = (Bx2 + Cx + D)exp(A - C)f(Bx2 

+ Cx +D)-Idx) 
By appropriate scalings and translations in x and scal­

ings in t, the corresponding wave equation (1.1) is equiva­
lent to one of the five canonical forms (2.42), (2.68), or 

[(x2 + 1) 2e4A arctan X] UXX - Uti = 0, 

[(l - x) 2 + 2A (l + x) 2 - 2A ] U xx - Uti = 0, 

[x4e2lX ]uxx - Uti = O. 

In Eqs. (2.81), (2.82), A is an arbitrary constant. 

Case (va): c(x) = (x2 + 1)e2Aarctanx 

7. Slmllllrlty solutIons of (2.81) for q=r=O, p= 1, 
s IIrbltrary 

The characteristic equations (2.36) are 

dx dt du 
1 +X2 = -2At = (x+s)u 

The similarity variable is 

z = te2Ay
, 

where 

y = arctanx. 

The corresponding similarity form is 

U = If+X1e'YF(z;s). 

F(z;S) solves the ODE 

(4A 2r - 1)F zz (Z;S) + 4A (A + s)zFz (Z;S) 

+ (l + s2)F(z;S) = 0 

(2.81) 

(2.82) 

(2.83 ) 

(2.84) 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

whose general solution can be expressed in terms of hyper­
geometric functions. 

In the special case A = 0, the resulting superposition of 
similarity solutions is 

U(x,t) =..JXI+T L tfY[A 1 (s)eJ.i"+lt + A 2 (s)e -J.i"+lt]. 

(2.89) 

These solutions are of the form (2.40). 
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U = If+X1~Ylz + e2AY( 1 + 2At) ISF(z;s). 

F(z;s) satisfies the ODE 

4A 2(r - 1}Fzz (z;s) + 8A 2( 1 + s)zFz (Z;S) 

+ {l + [A(l + 2s)]2}F(z;s) = O. 

(2.93) 

(2.94) 

Linearly independent solutions of (2.94) are of the hyper­
geometricform (2.47), where 

1 i 1 i 
a="2+ s + 2A' P="2+ s - 2A' 

(2.95 ) 
y=1+s, ~=~(l+z). 

In the special case A = 0, the similarity variable be­
comes 

z= _t 2 +y2. (2.96) 

Here the similarity form reduces to 

U =..JXI+T (t + arctan xYF(z;s). (2.97 ) 

F(z;s) satisfies the ODE 

4zFzz (Z;S) + 4(s + 1)Fz (Z;S) + F(z;s) = O. (2.98) 

Solutions of (2.98) can be expressed in terms of Bessel func­
tions: 

F(z;s) = z-s/2J ±v (~), 

where 

v =s, ~ = Z-l12. 

Case (vb):c(x) = (l-X)I+A(l +X)I-A 

9. Slmllllrlty solutIons of (2.82) for q=r=O, p= " 
s IIrbltrllry 

The characteristic equations are equivalent to 

dx dt du 
--=--= 
x 2 - 1 - 2At (x + 2s)u 

The similarity variable is 

Z= tyA, 

where 

y= (l-x)/(l +x). 

The similarity form is 

U = I1=?y'F(z;s). 
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F(z;s) satisfies the ODE 

(4A 2r - 1 )Fzz (Z;S) + 4A (A + 2s)zFz (Z;S) 

+ (4s2 - 1}F(z;S) = O. (2.105) 

Linearly independent solutions of (2.105) are of the hyper­
geometric form (2.47), where 

a =..!. [2s -..!.] {3 =..!.A 
A 2 ' 2' 

(2.106) 
1 s 1 

r=-+-, ;=-+Az. 
2 A 2 

In the special case A = 0, the resulting superposition of 
similarity solutions, which is ofthe form (2.40), is 

u =..Jl=? Ly[A1(s)ev'47=\t +A2(s)e-v'47=\t]. 
s 

(2.107) 

10. Similarity solutions of (2.82) for p=O. r= 1/A. q= 1. 
sarbltrary 

Here the characteristic equations are 

dx 4A dt 
(x2 -1}t 1 _ 4A 2t 2 _ y-2A 

du 

[(A +x)t+s]u 

(2.108) 

The similarity variable is 

z = 2A 2t 2yA - !(yA + y-A), (2.109) 

where 

y = (1 - x)/(1 + x). (2.110) 

The resulting similarity solutions are of the form 

u = ~1 - x 2yA 121 (1 + 2At)yA + zISF(z;s). (2.111) 

F(z;s) satisfies the ODE 

4A 2(Z2 - 1 )Fzz (z;s) + SA 2(S + 1 )zFz (z;s) 

+ [A 2(2s + 1)2 - 1 ]F(z;S) = O. (2.112) 

Linearly independent solutions of (2.112) are of the hyper­
geometric form (2.47), where 

1 1 1 1 
a=s+-+-, {3=s+---, 

2 2A 2 2A 

r=s+ 1, ;=!(z+ 1}. (2.113 ) 

11. Similarity solutions of (2.83) for q=r=O. p= 1. 
sarbltrary 

The characteristic equations are equivalent to 

dx dt du 

t (x - s)u 

The similarity variable is 

z = tellx 

(2.114) 

(2.115) 

and the corresponding similarity form is 

u =xe'IXF(z;s). (2.116) 

F(z;s) solves the ODE 
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(Z2 - 1}Fzz (Z;S) + (2s + l)zFz (Z;S) + ~F(z;S) = O. 
(2.117) 
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Linearly independent solutions of (2.117) are of the hyper­
geometric form (2.47) where 

a={3=s, r=!+s, ;=!(1+z). (2.118) 

12. Similarity solutions of (2.83) for p=r=O. q= 1. 
sarbltrary 

Here the characteristic equations are 

dx dt du 

2tx2 = t 2 + e- 2Ix [(2x - 1}t + 2s]u 

The similarity variable is 

and the resulting similarity form is 

u = xell2xe - 2ste1IXz-'F(z;s). 

F(z;s) satisfies the ODE 

(2.119) 

(2.120) 

(2.121) 

4rFzz (Z;S) + 8zFz (z;s) + (1 - lWz-2)F(z;s) = O. 
(2.122) 

Linearly independent solutions of (2.122) can be expressed 
in terms of the modified Bessel functions: 

F1(z;S) =Z-1/2/0 (;), F2(z;s) =Z-I/2Ko(;), (2.123) 

where 

(2.124) 

Case (jv): c(x) for 0"#0 
The corresponding characteristic equations are 

dx crdt du 
= = , 

2a(x){3(t) 2(a' - Ha){3'(t) [aH{3(t) + s]u 
(2.125) 

where 

{3( t) = peut + qe - CTt, (2.126) 

anda(x),H=c'!csatisfyEqs. (2.9) and (2.21). The simi­
larity variable is 

(2.127) 

The corresponding form for the similarity solutions is 

u = .rc[ W ]P F(z;s) , (2.128) 
{3 $ + 2~pq(K + (?w2

) 

where 

w = a!c, p = s/~pqK . 
F(z;S) satisfies the ODE 

(K 2r - 4pqcr)Fzz (z;s) + 2K(.1 - P )zFz (Z;S) 

+ {l + p(p - 1 )K}F(z;s) = O. 

(2.129) 

(2.130) 

III. THE INVARIANCE PROPERTIES OF THE SYSTEM 

Clearly ( 1.2) is always invariant under translations in t 
and uniform scalings of u and v. 

If the point transformation 

X = x + €s(x,t) + O(c), 

T= t + €'T(X,t) + O(c), 

u = u + €[f(x,t)u + g(x,t)v] + O(c), 

V = v + €[k(x,t)v + l(x,t)u] + O(c), 
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leaves invariant (1.2), then {s,1",/,g,k,/}satisfy determining 
equations which reduce to 

k t -gx =0, 

It - /x = 0, 

e2(x)/- g = 0, 

e2(x)1"x - St = 0, 

e2 (x)kx - gt = 0, 

e2 (x)/x - J, = 0, 

e(x)[1"t -Sx] +e'(x)s=O, 

sx -1"t +k-/=O. 

(3.2a) 

(3.2b) 

(3.2c) 

(3.2d) 

(3.2e) 

(3.2f) 

(3.2g) 

(3.2h) 

The consistency ofEqs. (3.2b), (3.2c), and (3.2f) leads to 
g(x,t) satisfying 

gxH+gH'=O, (3.3) 

where H = e'!c. Theng(x,t) satisfies 

g(x,t) = - a (t)/2H. (3.4 ) 

Moreover if a(t) :;60, then it is necessary that {e(x), a(t)} 
satisfy 

ee'(e!c') " = a" (t)la(t) = const =A2. (3.5) 

Ifa(t) = 0, theneithere(x) solves (3.5) withA = Oor (1.2) 
is only invariant under above-mentioned scalings of u and v 
and translations in t. 

In the following subsections we will show that system 
( 1.2) is invariant under a four-parameter Lie group of point 
transformations of the form (3.1) if and only if e (x) satisfies 
the ODE (3.5), namely, 

(3.6) 

The general solution of (3.6) is derived in Appendix B. It 
turns out that if A :;60, the general solution of (3.6) does not 
solve (2.9), (2.21). Note that A can be real or imaginary. 
The case A = ° will be considered in the following subsection 
and the case A :;60 in Sec. III B. 

A. The case A=O 

The general solution of 

(c!e') " = ° 
leads to the consideration of three separate subcases. 

Case (i): c(x) = (Ax + B)c, C :;60,1 

(3.7) 

The same subsitutions that reduced (2.41) to (2.42) 
lead here to the equivalent system' 

(3.8) 

The solution of the determining equations (3.2a)-(3.2h) 
leads to 

s=px+ 2qxt, 

1" = P (1 - C) t + q [ (1 - C) t 2 + x 2 - 2C 1 (1 - C)] + r, 
/= q(2C - l)t +s, 

g= -qx, 

k= -pC-qt+s, 

1= _qx l - 2C, 

where p, q, r, and s are arbitrary constants. 
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(3.9) 

1. Similarity solutions of (3.8) for q=r=O, p= 1, 
sarbltrary 

The corresponding characteristic equations are 

dx = dt =!!!!... = dv (3.10) 
x (1 - C)t su (s - C)v 

Comparing (2.43) and (3.10), one sees that the similarity 
solutions for u are of the form (2.44), (2.45). The corre­
sponding solutions for v are of the form 

v=r-cG(z;s). (3.11) 

Substituting (2.45) and (3.11) into the system (3.8), one 
finds that 

Gz (Z;S) = sF(z;s) + (C - 1)zFz (Z;S), 

(s-C)G(Z;S) + (C-l)zGz(z;S) = Fz(z;S). 
(3.12 ) 

Ifoneeliminates G(Z;S) from (3.12), thenF(z;s) solves 
(2.46). Correspondingly 

[1 - (C - 1)2r ]Fz (z;s) + (1 - C)szF(z;S) 
G(Z;S) = . 

s-C 

2. Similarity solutions of (3.8) for p=r=O, q= 1, 
sarbltrary 

(3.13) 

First we find the global transformation ( 3.1) corre­
sponding to (3.9) forp = r = s = 0, q = 1. Then it is easy to 
obtain the global transformation for arbitrary s. This global 
transformation leads to the similarity form of the solutions. 

The global transformation for p = r = s = 0, q = 1, is 
found by solving the characteristic differential equations 

dX dT 
--= 
2XT (1 - C)T2 +X2- 2C 1(1- C) 

dU 
(2C-l)TU-XV 

dV 
= = dE, 

- [TV +X I
-

2CU] 

where X = x, T = t, U = u, V = v, at E = 0. 
The first equality in (3.14) leads to 

(1 - C)T 2X C - 1 _ 1 
(1- C)X C - I 

(3.14) 

= const = (1 - C) t 2XC - I _ 1 = z. 
(1- C)XC

-
I 

Next we consider the differential equations 

dU 
dE = (2C - I)TU -XV; 

dV = _ TV-X I - 2CU. 
dE 

One can show that 

(3.15) 

(3.16) 

(3.17) 

d
2
V = _2CT dV + [~X2-2C_CT2]V. (3.18) 

de dE C-l 

Let V = X -C/2W. Then (3.18) reduces to 

d 2 w 
de =0. 
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Hence 

V=X -c12(FE+ G), (3.20) 

where F and G are constants. Equation (3.17) leads to 

U=X3c/2-1[(C-l)T(&+ G) -F]. (3.21) 

The solution of 

dX 
--=dE 
2XT 

leads to 

(3.22) 

[1 +z(1- C)X C
-

IP/2 =z(C-l)(E+E), (3.23) 

where E is a constant. 
The global transformation for arbitrary s, p = r = 0, 

q = 1, follows: 

[1 +z(1 - C)X C- 1P /2 =z(C - I)(E + E), 

(1 - C) T 2 XC - I _ 1 = z, 
0- C)X C -

I 

U=e'EX3C/2-1[(C-l)T(&+G) -F], 

V = eSEX - C/2(FE + G), 

(3.24) 

where the constants {z, E, F, G} can be expressed in terms of 
{x, t, u,v} by solving (3.24) atE = O. The explicit form of the 
global transformation is easily found by solving (3.24) for 
{X,T,U,V}. 

The corresponding similarity solutions are found by let­
ting z play the role of the similarity variable, and letting 
{E,F,G} be arbitrary functions of z and s. Without loss of 
generality one can set E = O. Solving the first two equations 
of (3.24) for E, one then finds that the resulting similarity 
form is 

u = e',xc -'z-'x3C12 - I [(C _ 1 )t{XC- lZ-IF(z;s) 

+ G(z;s)} - F(z;S)], (3.25) 

v = e'txC-'z-'x - C/2[txC- IZ-IF(z;s) + G(Z;S)]. 

If one substitutes (3.25) into the system (3.8) then 
F(z;S) and G(z;s) satisfy a corresponding system of coupled 
first-order linear ODE's. 

Case (ii): c(x) = x 
Here the system (1.2) becomes 

v,=ux, u,=x2vx' (3.26) 

The solution of the determining equations (3.2a)­
(3.2h) leads to 

S = px + 2qxt, 'T = 2q log x + r, 
/=qt+s, g= -qx, 

k= -p-qt+s, 1= -qx- I. 

3. Similarity solutions of (3.26) for q=r=O. p= 1. 
sarbltrary 

(3.27) 

The resulting similarity solutions are easily found to be 
of the form 

u = x'F(t;s) , v = x'- IG(t;S). 

F(t;S) is any solution of (2.59) and 

G(t;s) = (s-1)- IF,(t;s). 
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(3.28) 

( 3.29) 

4. Similarity solutions of (3.26) for p=r=O. q= 1. 
sarbltrary 

Here the same procedure is followed as in Case (i). The 
resulting global transformation can be written as 

T + log X = Ee2E, 

T2 - (logX)2 =z, 

U = e2E'X 1/2(e2EF + G), 
(3.30) 

The resulting similarity form is 

u = xl/2lt + log xl'[ It + log xIF(z;s) + G(z;s)], 
(3.31) 

v = x- I/2 It + log xlS[ G(z;s) - It + log xIF(z;s)], 

where {F(z;s) , G(z;s)} are to be determined by substitution 
of(3.31) into (3.26). 

Case (iii): c(x) = e- x/2 

Here the system (1.2) is 

(3.32) 

The solution of the determining equations (3.2a)­
(3.2h) leads to 

S = 2p + 4qt, 'T = pt + q(t 2 + 4e") + r, 
/= -2qt+2s, g= -2q, 

k = p + 2s, 1 = - 2qe". 

5. Similarity solutions of (3.32) for q=r=O. p= 1. 
sarbltrary 

The similarity variable is 

The form of the solutions is 

u = ftXF(z;s) , v = e(s+ 1I2)XG(Z;S). 

F(z;s) is any solution of (2.72) and 

(3.33) 

(3.34) 

(3.35) 

G(Z;S) = (2s + 1) -I [ (2 - ~)Fz (Z;S) + szF(z;s)]. 

(3.36) 

6. Similarity solutions of (3.32) for p=r=o, q= 1. 
sarbltrary 

The resulting global transformation (3.1) can be writ­
ten as 

T 2e - x/2 _ 4e"12 = Z, 

2z-IJ4 +ze x/2 = E + E, 

U = eE'e-3X/4[F_ !T(FE + G)], 

V = eE'e"/4(FE + G). 

The resulting similarity form is 

u = - e2SZ-',e-x12e - 3X/4[ 4z- Ie"12F(z;s) + !tG(z;s)], 

(3.37) 

v = eZsz-',e -X/2e"/4[2z- lte - x/2F(z;s) + G(z;s)], (3.38) 

where {F(z;s), G(z;s)} are determined by substitution of 
(3.38) into (3.32). 
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B. The case J..;I!:O 

By appropriate scalings of c and x, Eq. (3.6) reduces to 
(see Appendix B) 

c' = V-I sinh ( v log c) (3.39) 

or 

c' = V-I sin(v log c) (3.40) 

for A 2>0. For A 2 <0, Eq. (3.6) reduces to 

c' = V-I cosh ( V log c). (3.41) 

In Eqs. (3.39)-(3.41), v is an arbitrary real constant. If 

v = 1, then c(x) = ~1 + ~ solves (3.39). 
In the cases {(3.39), (3.40)}, the solution of the deter­

mining equations (3.2a)-(3.2h) leads to 

S = (2c/c') [pe' + qe - , ], 

r=2[(c/c')'-I][pe'-qe-') +r, 

/ = [2 - (c/c')'][pe' + qe -') + s, 

g = - (c/ c') [pe' - qe - , ], 

k= - (c/c')'[pe'+qe-') +s, 

1= - (l/cc')[pe' - qe-'). 

(3.42) 

The similarity solutions for wave speeds c(x) satisfying 
(3.39), (3.40), or (3.41) will be constructed in a future pa-
per. 

IV.INVARIANCE PROPERTIES OF THE SINGLE 
EQUATION VIS-A-VIS THE SYSTEM WHEN c(x);I!:const 

The single equation (1.1) is invariant under a four-pa· 
; rameter Lie group of point transformations, {p,q,r,s}, if and 
only if c(x) solves Eqs. (2.21) and (2.9). This corresponds 
to a five-parameter family for c(x). 

If 

c = 'II(x,u,K) (4.1 ) 

is a solution of{(2.21), (2.9)}, it follows from their invar­
iance properties that 

c = k l'll(k3x + k2,u,K) (4.2) 

is the general solution of{(2.21), (2.9)}, where {k l , k2' k3} 
are arbitrary constants. 

The system (1.2) is invariant under a four-parameter 
Lie group of point transformations if and only if c(x) solves 
Eq. (3.6). This corresponds to a four-parameter family for 
c(x). If 

c=<I>(x,v) (4.3) 

solves (3.39), (3.40), or (3.41) then it follows that 

c = kl<l>(kl/A)X + k2,v) (4.4) 

is the general solution of (3.6) where {k l, k2' v} are arbitrary 
constants. 

One can show that the single equation (1.1) and the 
system of equations (1.2), for the same c(x), admit a four­
parameter Lie group of point transformation if and only if 

c(x) = (A + Bx)c, (4.5) 

or the limiting case 

c(x) = AeBx
, (4.6) 
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where {A, B, C} are arbitrary constants. However, it could 
still follow that an invariant solution of (1.2) maps into a 
noninvariant solution of the wave equation (1.1) under the 
mapping (1.4). In fact ifc(x) is of the form (4.5) or (4.6), 
an invariant solution of ( 1.2) maps into an invariant solu­
tion of (1.1), under the mapping (1.4), if and only if the 
invariant solution of ( 1.2) has q = O. 

The group leaving invariant the single equation (1.1) is 
infinite if and only if 

c(x) = (A +BX)2. (4.7) 

The group leaving invariant the system (1.2) contains at 
most four parameters. 

Any Lie group of point transformations (3.1), leaving 
invariant (1.2), can be expressed in the equivalent form 

X=x, T=t, 

U = U + E'TJ(x,t,u,v,ux,u,) + O(~), 
V = v + E~(X,t,u,v,ux'u,) + O(~), 

where 

(4.8) 

1] =/(x,t)u + g(x,t) v - s(x,t)ux -r(x,t)u" (4.9) 

~ = k(x,t)v + l(x,t)u -r(x,t)ux - S(x,t)c-2(x)u,. 

(4.10) 

The symmetry (4.8) of the system (1.2) is the symmetry 

(4.11 ) 

of ( 1.1 ), where 

( 4.12) 

andD ,- I is the operator inverse to the total derivative opera­
tor D, defined by 

a a a a 
D, =-+u,-+u,,-+u'x--+ .. ·. (4.13) 

at au au, aux 

If1] depends explicitly on v, i.e., g#O in (4.9), then accord­
ingly iJ depends explicitly on D ,- lux and consequently the 
resulting transformation is neither a Lie group of point 
transformations nor more generally a Lie-Backlund trans­
formation. 5

,6 If the group parameter q#O in (3.9), (3.27), 
(3.33), and (3.42), theng#O. If 1] is independent of v, i.e., 
g = 0 in (4.9), then the symmetry (4.11) corresponds to a 
Lie group of point transformations admitted by the wave 
equation (1.1), and in this case the invariant (similarity) 
solutions of ( 1.2) map into invariant solutions of ( 1.1) un­
der the mapping (1.4). 

Conversely, let 

X=x, T=t, 

U = u + E1](X,t,u,ux,u,) + O(~), 
(4.14 ) 

be a Lie group of point transformations, equivalent to (2.1), 
leaving invariant (1.1). Then 

1] =/(x,t)u - s(x,t)ux -r(x,t)u,. (4.15) 

The corresponding symmetry of ( 1.2) is 

X=x, T=t, U=U+E1]+O(~), 

v= v+ E~+ O(~), 
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where ~ satisfies the compatible system of POE's 

Dt~ = Dx1], Dx~ = c-2(x)Dt1], (4.17) 

and Dx is the total derivative operator 

a a a a 
Dx = - + Ux- + UJCX-- + Utx - + ., .. (4.1S) 

ax au aux aUt 

Although (4.17) always has a solution ~ for any 1] of the 
form (4.15), ~ cannot necessarily be expressed in terms of 
{x,t,u,v} and the partial derivatives of u. If this is the case the 
symmetry (4.16) is not a Lie-Backlund transformation. 

V. EQUIVALENCE CLASSES OF THE SINGLE 
EQUATION 

A natural question arises as to whether POE's of the 
form (1.1) or (1.2), admitting a four-parameter Lie group 
of point transformations, are equivalent to each other in the 
sense that there exists a point transformation mapping one 
POE into the other. Lie1

•
2 gave a criterion applicable to the 

single POE ( 1.1). When Eq. (1.1) is invariant under a four­
parameter Lie group of point transformations, Lie's crite­
rion reduces simply to the following statement. 

Wave equations of the form 0.1) admitting a four-pa­
rameter group are eqUivalent if and only if the corresponding 
wave speeds c(x) have the same value for the integration con­
stant K in Eq. (2.21). 

For u = 0 and any value of K, - 00 <K < 00, there ex­
ists a solution c (x) of system {( 2.9), (2.21)}. As noted pre­
viously a(x) can be imaginary. Hence the wave speed c(x) 
for any u:fO is equivalent to some wave speed c(x) for 
u=O. 

For u = 0, the following wave speeds e(x) are equiva­
lent, modulo scalings in e and x and translations in x: 

(a) e(x) = x, x 2 + 1, x2 - 1; 

(b) e(x) = ~,x2ellx; 
(c) e(x) = xc, x2 - C, (1 - x)c(1 + X)2 - c, for any C. 

VI. CONCLUSIONS 

In this paper we have given the complete group classifi­
cation of the wave equation (1.1) and the corresponding 
system (1.2). We have shown that for a wide class of wave 
speeds e(x), (1.2) is invariant under a larger group than 
( 1.1 ). Consequently for such wave speeds, whose canonical 
equations are (3.39), (3.40), and (3.41), there exist invar­
iant (similarity) solutions of (1.2) which are noninvariant 
solutions of ( 1.1 ) . 

In a future paper we will discuss some interesting solu­
tionsof(1.1) forwavespeedse(x) solving (3.39), (3.4O),or 
(3.41). These include solutions for a class of wave speeds 
with the following physically significant properties: 

(a) c(x) is monotone on (- 00,(0); 

(b) lim e(x) =A, lim =B; 
x_ - QO x- + 00 

(c) maxle'(x)I = C; 
xeR 

(d) e(O) = D; 
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where {A,B,C,D} are arbitrary positive constants, provided 
D is between A and B. 

In another future paper we will shown how to use the 
invariance properties of the system (1.2) to linearize some 
nonlinear systems of POE's which cannot be linearized by 
hodograph transformations, applying procedures outlined 
in Ref. 7. 

APPENDIX A: THE GENERAL SOLUTIONS OF EQS. (2.9) 
and (2.21) 

Here we find the general solution for e (x) of the system 

(a' - Ha)2 - ~a2le2 = K, (Al) 

a 2 = (2H' +H2)-I, (A2) 

where H = e'le, u:;i=O. An integration of Eq. (2.20) to Eq. 
(A 1) resulted from taking the commutator of Lp with Lq in 
(2.30). Without loss of generality, u = 1, by an obvious scal­
ing ofe. 

First we factor (A 1) as 

(a' - Ha + ale) (a' - Ha - ale) = K. (A3) 

Now let 

hex) = a' - ae'le + ale. (A4) 

Then 

a' - a(e'le) - ale = K Ih(x). (AS) 

Equations (A4) and (AS) lead to 

e=hlh', a=H(h 2-K)/h']. (A6) 

Thus the problem of finding e(x) is equivalent to finding 
hex) satisfying (A2) which now becomes 

(h 2 _ K) [2h "'h'h 2 _ 3(h ")2h 2 + (h ')4] = (h ,)4h 2. 
(A7) 

Equation (A 7) is invariant under arbitrary sealings and 
translations in x. Hence3 one can reduce (A7) to a first­
order OOE by choosing corresponding differential invar­
iants 

u = h, v = h II I(h ')2. (AS) 

Then (A 7) becomes the Riccati equation 

2~+v2+_1_+~=0. 
du u2 -K u2 (A9) 

After v is solved explicitly in terms of u, v = v(u), (AS) 
becomes 

h "Ih' = v(h)h'. 

Thus 

log h' = f v(h)dh + kl = -log M(h), 

where kl is an arbitrary constant. Then 

f M(h)dh =X + k2' 

(AlO) 

(All) 

(A12) 

where k2 is an arbitrary constant. After solving (A12) for 
hex), (A6) leads to 

e(x) = h(x)M(h(x»). (A13) 
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It should be noted that the transformation 

2 _Idw 
v= w -

du 
reduces (A9) to the second-order linear ODE 

d
2
w (I I) 4--+ --+- w=O. 

du2 u2 
- k u2 

(AI4) 

(AI5) 

Equation (AI5) can be solved in terms of hyper geometric 
functions. 

APPENDIX B: THE GENERAL SOLUTION OF EQ. (3.6) 

Here we find the general solution of Eq. (3.6) when 
A :f0. Without loss of generality, A = I or i, by an appropri­
ate scaling of c(x). Hence we consider 

cc'(clc') " = ± 1. (Bl) 

This ODE can be fully integrated using group methods de­
scribed in Ref. 3. 

Since (B I) is invariant under scalings x* = p,x, 
c* = f..tc, and translations in x, we choose new variables3 

u=c', v=cc", (B2) 

which are differential invariants with respect to this two­
parameter family of symmetries. Consequently (B I) be­
comes 

dv 2v_ u -=-+-. 
du u v 

(B3) 

Equation (B3) is homogeneous in u and v. Using this fact, 
one finds that the general solution of (B3) is 
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(B4) 

Now we choose new variables c and u, invariants under 
translations in x, so that (B4) becomes 

du ~;;ZU2 ± 1 

dc c 
(B5) 

The general solution of (B5) is then 

u = (l/2v)[(pc)V + (pc) -v], (B6) 

where p is an arbitrary constant. After scaling c and x so that 
p becomes 1, (BI) reduces to 

c' = (l/2v)[cv +c- v
], (B7) 

i.e., 

c'=v-Isinh(vlogc) or v-lcosh(vlogc). (B8) 

Ifv is replaced by - v in (B4) then (B7) reduces to 

c' = V-I sin(v log c). (B9) 

Equation (B8) can be integrated out if v is any rational num­
ber. 
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A modified form of the anisotropic Heisenberg spin chain has been considered. By use of the 
prolongation structure technique of Wahlquist and Estabrook, the elliptic Lax pair associated 
with this equation has been deduced. A variant of the Reimann-Hilbert problem on the torus 
is used to indicate the way to the solution of the inverse problem. 

I. INTRODUCTION 

In the last decade there has been a tremendous amount 
of progress in the theoretical study of nonlinear phenomena. 
Applicability of such methodologies to various classes of 
physical situations made the research worth pursuing. One 
of the most important equations occurring in the domain of 
solid state physics is that of the Heisenberg spin chain. I An 
interesting feature of many such integrable equations is that 
many of them do possess a similar but slightly different inte­
grable form known as the modified form. The most familiar 
example is that of the KdV and MKdV cases.2 Also, it has 
been found that it is possible to find a mapping between the 
usual and the modified form of the KdV equation-a phe­
nomenon known as deformation.3 In this paper we propose 
to study a modified anisotropic Heisenberg spin chain equa­
tion, which, as far as these authors' knowledge goes, was not 
previously known. We have made a prolongation analysis to 
deduce the Lax pair and then study the inverse problem with 
the technique of the Reimann-Hilbert problem on the torus4 

because the Lax pair obtained is a doubly periodic function 
of the spectral parameter. The problem that we do not touch 
upon is that of the mapping between the anisotropic Heisen­
berg spin chain and our equation. 

II. FORMULATION 

The equation we propose to study is written as 

~ = - [J1XJ1xx] -!{J1(J1,BJ1)}x + (a+B)J1x, (1) 

where J1 is a three-vector (J.l1 (X)"u2 (X)"u3 (x») coupled by 
the constraint 

J.li(x) +J.l~(x) +J.l~(x) = 1, (2) 

where a is an arbitrary constant, B = diag (b l,b2,b3), (a,b) 
denotes the scalar product, and (axb) denotes the cross 
product. To deduce the inverse scattering equation, we fol­
low the methodology laid down by Wahlquist and Esta­
brook. In this approach we first convert the set of equations 
( 1) in the language of the differential form. 

If we now introduce the new set of independent vari­
ables, J.llx = p, J.l2x = q, and J.l3x = r, then we observe that 
our given equation set is equivalent to the following differen­
tial forms on proper sectioning. 

We name these differential two-forms as a;: 

al = dJ.l1 Adt - p dx Adt, 

a2 = dJ.l2 Adt - q dx Adt , 

a 3 = dJ.l3Adt - rdx Adt, 

a 4 = dJ.l1 A dx + J.l2 dr A dt - J.l3 dq A dt 

- {(~bl J.li + !b2 J.li + !b3 J.l~) + a + bl}dJ.l1 A dt 

- !b2 J.l1 J.l2 dJ.l2 A dt - !b3 J.l1 J.l3 dJ.l3 A dt , 
(3) 

as = dJ.l2 A dx + J.l3 dp A dt - J.l1 dr A dt 

- { (!b I J.li + ~b2 J.li + !b3 J.li ) + a + b2}dJ.l2 A dt 

- !bl J.lIJ.l2 dJ.l1 Adt - !b3J.l2J.l3 dJ.l3Adt, 

a 6 = dJ.l3 A dx + J.l1 dq A dt - J.l2 dr A dt 

- {(!blJ.li + !b2J.l~ + ~b3J.li) + a + b3}dJ.l3Adt 

- !bl J.l3 J.l1 dJ.l1 A dt - !b2 J.l3 J.l2 dJ.l2 A dt . 

It is interesting to observe that this set of forms generates a 
closed ideal; that is, 

(4) 

where lij are some functions. The basic assumption of the 
prolongation theory is that we may extend the set of vari­
ables from (x,t,p,q,r"uI"u2"u3) to (x,t,p,q,r"uI"u2"u3 andyi) 
(for the moment i is unspecified), where these extra inde­
pendent variables (whose number is not fixed to start with) 
are the prolongation variables. With this setting in mind we 
proceed to search for a one-form 

Ok = dYk + Fk dx + Gk dt, (5) 

with 

Fk = Fk (x,t,p,q,r"uI,J.l2"u3,y;) , 

Gk = Gk (x,t,p,q,r"uI"u2"u3,y;) , 

such that the exterior derivative of Ok, that is, dOk , also 
remains in the extended ideal comprising of (ak,Ok)' Writ­
ten explicitly, this condition reads 

dOk = l:J7a ; + I (a7 dx + b 7 dt) AdO; . (6) 

On the other hand, 

aF aG 
dO = I-dxp, Adx + I-dxp, Adt, (7) 

axp, axp, 

where xp, denotes the full set of independent variables 

xp, = {x,t,p,q,r"uI"u2"u3,y;} . (8) 

So comparing Eqs. (6) and (7), equating coefficients of 
different two-forms such as dx A dt, dx A dp, etc., we get the 
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following conditions restricting the structure of the func­
tions F and G: 

aG - bF - Pit - q h - r:h = 0 , 

Gp = f.l3FIt, - f.l2FItJ ' 

Gq = f.lIFItJ - f.l3FIt. ' 

G, = f.l2FIt. - f.lIFIt, ' 

(9) 

(10) 

G It. = It -It Bbl f.li + !b2 f.l~ + !b3 f.l~ + a + bI] 

- !Isb l f.ll f.l2 - !hbl f.l3 f.ll , (11) 
I 

Glt2 = h -Is Ubi f.li + ~b2 f.l~ + !b3 f.l~ + a + b2] 

- !ltb2f.l1 f.l2 - !f6b2f.l3f.l2' (12) 

GItJ = h - h Ubi f.li + !b2 f.l~ + ~b3 f.l~ + a + b3] 

- !fsb3f.l2f.l3 - !ltb3f.llf.l3' (13) 

Fp = Gq = G, = 0 , 

Gpp = Gqq = Grr = 0 , 

Gplt2 = - FItJ , GPItJ = - Fit, ' etc., 

along with the condition 

(14) 

pGIt• + pFIt• Bblf.li + !b2f.l~ + !b3f.l~ + a + bI] + (pI2)b l f.llf.l2FIt2 + (pI2)b l f.l3f.lIFItJ + qGIt, 
(15) 

+ qFIt, Ubi f.li + ~b2f.l~ + !b3f.l~ + a + b2] + (qI2)b2f.l1 f.lzPlt • + (qI2)b2f.l3f.l2FItJ + rGItJ 

+rFItJBblf.li +!b2f.l~ +~b3f.l~ +a+b3] + (rI2)b3f.l2f.l~1t2 + (rI2)b3f.llf.l~ItJ + [F,G] =0, 

where 

aG aF 
[F,G] = Fk - - Gk - . 

aYi aYi 

It is then interesting to observe that the above equations dictate the following forms of F and G, the factors represented by 
Xi (y) denote the dependence on the prolongation variablesYi that is still unknown, 

F=Ulf.lIXI(Yi) +U2f.lzX2(Yi) +U3f.l3X3(Yi) ' 

G=WI-I{Sf.l1 +f.ll(a- (A/2»)- (f.l2f.l3x -f.l3f.l2x)}XI (Yi) +w2-
I{Sf.l2+f.l2(a- (A/2») (16) 

- (f.l3f.llx -f.llf.l3X)}X2(Yi) +W3- I{Sf.l3 +f.l3(a - (A/2») - (f.l2f.llx -f.llf.l2x)}X3(Yi)· 

In Eq. (16), S, U i , and wi- I (i = 1,2,3) are arbitrary con­
stants to be determined. Substitution of these forms of F and 
Gin (15) leads to thefollowing: (i) if we consider the con­
stants Ui and Wi such that 

(17) 

and (ii) the Xi (Y) thought of as operators in Y satisfy 

[Xi> ~] = EijkXk , (18) 

then the equation satisfied by f.ll (for example) is 

(
a U2 ) f.llt + - - S - -- f.llx 
2 W3UI 

+ ~I (j.L,Bj.L)x + Eijk f.lj f.lkxx = 0, (19) 

after we take care of the condition f.ll p + f.l2q + f.l3r = 0, 
which is deduced from f.li + f.l~ + f.l~ = 1. If we now com­
pare Eq. (19) with the first component of the original non­
linear Equation (1) [the same procedure is to be followed 
for the 2nd and 3rd component of ( 1) also], then we arrive 
at 

bl = - ~a + S + w l /w2W 3 , 

b2 = - ~a + S + W2/wIW3 , 

b3 = - ~a + S + W3/wIW2 . 

(20) 

Hence the consistency of the prolongation equations leads to 
the nonlinear equations we started with. 

III. INTRODUCTION OF A SPECTRAL PARAMETER 

A derivation of the linear problem associated with a 
nonlinear equation can never be thought to be complete until 
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I 
a spectral parameter can be introduced. Here we show how 
our linear problem associated with (F,G) has elliptic depen­
dence on the spectral parameter. 

From Eq. (20) we obtain 

1 
b l - b2 = --- (wi - w~ ) = w:2 - W~2 , 

and 

b2 - b3 = W~2 - wl2
, b3 - b l = W~2 - w:2 , 

with 

(21) 

Equation (21 ) immediately suggests that the Wi'S are soluble 
in terms of elliptic functions: 

I _ PIP dn (A,k) 
WI - , W 2 = , 

sn(A,k) sn(A,k) 
I P cn(A,k) 

W3 = , 
sn(A,k) 

with 

bl - b2 = k 2p2 , 

b2 - b3 = (1 - k 2 )p2 , 

so that the x part of our Lax pair is written as 

L = [p2/sn2(A,k)] [f.ll In(A,k)dn(A,k)XI 

+ f.l2 cn(A,k)X2 + f.l3 dn(A,k)X3] . 

(22) 

(23) 

(24) 

The time part is given by G. The common parameter A oc­
curring in the elliptic functions serves as the spectral param­
eter. It is important to note that L is a doubly periodic func­
tion of A defined on a torus. 
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IV. SOLUTION OF THE INVERSE PROBLEM 

The usefulness of the Lax pair deduced above can be 
ascertained if and only if we can effectively use them to deter­
mine the nonlinear fields f.li (x) from a suitably given spec­
tral data. The main steps for the inverse problem for a doubly 
periodic Lax operator has been given in detail by Rodin. Due 
to the occurrence of the elliptic functions in Eq. (24), we 
have 

L(A + 2k) = O'JLO'J , 

L(A + 2ik ') = O'ILO'I , 
(25) 

where k and ik ' are the two periods of the elliptic functions 
and Eq. (25) defines an involution. Also if we assume the 
asymptotic condition 

f.l1(X),f.l2(X) -+0, f.lJ(x) -+ 1 as X-+ 00 , 

then Eq. (24) yields 

rPx (00) ~ [ip2/sn2(A,k) ]dn(A,k)XJrP( 00) , 

whose straightforward solution is seen to be 

rP(oo)-exp [ :i
p2 

dn(A,k)] (0
1
). 

sn (A,k) 

To extract the asymptotic behavior from (24) we set 

"'( ) (. 2 dn(A,k)O'JX) ./,( ) 
'I' x = exp - Ip sn2 (A,k) 'I' x , 

which shows that tP satisfies 

(26) 

tPx = {ip2 dn(A,k) O'J + p2 (f.l10'1 cn(A,k)dn(A,k) 
sn2 (A,k) sn2 (A,k) 

+ f.l20'2 cn(A,k) + f.lPJ dn(A,k»)} tP . (27) 

Now it is well known from the properties of the elliptic func­
tions that 

cn(A,k), dn(A,k) -+ 1, sn(A,k) -+..1., for small A . 

So for Eq. (27) to be free from singularity at A = 0, we must 
have the residue at A = 0 to be equal to zero, so 

f.liO'itP(A = 0) + itP(A = O)O'J = 0, 

or (28) 

f.l;O'i = - itP(A = 0)O'JtP-1(A = 0) . 

So Eq. (28) is nothing but the key equation for the inverse 
problem. Because, if tP (x) is known from some spectral con­
siderations, thenf.li (x) can be obtained via (28). 

V. THE ANALYTIC STRUCTURE OF + AND ITS USE 

In the next part of our discussion the two main proper­
ties of tP that we will use are (i) the pole structure in the A 
plane and (ii) the double periodicity. The explicit form of tP 
that we will use is constructed on the basis of these two prop­
erties and was first used in Ref. 5. It is actually an expansion 
in terms of the Riemann zeta function: 

tP(A) = NI [I + atl itl Bf f~ (A)] B, 

where 

321 J. Math. Phys., Vol. 28, No.2, February 1987 

(29) 

f~ (A) = ;(..1. - f.la) - ci , 

; is the Riemann zeta function, the ci are constants, and the 
B 's are the matrices satisfying the conditions 

B f = O'IB ~*O'I = O'JB '3O'J = O'JO'IB ~*O'IO'J , 

B = O'IB *0'1 = O'JO'IB *O'IO'J , 

where NI is a normalizing diagonal matrix. 
It is also important to note 

f~(A - 2k) =f~+2(A) - r/, 
f~S - 1 (A + 2ik ') = f;:* (A *), s = 1,2 . 

(30) 

(31) 

After substitution of (29) in (24), if we demand that the 
resulting expression should not have pole at A = f.li' we ar­
rive at 

(32) 

showing that matrix B is degenerate and can be represented 
in the form 

(Bf)ab = (ma)a(ya)b' (33) 

This explicit form of (B I) yields the following sets of equa­
tions: 

N 

m*PO'I + L [(m*PO'lma)f~l) (Ap) ya + (m*PO'I0'3ma) 
a=1 

Xf~3) (Ap) yaO'J + (m*Pm*a)f~2) (Ap) y*aO'I 

+ (m*P0'3m*a)f~4) (Ap ) y*aO'JO'I] = 0 . (34) 

Ifwe now set Y' = (:) and m = (m l ,m2), then (34) can be 
recast as 

m*PO'I + uaya + vayaO'J + wayaO'J + zayaO'JO'I = 0, 

with 

u a = (m*PO'lma)f~I)(Ap) , 

va = (m*PO'IO'Jma)f~3) (Ap) , 

w a = (m*Pm*a)f~2) (Ap) , 

za = (m*PO'Jm*a)f~4) (Ap) . 

(35) 

(36) 

The set of equations in (35) can be solved for y. So the vector 
,Xi is explicitly known in terms ofthe values of ;-functions, 
where the only arbitrariness is in the choice of m, which can 
be chosen properly. 

And hence we can determine the eigenfunction tP, which 
in tum determinesf.li through Eq. (28). 

VI. DISCUSSION 

In our above analysis we have discussed the prolonga­
tion approach to a new nonlinear equation and have shown 
how an elliptic Lax pair can result from such an analysis. 
Lastly, a variant of the Riemann-Hilbert problem on the 
torus has been used to solve explicitly the full inverse prob­
lem. 
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A simple and accurate method is developed for calculating singular points from Taylor series. It 
consists of finding the least-squares deviation of the Taylor coefficients from a proposed 
asymptotic form. Sequences are obtained that converge quickly to the closest singularity to the 
origin. Some simple mathematical examples and physically interesting eigenvalue problems are 
discussed to illustrate the procedure. The branch points of the eigenvalues for the solutions of 
period 211' of the Mathieu equation and those of the Stark shifts for rigid symmetric-top molecules, 
which were not obtained before, are shown. 

I. INTRODUCTION 

It often happens that the only available approach to a 
physical problem is a Taylor series. In that case one has to 
obtain as much information as possible from it. For example, 
when the expansion (supposed, without loss of generality, to 
be about the origin) is known to have a finite radius of con­
vergence, it is of great interest to determine the number, kind 
(i.e., pole, branch point, etc.), and position of the closest 
singularities to the origin. The accuracy of the singular 
points obtained from power series expansions depends on 
the number of available Taylor coefficients (and their rapid­
ity in reaching the asymptotic behavior'). 

Calculation of singularities from Taylor series is of ut­
most importance in the examples below. 

(a) Some quantum-mechanical eigenvalue problems. In 
this case the convergence radius of the perturbation series is 
determined by branch points due to level crossings in the 
complex plane (see Refs. 2-6, and references therein). 

(b) Critical phenomena and phase transitions. High­
and low-temperature expansions and virial series prove to be 
suitable for calculation of phase transitions in spin-lattice 
models 7,8 and ftuid-solid phase transitions in imperfect-gas 
continuum models,9-'2 respectively. 

Most of the methods used in finding singular points by 
means of Taylor series apply when the singularity nearest to 
the origin is real. However, the convergence radius of the 
power series is frequently determined by, at least, a pair of 
complex conjugate branch points, as in the case of some criti­
cal phenomena7

•
13 and quantum theory problems.6 

The aim of the present paper is to develop a new way of 
obtaining, from the Taylor series, the parameters (critical 
parameters from now on) characterizing the closest singular 
point (real or complex) to the origin. The method is devel­
oped in Sec. II and its connection to other techniques is dis­
cussed in Sec. III. The procedure is checked in Sec. IV by 
means of some simple mathematical examples and applied to 
the bounded delta atom in Sec. V. The branch points of the 
characteristic values of the Mathieu equation of period 211' 

a) To whom all correspondence should be addressed. 

and of the Stark shifts for a rigid symmetric-top molecule are 
discussed in Sec. VI. Conclusions are found in Sec. VII. 

II. THE METHOD 

Letf(z) be a function of the complex variablez = x + iy 
that has singular points at z,' Z2"'" Zj = Xj + iYj' numbered 
in such a way that Iz,I<lz21< .. ·. Owing to this, the Taylor 
series about the origin 

00 

f(z) = L fnz" (1) 
n=O 

will converge in Izi < Iz ,I. It is further supposed that f(x) is 
real, which means that the coefficients fn are real and each 
singular point zJ is either real or a complex conjugate of an­
other one. It will be shown below how to obtain the closest 
singularity to the origin from the expansion (1). 

For the sake of simplicity, we first discuss the algebraic 
singularities and then extend the method to other cases. If Zj 

is a branch point of order k - 1 or a pole (k = 1) ,f(z) can be 
expanded, in a neighborhood of Zj' as '4 

(2) 
n=m 

where m is a positive or negative integer and qj 

= (z - Zj ) '/k. To illustrate the procedure let us suppose 
that Z2 = zT. Upon neglecting terms of order larger than m 
we havef(z)~o + F,q,!" which, on the same level of ap­
proximation, can be rewritten as 

f(z)-:::::.Fo +A q'!'q';, (3) 

where A = F,/(z, - z2)a, a = mlk, and q'!'q'; 
= (r - 2x ,Z + xf + yf ) a. The singular points z, and Z2 are 

characterized by the critical parameters (CP) (x"y,), a, 
and A, called the critical position, exponent, and amplitude, 
respectively. 

On the other hand, the coefficients Yn of the Taylor 
expansion about the origin for the generating function (G F) 

Y(z) = B(r - 2uz + r)b, (4) 

obey the three-term recursion relationship 

(n - 2b - l)Yn_, + 2u(b - n)Yn + (n + l)rYn+, 
=0, (5) 
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where Yo = Bilb and Yn = 0 if n < O. 
The present technique, called the generating function 

method (OFM) from now on, rests upon the supposition 
that the Taylor coefficients/" tend to obey Eq. (5) as n tends 
to infinity provided U = XI' il = xi + yi, and b = a. There­
fore, if Yn is replaced by/" in Eq. (5) for n = N,N + I, and 
N + 2 and the resulting set of equations is solved for u, il, 
and b, we obtain three sequences, namely UN' rJ.." and bN, 
that converge towards Xl> xi + yi, and a, respectively, as N 
tends to infinity. The recursion relationship (5) also applies 
whenf(z) has a pair of complex conjugate branch points 
with the same irrational exponent a. This is due to the fact 
that, though the argument leading to Eq. (3) does not hold 
in this case, f(z) is expected to behave approximately as 
const + A (z - Z I) a (z - zT) a in the neighborhood of either 
z I or Z2 = zT and the generating function (4) proves to be 
suitable. 

Though we are at present unable to prove rigorously 
that our sequences converge towards the actual CP, exten­
sive numerical investigation covering a very large number of 
mathematical examples and physical problems suggests that 
the OFM is always successful provided an appropriate OF is 
chosen. This is confirmed in later sections. For example, in 
the particular case just discussed (i.e., Z2 = zT> the se­
quences converge quickly if Z3 is far enough from the conver­
gence circle. 

Since the exact a value is known beforehand for all the 
problems studied in this paper we restrict ourselves to this 
simpler case. A straightforward algebraic manipulation of 
Eq. (5) with Yn = /" and b = a leads to 

UN =!:t.( WNIUN )/!:t.( VNIUN), (6a) 

d" =!:t.(WNIVN)I!:t.(UNIVN), (6b) 

where UN = 2(a - N), VN = (N + 1)QN' WN 
= (20 + I - N)/QN' QN =fNlfN-I' and APN = PN+ I 

-PN • 

If A is real we can calculate it as follows: Let U L' r i, and 
bL the approximate limits ofthe u, r 2, and b sequences, re­
spectively, computed somehow. Then we can use the recur­
sion relationship (5), to obtain YN(bL , Uu rio B= 1). 
Therefore, since YN (B) = BYN (B = 1), it is assumed that 
the sequence 

(7) 
must converge towards A as N increases. When A is not real, 
the B sequence is found to be strongly oscillatory, as shown 
later on in Sec. IV. 

The CP sequences can be obtained another way. The 
recursion relationship (5) enables one to calculate 
Yn (u,r 2,b,B) quickly for large enough n values. Then the 
values of the adjustable CP u, r 2, b, and B can be selected so 
that the smallest square deviation 

N 

SM.N = L (fn - Yn )2, N>M + 2, (8) 
n=M 

is obtained. This leads to sequences that are believed to con­
verge towards the actual CP as M and N tend to infinity (the 
B sequence converges provided A is real). This form of the 
OFM can be viewed as a generalization of the asymptotic 
least-squares method recently developed to obtain the real 
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singular points of the compressibility factor ofimperfect-gas 
continuum models from the virial series. IS Though this cal­
culation scheme leads to greatly revealing two-entry ta­
bles, IS in this paper we mostly use the much simpler one 
discussed above that is accurate enough for our purposes. 
However, we want to emphasize the very striking fact that 
when A is not real the critical exponent and position se­
quences obtained from the least-squares version of the OFM 
are convergent in spite of the fact that the minimum equa­
tions depend on the divergent B sequence. 

The OFM applies to cases other than those discussed 
above provided the OF is chosen accordingly. For example, 
ifzl is real and IZ21 > IZII the simplest OF is 

Y(z) =B(I-zlu)h, (9) 

whose Taylor coefficients obey 

(n + 1)Yn+ 1 = (n -b)Ynlu. ( 10) 

After replacing Yn by fn we obtain the equations of the well­
known ratio method (Chap. 4 in Ref. 7): 

UN 1= !l.(NQN)' 

bN = - I-N(N + I)uN!:t.QN' 

(Ita) 

(lIb) 

These sequences prove to be convergent if the conditions 
above are fulfilled. 

When Z2 lies close to the convergence circle the ratio 
method converges too slowly (interfering singularities). In 
such a case, assuming for the sake of simplicity that Z2 is real, 
we try a OF of the form 

Y(z) = B(I - ZIU)b(l - ZIV)b', (12) 

or 

( 13) 

They may be useful, for example, in studying phase transi­
tions in antiferromagnetic spin-lattice models 7 or when there 
are confluent singularities.4

,8 The specific heat and magnetic 
susceptibility of two-dimensional loose-packed spin-lattice 
Ising models exhibit logarithmic singular points.7 These 
problems can be treated by means of appropriate logarithmic 
OF's. 

If the form of the singularity closest to the origin is 
known beforehand, the appropriate OF is easily built. Oth­
erwise, we try different ones till we obtain quickly conver­
gent CP sequences. Since the examples discussed in this pa­
per exhibit a pair of complex conjugate branch points of 
order I (k = 2) closest to the origin, then Eqs. (6) and (7) 
with a = bL = ~ can be used. 

III. RELATION WITH BERNOULLI'S ITERATION 
ALGORITHM 

Letzl, Z2"'" Zn (numbered as before) be the roots of the 
algebraic equationg(z) = 0, where 

(14) 

Ifgo'#O the functionf(z) = l/g(z) , which has a pole at each 
zi' can be expanded in Taylor series about the origin. The 
coefficients /; can be obtained from 

(15a) 

Fernandez, Arteca. and Castro 324 



                                                                                                                                    

n 

fn = -gn- I L gifn-i> n >0. 
i=O 

(15b) 

Therefore, the method developed in Sec. II can be used to 
calculate the zero of g(z) nearest to the origin (and also the 
other ones after the appropriate polynomial factorization). 
Though there are better ways of doing this in the mathemat­
icalliterature, we discuss the GFM here in order to show 
that it reduces to Bernoulli's algorithm. 16 

First of all it must be noticed that, due to the way Eq. 
(14) is written, present roots are exactly the inverse of those 
in Ref. 16. Let us consider three different cases (cf. Ref. 16). 

(a) ZI is real and IZII < IZj I, j> 1. The GF (10) with 
b = - 1 leads to 

ZI = lim/;_II/;. (16) 
i_ 00 

(b) ZI = zr and IZII < IZjl, j> 2. It follows from Eq. (6) 
with b = - 1 that 

XI = lim (/;-1 /; - /;-2/;+ I )/{2(f; - /;-1 /;+ d}, 
i-oo (17a) 

xi + yi = lim (f;-I -/;/;-2 )/(f; - /;-1 /;+ I)' 
;-00 

(17b) 

(c) ZI = Z2 are real and IZII < IZj I, j> 2. Since (4) is the 
appropriate GF with r = u and b = - 1, we can use Eq. 
(17a) to obtain ZI' 

Other exceptional cases, in which several roots have the 
same minimum absolute value, can be treated in a similar 
way. 

This procedure is also suitable for obtaining the roots of 
infinite series. For example, Aguilera-Navarro and Agui­
lera-Navarro l7 derived Eqs. (15) and (16) from Pade ap­
proximants. However, these authors were not able to explain 
why the algorithm always yields the closest zero to the ori­
gin. 17 A very simple proof is given in Ref. 16. 

We are at present unable to prove rigorously that there 
is an appropriate GF for each problem leading to convergent 
CP sequences. However, it is our aim to give satisfactory 
enough evidence that this is so. To begin with, notice that in 
certain cases the GFM reduces to two well-known conver­
gent algorithms such as that of Bernoulli 16 and the ratio 
method (Chap. 4 in Ref. 6). Besides, it will be shown in the 
next sections that the GFM applies successfully to a number 
of examples. 

IV. SIMPLE MATHEMATICAL EXAMPLES 

In order to verify the statements in Sec. II we will dis­
cuss some simple mathematical examples, which are nontri­
vial in the sense that Y(z) =I.f(z) even when the adjustable 
CP equal the actual ones. 

Let us consider an implicit equation of the form 
G (z,j(z») = 0 so that f(z) and z( f) are analytic at 
Z = 0 and f = Fo = fez I)' respectively. Therefore, if 
(a kZlafk) (f= Fo) = 0 and (a k+ Izlafk+ I) (f= Fo) =10 
thenz i isa branch point off(z) of order k - 1 (order kin the 
notation of Ref. 6 and references therein). Some particular 
cases are considered below. 
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If 

G(z,j) =Z +r - fef+ I, (18) 

then k = 2, Z I = - (1 ± 31 12i) 12 (for the sake of simplicity 
we use ZI to represent both ZI and Z2 = zT), f(zl) = - 1, 
and (a 2f lag2)(z = ZI) = 1, g = Z + r. Therefore, 

fez) """ - 1 + 21/2(r + Z + 1) 1/2, (19) 

for Z close enough to Z I' This shows plainly that a = !, 
XI = -~, Iyd = 31/2/2, and A = 21/2. 

To obtain the coefficients of the Taylor series for fez) 
about the origin we notice thatf(z) obeys 

(r -z +rf +zf)/' -f(1 + 2z) = 0, (20) 

where/, = af laz. The expansion ofEq. (20) in powers ofz 
leads to the recursion relationship 

1 { n-I } 
fn = -- (n - 3)fn_1 + L jjj(fn-j + fn-j- d , 

1 - n j=O 

(21) 

wherefo = 0, andfl = 1/ e, which enables one to compute all 
the Taylor coefficients quickly and accurately. 

On using Eqs. (6) and (7), with bL = a, we obtain the 
CP sequences in Table I. Their limits can be estimated from 
1/ N extrapolations. Since the B sequence converges in a 
stepwise manner we must select the corresponding member 
of each step before extrapolating. Thus we obtain XI 

= - 0.500 000 ± 3 X 10-6, IYII = 0.866 025 ± 2 X 10-6, 
andA = 1.41421 ± 4x 10-5 that closely agree with the ac­
tual CPo As happens when using other techniques the criti­
cal-amplitude sequence is always the most slowly conver­
gent one. 

The GFM is very promising in calculating complex sin­
gularities from power series because the most widely used 
algorithms, namely, the Pade approximants and their var­
iants, such as the N point fits, do not appear to be so easy to 
handle. 7.\3 Besides, the GFM is expected to be more accurate 
since it takes into account explicity the form of the singular­
ity. 

The next example is 

G(z,j) = Z + 2 - (f2 + 2)el, (22) 

for which k = 2, Zl = 23/2e- l({sin(1 + 17'14) - 2} 
±isin(1-17'/4»), f(zl) = -1 ±i, and A = i(eI2YI) 1/2 
X exp ( =+= iI2). The Taylor coefficients can be evaluated as 
in the previous case and the CP sequences are shown in Table 
II. As expected the B sequence is strongly oscillating and 
does not converge. The CP estimates, XI = - 0.98337 ± 2 
X 10-5 and IYII = 0.22158 ± 10-5

, are in close agreement 
with the exact values. 

TABLE I. CP sequences for the example in Eq. (18). 

495 0.499 997 15 
496 0.499997 18 
497 0.499 997 18 
498 0.499 997 19 
499 0.499 997 21 
500 0.499 997 22 

0.99999716 
0.99999718 
0.99999720 
0.99999719 
0.99999721 
0.99999723 

0.866 023 767 
0.866 023 773 
0.866023791 
0.866023 787 
0.866 023 793 
0.866 023 811 

1.410 877 
1.418781 
1.408023 
1.410 897 
1.418754 
1.408060 
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TABLE II. CP sequences for the example in Eq. (22). 

N -UN rN (r~ - u~)·/2 BN 

495 0.983 346 754 1.008 005 854 0.221 59639 - 0.195 032 
496 0.983 346 749 1.008 005 833 0.22159632 0.469296 
497 0.983 346 7fIJ 1.008 005 828 0.22159625 1.414442 
498 0.983 346 785 1.008 005 839 0.221596 19 3.068908 
499 0.983 346 821 1.008 005 862 0.221 59614 7.377252 
500 0.983 346 8fIJ 1.008 005 892 0.22159610 84.007040 

V. THE BOUNDED DELTA-POTENTIAL ATOM 

Bounded quantum-mechanical models prove to be use­
ful in simulating some physical phenomenal8 (and refer­
ences therein). The Kato-Rellich theorem2

,3 assures us that 
in such cases the perturbation expansion 18 has a non-null 
radius of convergence. Although there is no rigorous proof 
about the singularities determining it, it appears reasonable 
to think that they are branch points of order 1. To verify this 
assumption in this section we apply the GFM to a very sim­
ple one-dimensional example. More complex problems will 
be treated elsewhere in a forthcoming paper, 

Let us consider a one-dimensional delta-potential hy­
drogenlike atom (atomic units are used throughout) 

- ! ,p" (x) - Z8(x),p(x) = E,p(x), (23) 

within a box with impenetrable walls at x = ± b, i.e., 
,p( ± b) = O. The odd-parity solutions ofEq. (23) are those 
of the particle in a box (and we, therefore, completely ne­
glect them) whereas the energy eigenvalues for the even­
parity states are easily shown to be the roots ofl9

,20 

Z= v cot v, (24) 

where Z = Zb and v = b(2E) 1/2. 

By reasoning as in the previous section we conclude that 
v(z) has an infinite number of branch points of order 1 at 
z = Zo, ZI>'" given by the roots of 

v =! sin 2v, (25) 

and that 

(26a) 

(26b) 

where Wj = v(Zj)' The branch point atzo = 1 (wo = 0) can 
be neglected because it is due merely to a change of sign in 
the energy. The remaining ones are singularities in E (z) and 
can be obtained as accurately as required from Eq. (25). 

To obtain the energy perturbation series we first notice 
thatf(z) = V2(Z) obeys the following differential equation: 

(f+r-z)f'+2f=0. (27) 

Therefore, the coefficients ofthe Taylor series about the ori­
gin forf(z) can be obtained from 

fn+ I = (n + I)-Yo- I
{ (n - 2)f" + (n - l)fn_1 

(28) 
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TABLE III. Branch points in the energy eigenvalues of the bounded delta­
potential atom. Exact values are given within the parentheses. 

j x. y. 

1.89527 3.71945 
(1.895282) (3.719436) 

2 2.18019 6.93299 
(2.1802181) (6.932967) 

3 2.3fIJ 51 10.10734 
(2.360 58) (10.10730) 

4 2.49284 13.268 11 
(2.492953) (13.268063) 

where fo = (2j + 1 )2r/4 and j = 0,1, ... is the quantum 
number. The perturbation series for the lowest eigenvalue 
(j = 0) converges for all z values because of what was said 
above, while the radius of convergence ofthejth state (j > 1) 

is given by IZj I. 

On using Eqs. (6) (without extrapolation) with 
N = 500 we obtain the results in Table III, which closely 
agree with the roots ofEq. (25) (between parentheses). This 
suggests that the GFM may be useful in dealing with the 
many other bounded quantum-mechanical models for 
which a very large number of energy perturbation correc­
tions can be calculated easily. 18 

VI. PERIODIC EIGENVALUE PROBLEMS 

In this section we will study two simple but nontrivial 
(in the sense that they are not exactly solvable) periodic 
eigenvalue equations of great physical importance. They are 
very useful for our purposes because the Kato-Rellich 
theorem2

,3 assures us that in both cases the perturbation se­
ries have non-null convergence radii. The first one is the 
Mathieu equation21 

,p"(O) + (a-2qcos20),p(O) =0. (29) 

Following standard notation we will use a and /3 to label the 
characteristic values for even- and odd-parity solutions, re­
spectively, and even and odd SUbscripts to designate solu­
tions of period 1T and 21T, respectively. 

The characteristic values for the solutions of period 1T 

are known to have an infinite number of conjugate branch 
points of order 1 on the imaginary axis in the complex q 
plane. It is found that a4j _ 4 (P 4j _ 2)' and a 4j _ 2 (P 4j)' 

j = 1,2, ... , have a common real value at q; ( q 1). These sin­
gularities can be calculated easily from continued fractions 
expansions21 or through a determinantal recurrence rela­
tion.22 

On the other hand, no systematic study of the singulari­
ties of the characteristic values for the solutions of period 21T 

has been carried out as far as we know (see note added in 
proof). However, there is no doubt that no real singular 
point exists.21 Since a 2j + 1 (q) = P2j + 1 ( - q) (see Ref. 21) 
we only consider the even-parity solutions. Diagonalization 
of the matrix of the linear operator H (q) = d 21 
dO 2 - 2q cos 0 in the basis set of eigenfunctions of H(O) for 
complex q values shows that a 1 and a 3 have a common com­
plex value at (q =Z, qj =Zj' etc.) XI = 1.931 3926, 
IYll = 3.237 6385 (see Ref. 23). Unfortunately, this brute-
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force procedure is extremely cumbersome, lengthy, and re­
stricted to eigenvalue problems. A better approach is re­
quired. 

The Taylor series about the origin for the characteristic 
values ofEq. (29) are easily calculated by standard pertur­
bation theory21 (see the Appendix). According to our com­
putational facilities we have been able to calculate a~j~ I for 
s (perturbation order) < 40. It is found that aCt) /a<;) ..... - 1 
as s ..... 00, which is in agreement with the fact that a I and a 3 

are the branches of the same branch point. Actually, Eqs. 
(6) show that the same critical position is obtained when 
using either a\N) or ajN) for large enough N values. On the 
other hand, it is expected that A (a I) = - A (a3) because of 
the two signs of the square root (branch point of order 1). 

The GFM sequences obtained from Eqs. (6) are shown 
in Table IV. Since they converge in a stepwise manner, ap­
propriate subsequences must be carefully chosen before ex­
trapolating. On doing this we obtain XI = 1.93140 
± 5x 10-5 and IYII = 3.237 65 ± 5x 10-5

, which closely 
agree with the exact result. 

TheA value coming from Eq. (7) is not accurate enough 
because the BN sequence converges rather slowly. To im­
prove it we calculate the u, r, b, and B values leading to the 
minimum of SM.N [Eq. (8)]. Only the BM •N sequences are 
considered because the other ones lead to nearly the same 
results shown above. From the two-entry (M,N) table in 
Table V we can estimate A(a3 ) = -A(a l ) 

= LUX) ± 0.003. 
Whenj = 2,4, ... , aij~ I /aij~ 3 does not approach - 1 

as s increases, suggesting that the singular points for these 
states must be different from the previous ones. In fact, the 
CP sequences obtained from the GF (4) (with b variable) 
are not found to be convergent. This may be due to the occur­
rence of interferent singularities; i.e., other singular points 
close to the convergence circle. It is not unreasonable to as­
sume that there could be two pairs of conjugate branch 
points of equal order and with nearly the same absolute val­
ue. If this were true an appropriate GF would be 

(30) 

whose Taylor coefficients obey 

(n + 1)COYn + 1+ (n - b)CIYn + (n - 2b -1)C2Yn _ 1 

+ (n - 3b - 2)C3Yn _ 2 + (n - 4b - 3)Yn - 3 = O. 
(31 ) 

Upon replacing Yn by a~n) in Eq. (31) with 
n = N,N + I,N + 2,N + 3 we are led to a set of linear equa­
tions from which we can obtain the coefficients Cj as func­
tions of b. Although the sequences CjN(b) are oscillating, 
they are found to be convergent. We have tried several b 
values but the smoothest sequences appear to be those for 
b = ~. Their limits, estimated from first 35 perturbation cor­
rections, are Co = (1.80 ± 0.02) X 10\ C I 
= - (1.480 ± 0.(02) X 103

, C2 = (1.380 ± 0.004) X 102, 
and C3 = - 12.55 ± 0.03. It is worth noticing that the coef­
ficients of z'3 and Z4 in Eq. (30) are much smaller than the 
other ones, showing that the polynomial in parentheses does 
not differ too much from a quadratic one near the origin. The 
third- and fourth-degree terms take into account the effect of 
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TABLE IV. CP sequences for the solutions of period 21T of the Mathieu 
equation. 

N 

31 
32 
33 
34 
35 
36 
37 
38 
39 

1.93153965 
1.931511 26 
1.931 51962 
1.931 509 40 
1.93148788 
1.93149360 
1.93148751 
1.93147081 
1.93147470 

3.23793216 
3.23789923 
3.23787409 
3.23787634 
3.23785345 
3.23783336 
3.23783498 
3.23781871 
3.23780240 

the interferent singularities. 

1.1275851 
1.0296439 
1.0928564 
1.1245137 
1.0186699 
1.091 3069 
1.1217909 
1.004 3702 
1.0898195 

The closest singular points to the origin of as, obtained 
as the roots of the polynomial in Eq. (30), are approximately 
given by ZI,2 = - 3.385 ± 10.725 i and Z3.4 

= 9.660 ± 7.000i, where IZI.21~11.246and IZ3.41~11.930. 
It is clear that the interferent singularities, namely Z3 and Z4' 

are quite close to the convergence region. Other b values lead 
to more strongly oscillating sequences but the singularity 
positions are not substantially altered. We cannot therefore 
be sure of the actual critical exponent value. 

When replacing Yn by a~n) in Eq. (31), nonconvergent 
sequences CjN are found, which suggests that the singularity 
pattern may be more complex. We will not go on discussing 
the characteristic values of the Mathieu function because it is 
not the aim ofthe present paper. However, since the subject 
is of great theoretical and practical interest, a more detailed 
description will be published elsewhere in a forthcoming pa­
per, which will render the basis for a rigorous mathematical 
investigation. 

Another physically interesting problem is the Stark ef­
fect in a polar rigid symmetric-top molecule. The stationary 
Schrodinger equation in appropriate units can be reduced 
t024 

{ - sin- I O~sin O~ + (M 2 +K 2 )sin-2 0 
dO dO 

- 2KM cos 0 sin-2 0 - q cos 0 }¢'K.M.J 

= EK.M.J¢'K.M.J' (32) 

where 0 is the angle between the dipole moment and the 
electric field, E K.M.J and q are proportional to the energy and 

TABLE V. (M,N) table for the critical amplitude ofthe lowest eigenvalues 
ofthe Mathieu equation. 

N\-M 
3 4 5 6 

24 1.099 214 1.089958 1.103390 1.101085 
25 1.129822 1.107666 1.099050 1.113 317 
26 1.063091 1.106 629 1.099113 1.088068 
27 1.097271 1.088452 1.102008 1.099147 
28 1.126868 1.106 112 1.098659 1.112094 
29 1.060 146 1.107426 1.097904 1.087485 
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field intensity, respectively, andJ = 0,1,2, ... , IK 1= O,I, ... ,J, 
and 1M 1= O,I, ... ,J (see Ref. 24). 

The singularities of EO,M,J (q) and those of the charac­
teristic values of a 2j and f3 2j ofEq. (29) are similar and some 
ofthem recently have been calculated accurately.22,25 [No­
tice that when K = 0, Eq. (32) becomes that corresponding 
to a linear rotator.] Numerical evidence suggests that, for 
each Mvalue, EO,M,IMI +2j-2 and EO,M,IMI +2j-)Oj = 1,2, ... , 
have a common real value for a purely imaginary q value 
(sayqj)' 

On the other hand, no result has been reported regard­
ing the singular points of EK,M,J (q) when K :f0 but it is not 
unreasonable to think that they can resemble those for the 
characteristic values a 2j+ 1 and f32j+ 1 of Eq. (29). This 
proves to be the case as shown below. 

A very large number of perturbation coefficients for this 
problem was reported by R0eggen some years ago. 26 Unfor­
tunately, they are not accurate enough for our purposes and 
we have had to recalculate them by means ofthe equations in 
the Appendix. The required matrix elements can be found, 
for example, in Ref. 24. Due to our rather limited computa­
tional facilities we were not able to handle more than 25 
perturbation coefficients. 

Results for some states with positive K and M values are 
shown in Table VI. The singular points for other eigenvalues 
can also be obtained from Table VI just remembering that 

EK,M,J(q) =EM,K,J(q) =E_M,-K,J(q) =E_K,-M,J(q) 

= E _ K,M,J ( - q) = E K, - M,J ( - q) 

(see Ref. 24). Present numerical investigation is accurate 
enough to enable us to suggest the following properties for 
the eigenvalues of Eq. (32). 

(a) For each pair of K and M values, the eigenvalues 

TABLE VI. Singular points of the eigenvalues E K. M. M and E K. M. M + I , 

where K, M = 1,2,3 and 4. 

(K,M,J) -XI ZI A 

(1,1,1) 2.784 ± 0.002 5.341 ±O.OOI -0.39 ±0.01 
( 1,1,2) 2.783 ± 0.001 5.3407 ± 0.0003 0.390 ± 0.006 

( 1,2,2) 3.659 ± 0.005 10.347 ±0.003 -0.34 ±0.02 
(1,2,3) 3.660 ± 0.003 10.347 ±0.OO3 0.34 ±0.02 

(2,2,2) 7.019 ± 0.001 10.115 ±0.005 -0.36 ±0.03 
(2,2,3) 7.022 ± 0.003 10.112 ±0.002 0.36 ±0.03 

(1,3,3 ) 4.51 ±0.01 16.80 ±0.01 -0.28 ±0.02 
(1,3,4 ) 4.51 ±0.01 16.80 ±0.01 0.28 ±0.02 

(2,3,3) 8.80 ±0.02 16.58 ±0.01 -0.29 ±0.02 
(2,3,4) 8.81 ±0.01 16.59 ±0.01 0.29 ±0.02 

(3,3,3) 12.58 ±0.01 16.14 ±0.01 -0.31 ±0.02 
(3,3,4) 12.60 ±0.05 16.15 ±0.05 0.30 ±0.02 

(1,4,4) 5.32 ±0.01 24.66 ±0.02 -0.25 ±0.01 
(1,4,5) 5.29 ±0.02 24.64 ±0.02 0.25 ±0.02 

(2,4,4) 10.50 ±0.02 24.43 ±0.02 -0.25 ±0.02 
(2,4,5) 10.5 ±0.1 24.46 ±0.03 0.25 ±0.02 

(3,4,4) 15.19 ±0.03 23.96 ±0.05 -0.25 ±0.02 
(3,4,5) 15.0 ±0.2 24.1 ±0.2 0.25 ±0.02 

(4,4,4) 19.40 ±0.01 23.40 ±0.01 -0.28 ±0.02 
(4,4,5) 19.45 ±0.05 23.40 ±0.07 0.27 ±0.Q3 
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with J = 1M I and J = 1M I + 1 have a common value at a 
branch point of order 1. For larger J values the singularity 
pattern is more complex as in the case of the characteristic 
values a 2j+ 1 and f3 2j+ 1 of the Mathieu equation whenj> 1. 

(b) When J = 1M I and J = 1M I + 1 the critical ampli­
tude is real and appears to be K independent. Its absolute 
value decreases as M increases. 

(c) The convergence radius of the perturbation series 
increases slowly with K and strongly with M. 

A systematic study of the singular points of the eigenval­
ues of Eq. (32), using a larger number of Taylor coefficients 
and improved GF 's will be published elsewhere in a forth­
coming paper. 

VII. CONCLUSIONS 

The GFM seems to be very promising in obtaining the 
closest singular points to the origin from Taylor series. Any 
sort of singularities can be dealt with provided the behavior 
of the function in its neighborhood is approximately known. 
Since the GFM takes into account the form and number of 
singular points nearest to the origin explicitly, it proves to be 
preferable to other techniques. The more we know about the 
singularities the more accurate the GF that can be used and 
the larger the convergence rate of the CP sequences. 

The singularity pattern for the eigenvalue problems in 
Sec. VI is quite interesting since it is very different from those 
discussed previously (cf. Sec. V and Refs. 21, 22, and 25). A 
more detailed numerical investigation and a rigorous math­
ematical study would be of great value due to the physical 
importance of both models. 

During the last years there has been a great deal of inter­
est in perturbation expansions for some bounded systems 18 
(and references therein). Upper bounds to their conver­
gence radii have been estimated27 that can, in principle, be 
checked very easily by means of the GFM. 

The GFM also can be useful in studying critical phe­
nomena in spin-lattice models.7,8 In this case some real sin­
gular points of the thermodynamic functions are found to be 
related to phase transitions and sometimes complex singu­
larities occur that interfere with their calculation.7 

Note added in proof After the present article was sent to 
press we came across the papers by Blanch and Clemm28 and 
Hunter and Guerrieri,29 where the branch points of the 
eigenvalues for all the solutions of the Mathieu equation are 
fully discussed. 

APPENDIX 

For the sake of completeness we will develop here a 
standard large-order non degenerate perturbation theory 
that is necessary to deal with the problems in Sec. VI. To this 
end let us consider the eigenvalue equation 

(AI) 

where H = Ho + A. V is a Hermitian operator for all 
0<..1. < 00 and the eigensolutions of Ho are known; i.e., 

Holi) =E~O)li). (A2) 

It is supposed that E ~O):fE ~O) if i:fj and that {Ii)} is a 
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complete set of orthonormal vectors. 
On expanding I "'n) as 

I"'n) = COn 10) + Cln 11) + ... , 
it is found that Eq. (AI) becomes 

A f ~iCin = (En -E)O»Cjn , 
i=O 

(A3) 

(A4) 

where ~i = (jJVli). If Cnn is arbitrarily chosen equal to 
unity, reflecting the fact that l"'n)(A = 0) = In), and En 
and Cin are expanded in powers of A, 

00 00 

E = '" E ($) A $ n £... n , Cin = L C}:)A $, (A5) 
.=0 .=0 

we obtain 

C!p) = (E(O) - E(O»-I{ ~ V.C!p-l) 
In n J ~JIIn 

i=O 

p-I } - '" E(P-')C(') 
~ n )n' 

.=0 
Il=n, (A6a) 

00 

E~P) = L VniC~P-\). (A6b) 
i=O 

When Vij = 0 for Ii - jl >1, Eqs. (A6) and the starting 
point C j<:;) = {)jn enable one to obtain a very large number of 
perturbation corrections exactly. For the two examples in 
Sec. VI, 1 = 2. 
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The Jacobi functions sn(x/m) have been approximated by a quotient of polynomials offirst to 
fourth degrees. The method used here is an extension to nonlinear differential equations of one 
previously published for first- and second-order linear differential equations. That method uses 
power series and asymptotic expansions simultaneously. The accuracy here obtained is very 
good (the absolute error is lower than 10-8 for m < 0.8) except for values of the parameter m 
near 1. They are much better for several orders of magnitude than those based on the Pade 
method for the same number of parameters to be determined. 

I. INTRODUCTION 

A method to obtain fractional approximations that uses 
power series and asymptotic expansions simultaneously has 
been published recently. 1-3 One of the main differences with 
other methods is that this method requires the use of a suit­
able variable3 instead of any independent variable as custom­
arily used. The method has been applied to functions defined 
by linear differential equations. 1-3 

In this paper we consider the Jacobi functions of the first 
kind, sn(x/m), which are defined by a first-order differen­
tial equation of second degree. In the case of nonlinear differ­
ential equations the choice of a suitable independent variable 
becomes more crucial, and our analysis shows that the vari­
able is unique and is obtained from a differential equation 
derived from the original one. Once the suitable variable is 
defined, the approximations attain very good accuracy. 
With only a fourth-degree polynomial we can obtain an ap­
proximation of greater accuracy than the usual table of Ja­
cobi functions for any value of the parameter m, provided m 
is not very close to 1 (m <0.92).4 We have compared our 
approximations with those obtained by the Pade methodS 
and our accuracy is much better for the same order of ap­
proximation. 

We have arranged the material of this paper in the fol­
lowing way. In Sec. II, we detail how the suitable variable is 
obtained. The procedure leads to an auxiliary differential 
equation of the Riccati type, whose solution gives the ade­
quate independent variable. Fractional approximations in 
this variable are calculated in Sec. III. Each coefficient of the 
approximation is determined as a function of the module m 
and a quarter of period K (m) of the Jacobi functions. The 
accuracy of the approximations from first to fourth degree is 
computed in Sec. IV. The degree of the polynomial denomi­
nator is always one degree higher than that of the numerator. 
At least six exact digits are obtained for the fourth-degree 
approximation for m < 0.92. This shows that the approxima­
tions give the accuracy of the usual Jacobi tables4 and the 
computations require only a desk calculator. The graphs in 
this section will help to choose the adequate approximation, 
for the accuracy needed. 

The last section of this paper is devoted to the conclu­
sions and the discussion of the main results. 

II. SUITABLE VARIABLE FOR ELLIPTIC FUNCTIONS 

The differential equation for elliptic functions of the 
first kind is ( : r = 1 - (1 + m )y2 + my4 , (1) 

wherey = sn(x/m) and m = k 2 is the characteristic param­
eter of the elliptic function. The function y has a period 4K, 
where K is a function of m. 

Suppose we approximate y by the quotient of polynomi­
als of degrees n and I, respectively, then 

y-:::;Pn (x)/Q/ (x) , (2) 

dy P~Q/ - Q;Pn 
dx = Q7 

(3) 

By substituting into ( 1) and rationalizing, we obtain 

(P~Q/ - Q;Pn)2 = Q: - (1 + m)P~Q7 + mP! . (4) 

Here the degree of each of the terms are, respectively, 
2(n + 1- 1),4/,2(1 + n), 4n. Since in our method we want 
to compare the highest powers, we should have the higher 
degree in at least two terms. We should analyze the possibili­
ties Itf,n; however, since the results are the same in the three 
cases, we will analyze in detail only the case 1 > n. In this case 
the largest degree on the right-hand side is 41 and the differ­
ence of the degrees on both sides of the equation is 
2 (I - n) + 2. Since 1 - n is larger than zero, the least differ­
ence will be 4. 

In order to equalize the degrees of both sides we have to 
change the variables, thus arranging that the degree of the 
left-hand side of the Eq. (4) increases by four units when we 
arrive to the fractional approximation. By denoting the new 
variable by t, we should have 

t = t(x) , y(x) = u(t) . (5) 

From our previous considerations dt /dx should be a 
second-order polynomial in t 

.!!!..=p2(t+a)2+/3 2, (6) 
dx 

where p, a, and /3 are coefficients to be determined. In this 
way, t is obtained from a Riccati equation with constant 
coefficients. The solution will be trigonometric or a hyperbo-
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lic function. Since we want to keep the periodicity of the 
elliptic function, we consider only the trigonometric solu­
tion, that is, we take f.l real. One of the adequate solutions to 
our problem will be 

t+a= ({Jlf.l) tan[{Jf.l(x+c». (7) 

In order to apply our method to fractional approxima­
tions we should use the interval (0, 00 ) for the new indepen­
dent variable, this the interval (0, 2K) for x is mapped to the 
interval (0, 00 ) for t, and the same assumption for the inter­
val (2K, 4K). Thus, we have that a and C must be zero, and 

1T 4K (1T) {Jf.l =-, t=-{Jtan -x . 
4K 1T 4K 

(8) 

We shall see later [Eq. (25)] that if we choose {J = 1, 
the approximation exactly reproduces the Jacobi functions 
sn(xlm) for the parameter m = 0, that is, sin(x). With this 
selection we have defined the suitable variable as 

t = (llf.l) tan (f.lx) , f.l =:;: 1T/4K. (9) 

Using this change of variable, Eq. (1) becomes 

(l + f.l2t
2
)2( ~~r = 1 - (1 + m)u

2 + mu
4 

. (10) 

III. FRACTIONAL APPROXIMATIONS 

Once Eq. (10) has been obtained we can proceed to 
obtain a direct approximation of u, writing it as a quotient of 

I 

polynomials Pn (t)IQ/ (t). The boundary conditions in our 
casearethaty(x) is zero for x = o and x = 2K, which means 
that u(t) is zero for t = 0 and t = 00. From the first condi­
tion the independent term of P n (t) is zero. From the second 

'" condition the degree of Q/ (t) must be higher than the degree 
'" of Pn (t). 

The structure of the polynomial P n (t) and the symme­
try of sn(xlm) suggest an additional change of variable, 
which simplifies the calculation of the approximations 

t=:r-, 

v(z) = u(t)lt. 

Equation ( 10) is now transformed to 

(1 + f.l2Z )2(V + 2z ~~r = 1 - (1 + m)zv2 + m:r-v4 . 

(11 ) 

(12) 

(13) 

Now we replace v(z) by a fractional approximation 

v(z) = Pn (z)/Q/ (z) . (14) 

Equating now for the degree of the highest power in 
both sides ofEq. (13) we obtain 2 + 2(n + 1) = 41, that is, 
l=n+1. 

The recursion relation for the coefficients of the power 
series for v, i.e., 

00 

v(z) = L akz", (15) 
k=O 

will be 

k-\ k-\ 

2(1+2k)aoOk = - L [1+m+2p,2(1+2i)(2k-1-2i)]aiak_ 1 _ i - L (1+2i)(1+2k-2i)aiak_i 
i=O i=\ 

k-2 { ( i )(k-2-i) } + i~O m ,~o a,ai _, s~o asak_2_i_s _f.l4(1 +2i)(2k-2i-3)aiak _ 2_ i , n>2, (16) 

and for n = 0,1 

a~ = 1, 6a001 = - (1 + m)a~ - 2p,2aci . (17) 

According to Jacobi's power series, ao must be 1. 
In Table I the first four coefficients of the power series 

are given, these will be needed for the best approximation 
analyzed in this paper. 

The asymptotic expansion is obtained by inserting 

(18) 

TABLE I. First four coefficients of the power series as a function of m and 
/1-. 

ao= I 

a, = - i(l + m + 2p-2) 

I 2 /1- 2 m /1-" a2=-(I +m) +-(1 +m) +-+-
120 6 10 5 

a = __ 1_(1 +m)3_ [.l!..+ 7/1-
2](1 +m)2 

3 5020 30 36 14 

+ [~_ 2. 2 _..2!. 4] (I + m) + 2. 2 _ ,),,6 
30 3 /1- 45 /1- 14 3 /1- ..,.. 
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I 
in Eq. (13). However, this is more easily obtained from the 
preceding power series by noting that a transformation of the 
type 

s = 1/f.l4Z , w(s) = v(z)If.l2S 

leaves Eq. (13) invariant. Therefore 

bk = (1/f.l2) (ak l f.l4k ) . 

The approximation will be 

1:n -Ip.zj 
v(z) = 1=0 1 ., 

1 + 1:j= 1 qjZl 

where n = 1,2,3, .... 

(19) 

(20) 

(21) 

Here the p's and q's will be obtained from the equality of 
the coefficients 

(23) 

We have to obtain 2n + 2 equations. Our analysis shows 
that the highest accuracy is obtained when we choose equal 
numberofcoefficientsinEq. (22) andEq. (23) (n + 1 coef-
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ficients from each equation). In this case the results are giv­
en in Table II for the first four values of n. 

It is important to point out that for m = 0 the approxi­
mation reduces to 

v(z) = 1/(1 + z/2) . (24) 

This result has been verified for all of the orders n here 
analyzed. When Eq. (24) is expressed in terms of the origi­
nal variable x, it becomes 

y(x) = 2 tan(x12) . ( ) ----':;:----'-- = sm x . 
1 + tan2 (x/2) 

(25) 

This corresponds to the exact value of sn(x/m) for 
m = O. Thus the approximation becomes the exact function. 
This is a consequence of our choice of f3 = 1 [see Eq. (8)]. 

IV. RESULTS 

We have analyzed the approximations for values of n 
from 1-4 and for any value of the module m. For a given n 
the best results are obtained when we take the same numbers 
of terms from the asymptotic expansion as from the power 
series. The values of this p's and q's for three cases are given 
in Table II as a function of the coefficients a's given in 
Table I. 

The largest error always happens for x = K(m). An ex· 
ample of this is shown in Fig. 1 for m = 0.75 (n = 2, 3). We 

TABLE II. Fractional parameters for first- to fourth-degree approxima­
tions as a function of p, and the power series coefficients. 

Po= 1 

Po= 1 

_p,6 + aip,2 + a3 - a,a2 
p,4 + a,p.2 + a2 - ai 

n=l 

n=2 

n=3 

n=4 

_p,8 + ay.t4 + (a3 - a,a2)p,2 + a~ - a,a3 
p,4 + a,p.2 + a2 - ai 

q, =p,4 _ a, 

q2 = p,l[ p,4 - a1 ] 
p,2 + a, 

q3 = p,6 
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FIG. \. Semilog plot of absolute error ~ Y = Y - Y for second- and third­
degree approximations for m = 0.75 as a function of x/K in the interval 
(0, 2). 

have shown only a half-period, because of the symmetry of 
the function. The errors near x = 0 and x = 2K are very 
small. The maximum absolute errors are 0.72 X 10-2 and 
0.17X 10-4 for n = 2,3, respectively, which correspond to 
relative errors of 0.33% and 0.0008%, respectively. 

The maximum error, as a function of the module m, is 
shown in Fig. 2 (for n = 1,2) and Fig. 3 (for n = 3,4). The 
maximum error increases with m, and the approximation is 
very poor near m = 1. The main problem for m = 1 is that 
the solution is tanh(x), which is not periodic. For m = 1, 
Il = 0 and bo = 00 and the approximation is not well de­
fined. 

The accuracy increases quickly with n. For instance, if 
n = 2 the maximum error is less than 10-4 for m <0.3. 
Meanwhile, for m <0.3 and n = 3 the maximum error is 
smaller than 10-8

• For n = 4 the accuracy is better than 
10-8 for m <0.8. 

Our nth-order approximation can be compared with the 
nth-order main diagonal Pade approximation M,. for sn(x/ 
m) given in Table 10.1, p. 91 of Ref. 5. Since Pade approxi­
mations are not periodic we compare the maximum errors in 
the first quarter of period, that is, for x in the interval (0, 
K(m»), and in particular for values m = 0.4 and m = 0.6. 

Considering m = 0.4 our approximations give at least 
three, six, and ten exact digits for n = 2, 3, and 4, respective­
ly, compared with two, four, and five exact digits for the 
Pades M2, M 3, and M4• Considering m = 0.6, the maximum 
error for n = 2 is about the same (0.0019 in our case com-
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FIG. 2. Semilog plot of maximum absolute error I::.. Y max for first- and sec­
ond-degree approximations as a function of the parameter m. 

pared with 0.(013). For n = 3 and 4 we get six and nine 
exact digits, respectively, compared with three and five exact 
digits in the Pade case. Therefore the accuracy of our ap­
proximations is much better than in the Pade case, and in 
addition we also obtain the characteristic periodic behavior 
of the Jacobi function. 

V. CONCLUSION 

We have shown how the recent methods of fractional 
approximations can be extended to some nonlinear differen­
tial equations by using a suitable change of variable. The 
adequate change of variable is determined by an auxiliary 
differential equation derived from the original one. For Ja­
cobi functions the suitable variable is tan (JLx ) / JL and the 
auxiliary differential equation is of the Riccati type. The Ja­
cobi function sn(x/m) has been approximated by a quotient 
of polynomials of degrees 1 to 4. The accuracy is in general 
very good for any value of the module m not too close to 
unity (m <0.92). For m = 0 the approximation reproduces 
the exact Jacobi function (sn(x/O) = sin(x»). For m = 1 the 
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Jacobi function loses its periodicity and the suitable variable 
will be different. The accuracy in the fourth-degree case is at 
least of six digits exacts for any value of x if m < 0.92. In most 
of the cases the accuracy of our approximation is much bet­
ter in several orders of magnitude than those using the Pade 
method. 
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It is the purpose of this paper to show that the GL(2,C) Yang-Mills equations can be solved in 
terms of integrals over the characteristic initial data. The method is based on showing that 
enough gauge freedom exists in the choice of characteristic initial data so that the data can 
always be put into either upper or lower triangular form. With triangular form data the 
Sparling equation (a linear first-order equation equivalent to the self-dual Yang-Mills 
equations) can be solved by explicit quadratures. 

I. INTRODUCTION 

The self-dual (or anti-self-dual) Yang-Mills equations 
have for a variety of reasons 1-5 been extensively studied over 
the past several years. Of the many solution generating tech­
niques, two methods seem to stand out; namely (1) the use 
of the Sparling equation, a first-order linear matrix-valued 
differential equation, equivalent to the self-dual Yang-Mills 
equations and (2) the use oftwistor theory via the solution 
of a Riemann-Hilbert problem. Recently6 it was shown that 
the solution of the Sparling equation was identical to the 
solution of the Riemann-Hilbert (RR) problem. 

It is the purpose of this work to show that (at least) in 
the case ofGL( 2,C), the Sparling equation (or the RH prob­
lem) can be solved explicitly in terms of quadratures over 
the characteristic data. (It has been pointed out to us by L. 
Mason and M. Hickman that our method probably does not 
allow solutions for arbitrary initial data, although our solu­
tions probably do form a dense set and an arbitrary solution 
may be approximated by one of our solutions.) The method 
presented here is applicable only to globally regular fields. It, 
however, can be generalized to local fields. 

In Sec. II we give a brief discussion of the Sparling equa­
tion and its connection with the twistor formulation of the 
RH problem. We also show how to obtain the self-dual 
Yang-Mills connection and field from the solution to the 
Sparling equation. Section III deals with the solution of the 
Sparling equation for the cases when the characteristic data 
(which "drives" the Sparling equation) is in either upper or 
lower triangular form for 2 X 2 matrices. In Sec. IV we dis­
cuss the "gauge" transformations on the Sparling equation 
and its solutions which leave the Yang-Mills connection in­
variant and further show how to exploit this gauge freedom 
to triangularize any 2 X 2 matrix-valued characteristic data. 
This then implies that any arbitrary, (2X2), characteristic 
data can be transformed to equivalent triangular data­
whose associated Sparling equation was discussed in Sec. 
III. The triangularization procedure requires that the trans­
formation be regular and certain ratios of components satis­
fy the Riccati equation. The remainder of the section is de­
voted to showing the existence of appropriate solutions to 
the Riccati equation with the correct singUlarity structure so 
that the required regularity conditions on the transforma­
tion are satisfied. 

Finally in Sec. IV we illustrate our triangularization 
method to a special class of data that is nilpotent and trace­
free. The importance of this class lies in the fact that it illus­
trates why the single instanton solutions are so easily found. 

II. DISCUSSION OF SPARLING'S EQUATION 

A. Derivation and meaning 

Consider a GL (2,C) bundle V XM with the connection 
Ya (xa) over Minkowski spaceM. Let Cx be the future null 
cone of a pointxa eM. Let t an~ label the null generators of 
the null cone at future null infinity, i.e., f+. A null geodesic 
on Cx is labeled by the same complex generators t and t 
obtained by its intersection with f and is denoted by 
Ix (t,t). Let s be a normalized affine parameter along 
Ix (t,t) so that I=a las = la (t,t)a laxa is tangent to 
Ix (t,t). Then one can define the GL(n,C) matrix-valued 
function G(xa ,t,t) to be the linear map that propagates in a 
parallel manner an arbitrary vector in the fiber over xa to 
f+ along Ix (t,t), 

G(xa,t,t) = 0 exp (1 _ Ya dxa) 
Ix(~,~) 

= 0 exp(f.Yala dS)' (2.1 ) 

Now consider an infinitesimal loop formed by two 
neighboring null geodesics Ix (t,t) and Ix (t + dt,t) with 
common origin x a 

, and a connecting vector M" dt at f+. 

This loop lies in an anti-self-dual two-blade. Parallel trans­
port of a self-dual Yang-Mills field Fab , around this loop will 
then give the identity. This follows from the fact that the 
projection of a self-dual field on an anti-self-dual blade van­
ishes. Expressed in terms of G, one obtains 

1= G -1(t,t)G(t + dt,t)(1 +A dt 10 + tt»), (2.2) 

where I + A dt I (1 + ;t) is the infinitesimal parallel propa­
gator along the connecting vector on f+, A = YaM" 
= Ya dxald; is the asymptotic component (along the con­
necting vector) of the connection form. Hence A, which is 
defined on f+, is a function of three-variables, i.e., 
A =A (u,;,t). We are interested in the restriction of A to the 
intersection of Cx with f+ which is given by u = u (xa ,;,t) 
= xala (;,t). We thus have AR (xa,;,t) =A(xala,;,t). By 
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expanding Eq. (2.2) one obtains (1 + ~,)aG /a~ + GAR 
= 0; defining (1 + ~,)aG /a~ = 3G, we finally obtain 

3G = - GAR' (2.3) 

which is Sparling's equation for self-dual fields. 

B. Connection of Sparling's equation to twlstor theory 
and the RH problem 

The material in this section is not essential to the re­
mainder of this work and can hence be omitted. It is never­
theless closely related. Since the details have been given else­
where we only sketch the ideas here. 

The (dual) twistor approach! to self-dual Yang-Mills 
theory begins with an arbitrary matrix-valued function of 
the three variables 

Wo = (xo - x 3
) + (Xl + jx2)?, 

WI = (Xl - jx2) + (xo + x 3 )?, ?, 
(2.4) 

i.e., 

a(?,wo,WI ), 

which for fixed x a is to be holomophic in ? on an annular 
region in the neighborhood of the equator on the Riemann 
sphere (') or extended complex plane (?). The idea then is 
to find two matrix-valued functions GN (x

a,?) and Gs (~,?) 
which are both holomorphic in the annular region and also, 
respectively, in the northern and southern hemispheres of 
the Riemann sphere, such that in the annular region 

-I -GNG s = a(~,wo,wl)' (2.5) 

with (WO'w l ) given by (2.4). This defines a classical RH 
"splitting" problem. From the knowledge of GN or Gs one 
can construct the self-dual Yang-Mills field. 

The above RH problem is related to the Sparling equa­
tion in the following manner. 

The twistor function a(~,wo,wl) can be constructed 
from AR in the following way: 

- (l"" d~) a(~,wo,wl) = Pexp AR -, 
o (1 + ~~) 

(2.6) 

with P denoting path order integration. 
If we now solve the Sparling equation (2.3) with the 

condition that G(x,~,,) be an analytic function in both ~ and 
? in the neighborhood of ? = " then the RH problem is 
solved by 

GN(xa,?) = G(xa,O,?), Gs(xa,?) = G(xa,(YJ,?). (2.7) 

Solving the Sparling equation with the regularity condi­
tions is thus equivalent to "splitting" the twistor function 
a(?,wo,wl ) and thus solving the RH problem. 

C. The connection and field from G 

From the regular solutions of the Sparling equation, 
G(xa,~,?), it is easy to construct the connection one-form 
Ya(x) and hence the fieldFab (x). 

One has immediately from (2.1) that 

laVaGG -I = laYa (x). 

[It follows from the identity 

32(laVaGG -I) = 0, 
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(2.8) 

obtained from the Sparling equation, that the Ya in (2.8) is 
independent of (~,?).J By applying 3 to (2.8) (again using 
the Sparling equation) we obtain 

maVaGG- I = maYa (x). (2.9) 

[We are using the null tetrad defined by la, ma = 31 a, 

ma = dla, na = la + 3dl a, with 

la = [1Iv12(l + ~')](1 + ~,,~ + " i(' -~), -1 + ~'), 
SO that I· n = - m . m = 1, other products vanishing. ] 

Equations (2.8) and (2.9) imply that 

Ya (x) = VoGG -I + jlo - hmo, (2.10) 

withj and h determined applying d to (2.10) and mUltiply­
ing by ma and r, respectively. This yields 

h = lad(VaGG -I), j = mOd(VoGG -I) = 3h. (2.11) 

The connection is thus 

Ya (x) = VaGG -I + 3hla - hma. (2.12) 

Note that if G is a regular solution to the Sparling equa­
tion, then so is G' = g(x) G for g a nonsingular matrix func­
tion of ~ . This generates an ordinary gauge transformation 
on y, i.e., 

(2.13) 

The Yang-Mills field is then obtained from (2.12) in 
the usual way 

F=dy-y/\y. (2.14) 

III. SPARLING'S EQUATION AND TRIANGULAR DATA 

Before we discuss the integration of the Sparling equa­
tion with upper triangular data, we first investigate the Abe­
lian version of the same equation, namely 

3F=AR, F= -log G, (3.1) 

with A R the restriction of A (u,~,'), the scalar null data for a 
Maxwell field, to the intersection of ex with f+. 

The general regular solution to (3.1) is 

F(~,~,?) = r K(~",1],fj)AR (x,1],fj)dS'I + f(xa), JS2 
(3.2) 

with 

dS'I =.d1] /\ dfj/(l + 1]fj)2, 

and the kernel 

K(
f""j. -) = _1 la(~,')mo (1],fj) __ 1 1 + 1]' 
~,~,1],1] - - - . 

417" la(~,~)/o(1],fj) 41T ~-fj 
(3.3) 

One thus has in the Abelian case the simple result 

G(x,~,,) =g(x)exp( - f KAR dS'I). (3.4) 

With the gauge freedomg(x) can be made into 1. 
Unfortunately it is not easy to generalize (3.4) to the 

non-Abelian case where G and A R are matrix valued. How­
. ever in the case of A R being 2 X 2, upper triangular, a gener­
alization does exist as we now show. (Though we are only 
concerned here with 2 X 2 matrices, this generalization 
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seems to work for larger upper triangular matrices. ) 
The Sparling equation written explicitly becomes 

or 

3Gu = - GuAu, (3.5) 

3G2J = - G2JA w (3.6) 

3G12 = - G12A22 - GU AI2' (3.7) 

3G22 = - G2~22 - G2JA I2· (3.8) 

Equations (3.5) and (3.6) are the same as the Abelian case 
just discussed and integrate to 

Gu=gu(x)exp( - JKAu dSTJ ). 

G21 = g21 (x )exp( - J KA II dSTJ ). 

(3.9) 

(3.10) 

Equations (3.7) and (3.8) are the inhomogeneous versions 
of the same equation with the inhomogeneous terms given by 
(3.9) and (3.10). Their solutions are 

GI2 =G(gI2(X) - J KG-IGuAI2dSTJ). 

G22 =G(g22(X) - J KG- IG2JA 12 dSTJ ). 

with 

G = exp( - J KA22 dSTJ ). 

a solution to the homogeneous equation. 

(3.11 ) 

(3.12) 

(3.13 ) 

By a gauge transformation, i.e., multiplication of G on 
the left by a matrix-valued function ofxa

, (3.9)-(3.12) can 
be put into the following simple form: 

- (G11 G12) G(x,t,t) = 0 G
22

' (3.14) 

with 

Gu = exp( - J KAu dSTJ ). 

G22 = exp( - J KA22 dSTJ ). (3.15) 

G12 = - G22J KG III G2~12 dSTJ' 

Using (2.10) and (2.14) it is a simple task to express the 
connection and field in terms of the G's. 

The above solution generating technique (for upper 
triangular A R ) applies if the elements of A R are spin weight 
1 functions. However, in a more general situation the diag­
onal elements of AR , i.e., A u and A22 can be spin weight 1 
functions, and the off-diagonal element A 12 can be a 
- 2s + 1 spin weighted function for 8;;;.0. Equations (3.5)­
(3.8) can still be solved, producing a regular G. We have also 
studied this situation and plan to communicate the details in 
a future paper. 

IV. GAUGE FREEDOM IN THE CHOICE OF DATA 

In this section we would like to show that there exist 
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equivalence classes of data, where all data in the same class 
yields the same connection and Yang-Mills field. Further­
more, we will show that in each equivalence class there will 
be (at least) one choice of data that is in upper triangular 
form. We will thus have shown that all 2 X 2 self-dual Yang­
Mills fields can be obtained from upper triangular data and 
they can be explicitly given by the method of the previous 
section. 

The basic idea is to begin with the Sparling equation and 
a solution G and look for transformations 

G--Gg= G', 

so that the new G' yields, via (2.10), the same connection 
and field as did G. [Note that here theg is different than in 
(2.13) and is multiplied on the right.] We then find a new 
Sparling equation for G' with a new A '; a transform of A. 
Finally to complete the argument we seek a specialization of 
the g so that A ' is upper triangular. 

We claim that G's related by 

G' = Gg, (4.1) 

for a regular g of the form 

g = g(/,m,t,t) , 

with 

(4.2) 

(4.3) 

yield the identical connection. We now sketch the proof. 
From (4.1) we have 

VaG'G,-1 = VaGG -I + GVagg-IG-I 

= VaGG -I + G(g,lia + g,mma )g-IG -I, 
(4.4) 

where we have used (4.2) and (4.3). Substituting (4.4) into 

Y~ = VaG'G,-1 + m b3(Vb G'G,-I)/a 

(4.5) 

the primed version of (2.12), we find that all terms involving 
g cancel, leaving 

Y~ =Ya (4.6) 

as claimed. 
Since both G and G ' satisfy Sparling equations for data A 

and A " respectively, i.e., 

3G= -GA, 3G'=G'A', 

one immediately calculates the relationship between theA's, 
i.e., 

(4.7) 

We can now ask for the equation on the g so that for an 
arbitrary 2 X 2A, we have A ' in upper triangular form. Equa­
tion (4.7) becomes 

= (Au A12)(gl1 g12) _ ig11 gI2). 
\.421 A22 \g21 g22 \g21 g22 

(4.8) 

The two relevant components of (4.8) are 
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gllA i\ = Allg\l + A 12g21 - 3gw 

g21A i\ =A2\g\l + A 22K2 I - 3g21, 
(4.9) 

which, when Ai I is eliminated, yields after some manipula­
tion, the differential equation 

M + A 1:0- 2 +.:U -A21 = 0, (4.10) 

where 

A =g211gW A =All -A22. (4.11) 

Equation (4.10) is our required condition on the g for the 
triangularization of A. Note that aside from the condition 
that the components of g be regular functions and Igl #0 
there are no other restrictions on the g. 

The main problem now is to show that (4.10) has solu­
tionsA such that (a) g21 andgll are appropriately regular or 
similarly that A have an appropriate singularity structure 
and (b) thatg21 andgll (or A) be functions only of I,m,t,t. 
(The space-time points x" enter into g only via its depend­
ence in I and m.) 

We have tacitly assumed here that g21 and g 11 are holo­
morphic, spin weight 0 functions. In the course of further 
study, it has been discovered (with L. Mason) that, in gen­
eral, the g21 and g 11 can be spin weight s functions for s>O. 
Their ratio (A), however, still remains a spin weight 0 func­
tion with appropriate singularity structure. The upper trian­
gularization in this case leads to the type of data described in 
the last paragraph of Sec. III. 

Before showing that (a) and (b) can be satisfied we first 
discuss the meaning of the term regularity that we have been 
using. By assumption the characteristic data A (u,t,t) was to 
be an analytic function of u,t,t in the region u in the neigh­
borhood of the real line and (t,t) in the thickened S 2 defined 
by t near;. We refer to this latter region as CS' 2. When A is 
restricted to ex nf+, AR (xa ,til is holomorphic in the 
neighborhood of real x a and CS'2. We demand that after 
transformation, A ...... A ' = g-IAg - g-13g, A ' (/,m,t,;) also 
be holomorphic in the same region which implies thatg have 
the same holomorphic behavior. Since a holomorphic func­
tion can have zeros of only finite order we have immediately 
the condition on A that in our holomorphic region A should 
have singularities no worse than finite order poles. This is 
what was meant by "appropriate singularity structure" for 
A. 

Returning to the questions (a) and (b), we first note 
that there is an alternate way to write the independent vari­
ables I and m using the explicit form of la and rna' namely 

1= laxa = [1Iv2(1 + t;) H[xO - x 3
) + (Xl + ix2)t] 

+ t [(Xl - ix2) + (XO + X3 )t n, 
or 

with 

and 
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Wo = (XO - X3
) + (Xl + iX2)t, 

WI = (Xl - ix2) + (XO + X3 )t, 

P=!(l+tt), 
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(4.12) 

(4.13) 

(4.14) 

The transformation, (4.12) and (4.14), from (I,m) to 
(WO'w l ) has the advantage of explicitly displaying all the t 
dependence when we consider functions of I,m,t,t becoming 
functions ofwo,wl,tl [Note that (WO,wl,t) is a dual twis­
tor.] 

In this spirit Eq. (4.10) becomes 

aA + aA. 2 + bA. + c = 0, ( 4.15 ) 
at 

with the hololDorphic coefficients 

a = a(wO,w1,t,t) =A 12/(l + ttl, 
h = h(WO,Wl,t,t) = A/( 1 + tt), (4.16) 

C = C(WO,WI,t,t) = - A21/( 1 + ttl. 
Equation (4.15) is the Riccati equation for A as a function of 
t with external parameters t,wo, and WI' From the theory of 
solutions to the Riccati equation 7 we see that if at some point 
t = to one is given the initial holomorphic data 

Ao = A (toi,wo,wl ), 

there exists a unique holomorphic solution in the neighbor­
hood of to, A = A(t,t,wo,wl ). Using (4.12) and (4.14) we 
see that A is a function of only (l,m,ti) as required by condi­
tion (b). 

To show that condition (a) is satisfied, i.e., that the ap­
propriate singularity structure exists, we use a powerful 
theorem 7 concerning the fixed and movable singularities of 
solutions to the Riccati equation. The fixed singularities, 
which arise only at the singular points of the coefficients 
a,h,c in the Ricatti equation, are essential singularities or 
branch points while the movable singularities, arising from 
the choice of initial data, are only finite poles. Furthermore, 7 

the solutions are holomorphic in the external parameters 
(t,WO'wl ). 

The first point to be noted is that the fixed singularities 
are of no concern to us since in our region of concern (real x a 

and CS' 2), the coefficients are all holomorphic. We thus can 
start with A = Ao at to; then by analytic extension first in t 
and then in t (near;) for fixed xa (and perhaps repeating 
this process of extension in t and then t), we have A holo­
morphic everywhere on CS' 2 except at a finite number of 
points where there are just finite poles. Ifwe adapt our (t,t) 
coordinate system so that there is no pole in A at the north 
pole (or at (0) of (t,t) we can write A as the ratio of two 
functions which are both regular, with zeros on CS'2, i.e., we 
can write 

A =g211gW 

thus satisfying condition (a). 

V. A SIMPLE EXAMPLE 

We describe here a simple but important example of this 
triangularization process. The Yang-Mills field associated 
with this example is the single instanton field. Consider 2 X 2 
data of the form 

A =Ao(t,t)11 2, (5.1) 

with 
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A ~ = 0, tr Ao = 0, 

Mo=O. 
From (5.2) Ao has the form 

(
a {J) 2 Ao = , a + r{J = 0. r -a 

Substituting (5.1) and (5.4) into (4.10) we have 

M= _({JI/2)(). +al{J»)2, 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

which, since 3a = 3{J = 0, can be integrated immediately as 

). = - (a + m/)I{J, (5.6) 

i.e., 

gll ={J, g21 = - (a + m/). (5.7) 

Note thatgll andg21 are spin weights = 1 functions and are 
of the type mentioned in Sec. IV. 

VI. DISCUSSION 

We have shown here now all global, on M, GL(2,C) 
self-dual Yang-Mills fields can be obtained in terms of ex­
plicit integrals over the characteristic data. Similar methods 
can be used to obtain local fields. 
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With these results comes a series of related questions 
and problems that are being pursued. An immediate ques­
tion is, can this triangularization process be generalized to 
higher dimensional groups, e.g., GL(3,C). Another class of 
problems is how to give triangular data with specific symme­
tries so that the Yang-Mills solutions reduce to the known 
special cases,s e.g., axial-symmetric, stationary Einstein 
equations, sine-Gordon equations, etc. 
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Comment on a paper by Z-Z. Zhong [J. Math. Phys. 26, 404 (1985)] 
K. Demys 
Mathematics & Morphology Research Center, Editorial and Research Offices, 1052 Santa Fe Avenue, 
Albany, California 94706 

(Received 6 June 1986; accepted for publication 15 October 1986) 

The paper of Zhong [J. Math. Phys. 26, 404 (1985) ], though very interesting, did contain 
errors of both scientific and historical fact that should be corrected for the record. 

I. SCIENTIFIC ERROR 

In the paper by Zhong,1 p. 404, Sec. II, first paragraph, 
lines 5-7 are in error, since Z-I always exists, even for 
numbers in H of zero norm. Thus the numbers 
Z-I == [k( 1 ± E)] -I always exist, where kis real or complex, 
and fil = 1, E=I= ± 1, even though they all have zero norms. 
But a distinction, easily verifiable, must be made here 
between Z-I and liz since we are now dealing with zero 
divisors. Thus Z-I = (1 ± E)/4k whereas liz = 11 
k( 1 ± E), a class of numbers which, despite their closed rep­
resentations, are divisors of infinity and have infinite norms. 
Also, which the author of the article in question also failed to 
observe, [k( 1 ± E)]O = !( 1 ± E), which is of course idem­
potent; as it should, zOzn = zn . Also, Z-IZ = ~, and indeed 

[(1 ± E)/4k][k(1 ± E)] =!(1 ± E). 

But note well that, since z°=l= 1, z(lIz) =l=Z(Z-I); but z(lI 
z) = 1. Already in papers from 1977-1980 Muses2 had 
pointed out these facts (see Sec. II). 

Although the existence of Z-I does not affect Zhong's 
results per se and immediately, the fact that his lines on p. 
404, above noted, are in error may well mislead others trying 
to extend his results, and this comment is thus offered in 
addition to instrinsic interest. It is worthwhile noting that 
these numbers lead to an important timesaving tool: the 
"countercomplex" form of de Moivre's theorem for complex 
numbers; namely 

ektk = (cosh () + E sinh (})k = cosh k() + E sinh k(}, 

where () may be real, complex, or countercomplex (i.e., in 
the form a + bE, where a and b are real). Also, 

ck = cosh2 !1Tk + E sinh2 !1Tk - !i( 1 - E)sin 1Tk. 

Thus .Ji = ±!(1 + E - i + Ei), where Ei = iE and 
hence (Ei) 2 = - 1. All the Pauli and Dirac spinors are sus­
ceptible of countercomplex hypemumber representation, of­
ten more convenient than matrices. 

II. HISTORICAL ERROR 

Again see p. 404, lines 3-5. It was not Kunstatter, Mof­
fat, and Malzan3 who first applied these numbers in physics. 
Before them Muses2 was the first to point out these hyper­
numbers' physical usefulness in 1980 and considerably ear­
lier in an invited lecture, in 1970. 
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Multiplicative stochastic processes involving the time derivative of a Markov 
process 

Henk F. Arnoldus and Thomas F. George 
Departments of Physics and Astronomy and Chemistry, 239 Fronczak Hal/, State University of New York 
at Buffalo, Buffalo, New York 14260 

(Received 2 May 1986; accepted for publication 1 October 1986) 

The characteristic functional of the derivative ~ (t) of a Markov process t/J (t) and the related 
multiplicative process CT(t), which obeys the stochastic differential equation 
iiT(t) = (A + ~(t)B )CT(t) , have been studied. Exact equations for the marginal characteristic 
functional and the marginal average of CT(t) are derived. The first equation is applied to obtain 
a set of equations for the marginal moments of ~ (t) in terms of the prescribed properties of 
t/J(t). It is illustrated by an example how these equations can be solved, and it is shown in 
general that ~(t) is delta correlated, with a smooth background. The equation of motion for 
the marginal average of CT(t) is solved for various cases, and it is shown how closed-form 
analytical expressions for the average (CT(t» can be obtained. 

I. INTRODUCTION 

The equation of motion for the density operator of an 
atom in a finite-bandwidth laser field or the equation for the 
regression of the atomic dipole correlations assumes the gen­
eral form l

•
2 

dCT . 
i-= (A +t/J(t)B)CT, 

dt 
(Ll ) 

where A and B are linear operators in Liouville space, which 
act on the Liouville vector CT(t). Here t/J(t) represents the 
laser phase, which is considered to be a real-valued stochas­
tic process. The fluctuating phase broadens the laser lin~, but 
the atom responds to the instantaneous frequency shift t/J (t), 
which is the time derivative of the laser phase.3 The process 
~ (t) is again a stochastic process, and via Eq. (1.1) the state 
of the atom or the correlation functions CT(t) become sto­
chastic quantities. The issue in quantum optics is then to 
solve the multiplicative stochastic differential equation 
(Ll) for the average (CT(t». The first solution was obtained 
by Fox,4 who assumed the process ~ (t) to be Gaussian white 
noise, which corresponds to a diffusive Gaussian phase t/J (t) 
(the Wiener-Uvy process). This result was generalized to a 
Gaussian process ~(t) with a finite correlation time and an 
exponentially decaying correlation function5-7 (the Om­
stein-Uhlenbeck process), and to a process t/J(t), which is 
again diffusive, but not Gaussian8

•
9 (the independent-incre­

ment process). Furthermore, Eq. (Ll) can be solved for 
(CT(t» if we have ~(t) as a Markov random-jump pro­
cess,IO-13 which models a multimode laser. 14.15 

In these examples the solvability of the problem relies on 
the Gaussian property of ~ (t), or hinges on the prescribed 
stochastics of ~ (t). This implies that the process ~ (t) is actu­
ally considered to be the driving process. For a single-mode 
laser in general, however, the phase fluctuations t/J(t) are 
specified rather than the derivative ~ (t) of this process. A 
prime example would be the atomic response to phase­
locked radiation,16 as it is generated for instance by some 
ring lasers. 17 In this paper we shall develop a general method 
to solve Eq. (Ll) for the case that t/J(t) is a given Markov 

process. The formal theory will be exemplified by a specific 
choice for t/J(t), which models phase-locked radiation. Fur­
thermore, we shall study the time derivative of t/J(t) itself 
and extract the stochastics of ~ (t) from the properties of 
t/J(t). 

II. THE STOCHASTICS OF cf.(t) 

Let us define the phase t/J (t) as a homogeneous Markov 
process. 18 Then its stochastics is fixed by the probability dis­
tribution P( t/J,t) and the conditional probability distribution 
Pr (t/J2it/JI) (7';;;'0), which has the significance of the prob­
ability density for the occurrence of t/J(t + 7') = t/J2 if 
t/J (t) = t/JI' For a homogeneous process this is independent of 
t by definition. The higher-order statistics is now determined 
by the Markov property. 19 From the obvious relation 

fdt/J' Pt-tJt/Jit/J')P(t/J',to) = P(t/J,t) , t;;;.to , (2.1) 

it follows that it is sufficient to prescribe the probability dis­
tribution P(t/J,t) for a single time point to only. The time 
evolution towards t> to can then be found from Eq. (2.1) 

and Pt - to (t/Jit/J')· 
The conditional probability distribution obeys the Mas­

ter equation 18 

:7' PT (t/J3it/JI) = f dt/J2{W(t/J3it/J2) 

- a(t/J2)8(t/J3 - t/J2)}PT(t/J2it/JI) ' 

(2.2) 

with W(t/J'it/J);;;.O as the transition rate of the process from t/J 
to t/J' and 

a(t/J) = f dt/J'W(t/J'it/J) , (2.3 ) 

which is the loss rate of t/J, independent of the final value t/J'. 
The initial condition for Eq. (2.2) reads 

Po(t/J3it/JI) = 8(t/J3 - t/JI) , (2.4) 

so a given W(t/J'it/J) determines Pr (t/J3it/JI) for every 7';;;'0. 
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Hence the stochastics of a homogeneous Markov process 
,p(t) is fixed as soon as P(,p,to) and W(,p'I,p) are prescribed. 
These functions will from now on be assumed to be given. 

III. THE CHARACTERISTIC FUNCTIONAL 

A convenient way to represent the stochastic properties 
of a stochastic process is by means of its characteristic func­
tiona1.9•2o Since we are concerned with the process ~(t), we 
define 

Zt[k] = (exp( -i fdS~(S)k(S»))' t>to, (3.1) 

which is a functional of the test function k(t). Here the angle 
brackets denote an average over the stochastic process ,p (t) 
or ~(t), whatever is prescribed. A general method to evalu­
ate Zt [k ] for the case where ~ (t) is a homogeneous Markov 
process has been given by van Kampen.21 

Knowledge of the characteristic functional Zt [k] de­
termines completely the stochastics of ~(t), which can be 
seen as follows. Choose k(s) as the sequence of tJ functions 

n 

k(s) = - L tJ(s - tl )kl , tl > to, (3.2) 
1=1 

and take t = 00 in (3.1). Then we find 

Z", [k] = (exp(ikn~(tn) + ... + ikl~(tl»)) , (3.3) 

which is the moment-generating function of ~ (t). Ifwe write 
zn (kn,tn; ... ;kl,tl ), then we can obtain the moments of 
t/I(t) =~(t) according to 

(t/I(tn)" ·t/I(tl» 

= (_i)n~ ... ~ 
akn ak l 

XZn (kn,tn; .. ·;kl,tl ) I k.= ... = k, = 0 , 

and the probability distributions by 

Pn (t/ln,tn; .. ·;t/lI,tl ) 

=-l-fdk .. ·dk 
(21T)n n 1 

-ikrP -"'-ik,rP, k k Xe •• Zn ( n,tn; .. ·; I>t l ) , 

(3.4 ) 

(3.5) 

where we have introduced Pn in order to distinguish from 
the probability distributions for ,pet) itself. 

IV. THE MARGINAL AVERAGE 

A. General 

The exponential in Eq. (3.1) is a functional of both k(t) 
and ~ ( t), so it depends on the values of ~ (t) in the complete 
interval [to,t]. After the average has been taken it will be 
only a functional of k(t). The general attempt to evaluate 
averages of a functional is to derive an equation for the aver­
age. For subsequently solving this equation for functionals 
which involve Markov processes, this scheme is most conve­
niently carried out by an intermediate introduction of 
Burshtein's marginal averages.22 Since in our problem the 
stochastics of ,p(t) is assumed to be given, the appropriate 
marginal characteristic functional, which is related to 
Zt [k ], should be defined as 
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Qt [,po,k ] = (tJ(,p(t) - ,po)exp( - i f ds ~(S)k(S»)) , 
(4.1 ) 

for t>to' The initial value is then 

Qto [,po,k ] = (tJ(,p(to) - ,po) = P(,po,to) , (4.2) 

and Zt [k ] follows from Qt [,po,k ] according to 

Zt [k ] = f d,po Qt [,po,k ] . 

For t = to we find with Eq. (4.2) 

Zto [k ] = f d,po P(,po,to) = 1 , 

in agreement with Eq. (3.1). 

(4.3) 

In order to derive an equation for the time evolution of 
Qt [,po,k ], we first increase t by a small amount 11t> O. This 
gives 

Qt + .1.t [,po,k ] = (tJ(,p (t + 11t) - ,po) 

Xexp{ - i(,p(t + 11t) - ,p(t»)k(t)} 

xexp( -ifdS~(S)k(S»)). (4.4) 

Subsequently, we expand the exponential functional of 
~ (s) in a series, and we take the average in (4.4) term by 
term. Hereafter, we apply the Master equation (2.2) for 
Pt+.1.t (,pl,po) and take the limit 11t ..... O. This yields an equa­
tion for the marginal average, and explicitly we find 

:t Qt [,po,k] = f d,p{W(,pol,p) - a (,p)tJ(,po - ,p)} 

Xe - i(4)o- 4»k(t) Qt [,p,k] . (4.5) 

The Markov process ,p(t) is characterized by P(,po,to) and 
W(,pol,p), which, respectively, determine the initial value 
and the time evolution of Qt [,po,k ]. For a specific choice of 
W(,pol,p), we have to solve Eq. (4.5), after which thecharac­
teristic functional Zt [k] can be obtained from Eq. (4.3). 

Notice the resemblance between the result (4.5) and the 
Master equation (2.2). Ifwe multiply Eq. (2.2) by P(,pI,tO) , 

take l' = t - to and apply the relation (2.1), we find 

! P (,po,t) = f d,p{ W(,pol,p) - a(,p )tJ(,po -,p) }P(,p,t) , 

(4.6) 

which is the Master equation for P(,po,t). This equation is 
identical to Eq. (4.5), including the initial condition (4.2), if 
we set k(t) =0. On the other hand, it follows from Eq. (4.1) 
that Qt [,po,k] = (tJ(,p(t) - ,po) = P(,po,t) if we take 
kU) = 0, so that in this case Eq. (4.5) should indeed reduce 
to Eq. (4.6). 

B. Independent Increments 

In order to display the usefulness and applicability of 
the marginal-functional approach, we consider an example. 
Let us specify the transition rate by 

W(,pol,p)=rw(,po-,p), r>O, (4.7) 

where the function w ( 'TJ) is normalized as 
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J d'Tjw(rJ} = 1. (4.8) 

The stochastic process (J (t) will be defined on the real axis, 
with - 00 < (J < 00. The assertion (4.7) states that the prob­
ability for a transition (J-+(Jo depends only on the phase dif­
ference(Jo - (J, andfromEq. (2.3) we find thata«(J) = y, so 
that the total loss rate for (J is independent of (J. This is a 
diffusion process, and it is commonly referred to as the inde­
pendent-increment process. As an initial condition for the 
probability distribution, we take 

P«(J,to) = o«(J) . (4.9) 

Comparison of the Master equations for P T «(J W) and 
P«(J,t) then shows that the probability distribution and the 
conditional probability distribution are related according to 

(4.10) 

The Master equation (4.6) for P«(J,t) can be solved by 
Fourier transformation with respect to (J. If we write 

(4.11 ) 

which has p(p,to) = 1 as the initial condition, then the solu­
tion ofEq. (4.6) is immediately seen to be 

P(p,t) = er1w (p) - 11(' - '0), r>to , (4.12) 

in terms ofthe Fourier transform w(p) ofw«(J). Note that 
w (0) = 1, as a result ofthe normalization (4.7). Along the 
very same lines we can solve Eq. (4.55) for the Fourier trans­
form 0, [p,k]. We obtain 

0, [p,k] = exp( - y L ds J: '" d(J{1- ei~-k(S)I)W«(J»), 
(4.13 ) 

after which the characteristic functional follows from 

'" Z, [k ] = Q, [O,k ] , 

which yields the familiar result.8 

v. THE MARGINAL MOMENTS 
A.General 

(4.14 ) 

If we take k(s) as the sequence of delta functions (3.2) 
in the definition (4.1) of the marginal characteristic func­
tional, it assumes the form 

Q, [(Jo,k ] = (O((J(t) - (Jo)exP(i It I kl.,p(tl )O(t - tl »)) , 

(5.1 ) 

with .,p(t) = ;P(t) and O(t) the unit-step function. Just as we 
can find the moments (.,p(tn)·· ·.,p(tl» of .,p(t) from 
Z", [k], we can obtain the marginal moments 
(o((J(t) - (Jo).,p(tn ) .. ·.,p(tl» from Q, [(Jo,k]. Obviously the 
integral over (Jo of the marginal moments yields the mo­
ments. The characteristic functional Z, [k] becomes inde­
pendent of t if t> tl for all I, but Qt [(Jo,k] remains time 
dependent. This is due to the appearance of o((J(t) - (Jo). 
Furthermore, the time t is a dynamical variable in Eq. 
( 4.55), so that care should be exercised in the time ordering. 
The marginal moments follow from Qt [(Jo,k] by differenti­
ation, according to 
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(o((J(t) - (JO).,p(tn ) .. ·.,p(tl) )O(t - tn ) .. 'O(t - t l ) 

=(_i)n~"'~Q,[(Jo,k]1 . (5.2) 
akn ak l k n = ... =k, =0 

Equation ( 4. 5) for Qt [(Jo,k] implies an equation for the 
marginal moments. First, we note that 

exp{ - i«(Jo - (J )k(t)}Qt [(J,k ] 

= (O((J(t) -(J)exP(i Itl kl{«(Jo-(J)o(t-tl ) 

+.,p(tI)O(t-tl )})). (5.3) 

After substituting this expression in the right-hand side of 
Eq. (4.5), differentiating with respect to kn, ... ,kl, setting 
kn = ... = kl = 0, and integrating over time, we obtain 

(o((J(t) - (JO).,p(tn ) .. ·.,p(tl) )O(t - tn ) .. 'O(t - t l ) 

= J d(J{W«(Jol(J) - a«(J)o«(Jo - (J)} 

X L dt '(o((J(t') - (J){«(Jo - (J)o(t' - tn ) 

+ .,p(tn )O(t' - tn )} 

.. '{«(Jo - (J)o(t' - tl ) + .,p(tl)O(t' - t l )})· 
(5.4) 

When we set t> tl for alII, we have a Master-like equation 
for (o((J(t) - (Jo) .,p(tn ) .. ·.,p(tl», and the lower-order mar­
ginal moments (o((J(t) - (JO).,p(tm)·· ·.,p(tl» with m <n 
appear as inhomogeneous terms. Hence Eq. (5.4) should be 
solved successively for n = 1, n = 2, .... We note that Eq. 
(5.4) provides an explicit expression for (.,p(tn ) .. '.,p(t l» in 
terms of the lower-order marginal moments after an integra­
tion over (Jo' Indeed, from the property 

J d(Jo{W«(Jol(J) - a«(J)o«(Jo - (J)} = 0, (5.5) 

the term with (o((J(t') -(J).,p(tn),,·.,p(tl» on the right­
hand side of Eq. (5.4) vanishes after an integration over (Jo' 

B. Lowest orders 

In order to exhibit clearly the structure of the equation 
for the marginal moments, we consider the cases n = 1 and 
n = 2 in some more detail. After a slight rearrangement, Eq. 
(5.4) for n = 1 can be written as 

(o((J(t) - (JO).,p(tI» 

= J d(J{W«(Jol(J) - a«(J)o«(Jo - (J)} 

X {«(Jo - (J)P«(J,t l ) 

+ f dt'(o«(J(t') - (J).,p(tl»} , (5.6) 

for t>t I' This integral equation in time is equivalent to the 
differential equation 
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!... (5(tfJ(t) -tfJo)t/J(tl» at 
= J dtfJ{W(tfJoltfJ) - a (tfJ)5(tfJo - tfJ)} 

X (5(tfJ(t) -tfJ)t/J(tI» ' 

together with the initial condition 

(5(tfJ(tl) - tfJO)t/J(tI» 

= J dtfJ{W(tfJoltfJ) - a(tfJ)5(tfJo - tfJ)} 

X (tfJo - tfJ)P(tfJ,tl ) . 

(5.7) 

(5.8) 

The equation for the first marginal average 
(c5(tfJ(t) - tfJO)t/J(tI» is identical to the Master equation 
(2.2), but with a different initial value. 

Integration of (5.8) over tfJo yields 

(t/J(tl» = J dtfJ f dtfJo W(tfJoltfJ)(tfJo - tfJ)P(tfJ,ll) , 

(5.9) 

which expresses explicitly the average of (t/J( t I» in the given 
functions W(tfJoltfJ) and P(tfJ,tl ). With the aid of the Master 
equation, we can cast (5.9) in the form 

(5.10) 

as it should be. 
The solution ofEq. (5.6) for (c5(tfJ(t) -tfJO)t/J(tI» pro­

vides the input for the explicit expression for the two-time 
correlation function, which becomes 

(t/J(t2)t/J(t1) ) 

= J dtfJ J dtfJo{W(tfJoltfJ) - a(tfJ)5(tfJo - tfJ)} 

X {(tfJo - tfJ) 25 (t2 - II)P(tfJ,12) 

+ (tfJo-tfJ)«5(tfJ(t2) -tfJ)t/J(tI»9(t2 -II) 

(5.11) 

The appearance of 15 (12 - I I) shows that the time derivative 
of any Markov process is 15 correlated with a continuous 
background. 

C. Random Jumps 

Equation (5.11) for instance might seem awkward, but 
it is really straightforward in its application. Let us illustrate 
this with an example. Consider the random-jump process 
tfJ(t), defined as a stationary process with transition rate 

W(tfJltfJ') = yP(tfJ) , y>O, (5.12) 

in terms of an arbitrary probability distribution P( tfJ ). Equa­
tion (5.12) is equivalent to the statement that the probability 
for a transition tfJ' -tfJ is independent of the initial value tfJ' 
(see Ref. 13). From Eq. (5.9) we immediately derive 

(t/J(tl»=0, (5.13) 

which is, in view of (5.10), necessary for a stationary pro­
cess. From (2.3) we obtain a (tfJ) = y, and the solution ofEq. 
(5.7), with initial value (5.8), is readily found to be 
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(5(tfJ(t) -tfJO)t/J(tI» =yP(tfJo)(tfJo-bl)e-r(I-I,l, r~II' 

(5.14 ) 

Here we have introduced the moments of P(tfJ) as 

b" = f dtfJ tfJ"P(tfJ) , (5.15) 

which are parameters of the process tfJ(t). Solution (5.14) 
can be substituted into Eq. (5.11), which gives the correla­
tion function 

(t/J(tl )t/J(t2» = y(b2 - b i ) {2c5(t1 - (2) - ye - rl l
, - III} , 

(5.16) 

for all II,t2• From (5.15) it follows that 

b2 -bi>0, (5.17) 

so that for II=ft2 the correlation (5.16) is negative. For 
I I = 12 the 5 function dominates the negative term, so that 
(t/J(t I) 2) is positive, as it should be. 

VI. THE MULTIPLICATIVE PROCESS 

So far we have considered the stochastics of it>(t) itself, 
and its characteristic functional. In this section we shall gen­
eralize the method, in order to solve the multiplicative equa­
tion (1.1). To this end we write the formal solution of ( 1.1) 
for the stochastic vector u(t) as 

u(t) = e - iA(l- tolTexp[ - i I: ds it>(s)B(s) ]u(to) , 

(6.1 ) 

where Tis the time-ordering operator andB(t) is defined as 

(6.2) 

In close analogy to the definition of Q, [tfJo,k] in Eq. (4.1), 
we now introduce the marginal average of u(t) by 

~(tfJo,t) = (5(tfJ(t) - tfJo)u(t» . (6.3) 

Then we substitute the expression (6.1 ) for u(t) and replace 
t by t + aI, which gives a formula similar to Eq. (4.4). That 
this can also be done for the time-ordered exponential is 
sometimes referred to as the semigroup property of the evo­
lution operator. Along the same lines that led to Eq. (4.5) we 
now find 

- a(tfJ)5(tfJo - tfJ)}e-i(.po-'f>JB~(tfJ,I), 

(6.4) 

or equivalently 

(i :r -A + ia(tfJo) )~(tfJo,t) 

= i f dtfJ W(tfJoltfJ)e-i«(lIo-(lIlB~(tfJ,t) . (6.5) 

Notice that the operator B appears in the exponential, rather 
than B (I), as could be expected by analogy with the charac­
teristicfunctional. For a given stochastic process tfJ(I), e.g., a 
given W(tfJW) andP(tfJ,lo)' we have to solve Eq. (6.4) with 
the initial condition 
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~(t/Jo,to) = (b(t/J(to) - t/Jo)u(to» , 

after which (u(t» follows from 

(u(t» = f dt/Jo ~(t/Jo,t) . 

(6.6) 

(6.7) 

For a given nonstochastic state u(to), the initial condition 
reduces to 

(6.8) 

which differs from (6.6) by the fact that there are no initial 
correlations. This means that the process u(t) has no mem­
ory to times smaller than to, and consequently its evolution 
for t'~to is completely determined by its initial state u(to)' It 
was emphasized by Amoldus and Nienhuisl3 that the com­
mon choice ~(t/Jo,to) = P(t/Jo,to)(u(to» is merely an ap­
proximation which only holds for small correlation times of 
~(t). 

VII. SOLUTIONS 

A. Independent Increments 

Equation (6.5) for the marginal average of u(t) can be 
solved for the independent-increment process with the same 
procedure as in Sec. IV, where we obtained the characteristic 
functional. If we adopt the Fourier transform 

t(p,t) = f: .. dt/J eiptf>~(t/J,t) = (eiptf>(t)u(t» , (7.1) 

where the second equality follows after application of Eq. 
(6.3), then (u(t» can be found from 

(u(t» = t(O,t) . (7.2) 

With the technique of Sec. IV we can find t(p,t), and if we 
differentiate the result with respect to time, we find 

a,., A" 

i '::::;(p,t) = (A - iW(p) )~(p,t) , 
at 

with 

"'- f"" W(p) = r _ "" d1J(1 - ei'l/(p-B»w(1J) . 

"'-

(7.3 ) 

(7.4) 

The operator W(p) accounts for the phase fluctuations. If 
we set p = 0 in Eq. (7.3), we achieve the equation for 
(u(t) ), with solution 

(u(t» =e-i(A-iW(O»)(t-to)(u(to», (7.5) 

for t>to' We note that (u(t» can be expressed in terms of 
(u(to» for this process, so that there are no initial correla­
tions for the diffusion process. The process ~ (t) has no mem­
ory, and with the results of Sec. V it can be shown that ~ (t) is 
indeed delta correlated. This means that (~( t n ) •••• ~ (t 1 ) ) 

for all n contains only b functions, which implies the factori­
zation in (7.5). 

A special case arises if we take 

(7.6) 

where the primes on the b function denote differentiation 
with respect to its argument. It is easy to check that this 
process is the Wiener-Uvy process, or the phase-diffusion 
process. If we substitute (7.6) into (4.12), we find that 
P(t/J,t) is Gaussian, and obviously this is the only Gaussian 
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limit of the diffusion process. The operator W(p) in (7.4) 
reduces to 

"'-
W(p) =A(p _B)2, 

and the equation for (u(t» becomes 

i.!!.... (u(t» = (A - iAB2) (u(t» , 
dt 

which is the result of Fox.4 

B. Ornsteln-Uhlenbeck process 

(7.7) 

(7.8) 

The diffusion process has no memory and is essentially 
nonstationary. The initial distribution P(t/J,to) = b(t/J) dif­
fuses over the whole t/J axis, - 00 < t/J < 00. The inclusion of a 
finite memory time can stabilize this process. Let us define 
the transition probability as 

W(t/Jolt/J) - a(t/J )b(t/Jo - t/J) 

=Ab"(t/Jo-t/J) 

+ rt/Jb' (t/Jo - t/J) , A > 0, r> 0 . (7.9) 

Then the Master equation (4.6) for P(t/J,t) becomes the 
Fokker-Planck equationl8 

a (a
2 

a) -P(t/J,t) = A -2 + r-t/J P(t/J,t), 
at at/J at/J 

(7.10) 

which has the solution, for t -+ 00, 

P(t/J) = (21Tif)-1/2e -tf>'/2cr, if =A Ir. (7.11) 

ThisP(t/J), together with W(t/Jolt/J) from (7.9), defines a sta­
tionary Gaussian-Markov process, the Omstein-Uhlen­
beck process. In the limit r .... 0 and A finite (so if -+ 00 ), the 
process t/JU) reduces to the Wiener-Levy process from Sec. 
VII A. From (7.11) we see that t/J (t) is centered around 
t/J = O. The distribution is Gaussian with a variance if 
around the average t/J = O. The preference for t/J = 0 ex­
presses that this process can be considered as a model for 
phase-locked radiation. 

With the specific choice (7.9) for the transition rate, the 
Master equation (6.5) assumes the form of a second-order 
partial differential equation. We obtain 

(i ! -A + iAB2)~(t/J,t) 

= ir{if(2iB + ~) ~ + (iB + ~)t/J}~(t/J,t) . 

(7.12) 

In the limit r -+ 0 and A = rif finite, we recover (the Fourier 
"'-

inverse of) Eq. (7.3) with W(p) from Eq. (7.7). 
In order to obtain a solution ofEq. (7.12), we start with 

a Fourier transform with respect to t/J. The transformed 
equation then reads 

(i :t -A + iAB 2 )t(P,t) 

= - ir{if(p - 2B)p + (p - B) ~ }t(P,t) , 

(7.13 ) 

which is still a partial differential equation. Since we are 
interestedint(O,t) = (u(t», theobviousapproach23 would 
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be a Taylor expansion around p = O. This yields however a 
cumbersome inhomogeneous four-term recurrence relation 
for the Taylor coefficients. This can be avoided by the trans­
formation IS 

" A ;(p,t) = P(p)g(P,t) , (7.14) 

which definesg(p,t). The Fourier transform of the probabil­
ity distribution is explicitly 

pep) = (e~(t» =e-(l/2)o"p2, (7.15) 
A 

and in particular we haveP(O) = 1. The equation for g(p,t) 
becomes 

(i :t - A + iAB 2 P(P,t) 

= -ir{P ~ -B(ifp+ ~)}g(P,t), 
and it has to be solved for 

g(O,t) = (u(t» . 

(7.16) 

(7.17) 

Let us define the Taylor coefficients 11" n (t) by the expan-
sion 

g(p,t) = f Up)n 11"n (I) , 
n=O n! 

(7.18) 

which can be inverted as 

11"n(t) = (U(t) (~)n e~(t)-WPU)2) . (7.19) 
alp p=o 

Substitution of (7.18) into (7.16) then gives the equation for 
the Taylor coefficients 

(i :t -A + iAB 2 + irn )11"n (I) 

= rB (nif11"n_1 (t) -11"n+ I (I»), 

which has to be solved for 

11"0(t) = (u(t» . 

(7.20) 

(7.21 ) 

Equation (7.20) looks like a homogeneous three-term recur­
rence relation, but it will be shown below that the time derivj 

ative a I at gives rise to an inhomogeneous contribution. No­
tice that for n = 0 Eq. (7.20) reduces to a two-term relation 
between 11"0(t) and 11"1 (t) only. 

Equation (7.20) is most easily solved in the Laplace 
domain. If we introduce 

1Tn(W) = (CC dteic.J(t-to )11"n(t) , (7.22) 
Jto 

then (7.20) attains the form 

(w - A + iAB 2 + iyn)1T(W) - rB (nif1Tn _ I (W) 

-1Tn+ dw» = i11"n (to) . (7.23) 

Here the initial values 11"n (to), for n = 0, 1, 2, ... , appear as 
inhomogeneous terms. The set 11" n (to) for all n represents the 
initial correlations of u(t) on t = to, and they connect the 
time evolution of (u(t» for t> 10 to its recent pastY In 
other words, Eq. (7.23) relates the set 11" n (I) for I> 10 to the 
initial set 11" n (to)' 

Equation (7.23) can be solved for an arbitrary initial set 
11"n (to) by standard techniques,24 but the solution is not 
transparent. In order to elucidate the structure of the solu­
tion, we assume a nonstochastic initial state u( (0 ), From Eq. 
(7.1) we then find at 1 = to 

A A 

;(p,/o) = pep )u(to) , (7.24) 

and from Eq. (7.14) we obtain 

g(p,/o) = u(to) . (7.25) 

Hence at 1 = 10 the vector g(p,/o) is independent of p, and 
therefore the expansion coefficients are simply 

(7.26) 

Then only the recurrence relation for n = 0 is inhomogen­
eous, and the solution of (7.23) for1To(w) = (u(w» is read­
ily found to be 

(u(w» = {i/[w -A + iAB2 + K(w) ]}u(to) . (7.27) 

The effect of the finite correlation time, e.g., the deviation 
from the Wiener-Uvy limit, is accounted for by the opera­
tor 

lif 
K(w) = rB if rB 

w - A + iAB 2 + lir + rB 2 if rB 

(7.28 ) 

w -A +iAB2 + 2ir+rB~rB 

which indeed vanishes for r-+O, Ii finite. In this limit, Eq. 
(7.27) is the Laplace transform ofEq. (7.8). 

The explicit expression (7.27) provides the exact solu­
tion for situations where the initial state is nonstochastic and 
for cases where the solution is independent of the initial 
state. As an example from quantum optics, we mention that 
Eq. (7.27) with u(lo) = 1, A = 0, and B = 1 represents the 
laser spectral profile. Another example pertains to the long­
time behavior of the solution (u( I) ). If there is any damping 
in the system, which might be caused by the stochastic fluc­
tuations itself, then the solution for 1>/0 will become inde­
pendent of the initial state. If we indicate by u the solution 
(u(t» for 1-+ 00, then u obviously obeys the equation 

(A - UB 2 
- K(O»)u = O. (7.29) 
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. , 
I 
For the problem of atomic fluorescence in a strong laser 
field, this is the equation for the atomic steady-state density 
matrix, which determines the fluorescence yield. There, the 
solution U ofEq. (7.29) is unique. 

VIII. CONCLUSIONS 

Solving the mUltiplicative stochastic process u( I) for its 
average is rarely feasible by analytical methods. This is 
mainly due to the finite correlation time of the driving pro­
cess tfJ (I), which prohibits the factorization of the average of 
a product into the product of the averages. Averages of a 
functional of tfJ(t) might factorize if the process is delta cor­
related. For Markov processes, however, we can simulate a {j 
correlation by the introduction of the marginal average 
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t(~o,t) = (15(~(t) - ~o)q(t». The combination of the mul­
tiplication by 15(~(t) - ~o) and the Markov property of the 
probability distributions of ~(t) then gives rise to a factori­
zationlike result for the formal expression for the average. 
Along the same lines as in a factorization assumption, we can 
now derive exact equations for t( ~o,t). In this paper we have 
studied Eq. (1.1), where we considered the stochastics of 
~ (t) to be given. The equation of motion for the marginal 
average turned out to be Eq. (6.4). The applicability of this 
equation was illustrated by some examples. 
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On the integrability of multidimensional nonlinear evolution equations 
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The integrability-test scheme of Chen, Lee, and Liu [H. H. Chen, Y. C. Lee, and C. S. Liu, 
Phys. Scr. 20, 490 (1979)] from one-space dimension to multispace dimensions is generalized. 
The temporal equation of the Lax pair is still the linearized perturbed equation that defines the 
symmetries. But the spectral operator in the Lax pair is no longer the linear recursion operator 
for symmetries. The absence of the linear recursion operator for symmetries in higher spatial 
dimensions therefore presents no direct obstacle to the Chen-Lee-Liu test scheme. The 
Kadomtsev-Petviashvili equation is shown as an example. 

I. INTRODUCTION 

In the past two decades, the discovery of the soliton 
solutions for certain nonlinear evolution equations with 
physical applications has aroused great interest and atten­
tion among mathematicians and physicists. l

-
s The initial­

value problems ofthese equations u, = K(u) can be formal­
ly solved by the inverse scattering method l

-
s: In general, we 

can associate a pair (Lax pair) of operators A = A ( u) and 
L = L (u) to each of these equations such that these two 
operators satisfy the Lax condition,2 

L, =AL-LA, 

hence, the eigenvalue problem 

Lt/J=At/J 

(1) 

(2a) 

has constant eigenValues, that is, A, = 0, if t/J also satisfies 

t/J,=At/J. (2b) 

Therefore, an important problem is to find a way to con­
struct the pair of Lax operators for a given equation, if it 
possesses such a pair, to establish its integrability. 

In the work of Chen, Lee, and Liu,6 they pointed out a 
very important fact about an integrable nonlinear evolution 
equation u, = K (u) with one spatial dimension: The Lax­
pair operators A and L in (1) can be identified as the Ga­
teaux derivativeK ' ofK(u) (see Definition 1 in Sec. II) and 
a recursion operator that maps a symmetry to another sym­
metry of the equation, respectively. In other words, the exis­
tence of the recursion operator of the symmetries of an equa­
tion with one spatial dimension is equivalent to its 
integrability. In fact, for an integrable equation with one 
spatial dimension, the authors together with Lee 7 recently 
have found a method to construct the recursion operator of 
the symmetries from the knowledge of merely one symmetry 
propagator (see Definition 4 in Sec. II) of the equation. Take 
the Korteweg-de Vries equation as an example, 

u, = K(u) = 6uux + uxxx , 

the recursion operator L of its symmetries can be construct­
ed from the symmetry propagatorS with the lowest "rank" 

1"2 = x(uxxx + 6uux ) 

+ 3t(uxxxxx + lOuuxxx + 20ux uxx + 30u2ux ) 

+ 4uxx + 8u2 + 2ux a x- IU, 

where a x- I denotes SX_ 00 dx. The relation is that 

L = 1 (ax1"i· a;- 1+ 1"i) = a; + 4u + 2ux a x-I. 

One can easily verify that L, = AL - LA, where 
A = K' = 6u ax + 6ux + a!. The hierarchies of the sym­
metry propagators 1" n for the integrable nonlinear evolution 
equations were first discovered by the authors with Lee. 8-10 

However, the above scheme does not work for the integrable 
equations with higher spatial dimensions. Take the Kadomt­
sev-Petviashvili equation as an example, 

u, = a x-I Uyy - 6uux - uxxx ; (3) 

it can be verified that ax 1";. a x-I + 1"; = 0, where 1"3 is the 
symmetry propagatorlO with the lowest rank for the Ka­
domtsev-Petviashvili equation. Therefore, the recursion op­
erator constructed from the above scheme is the zero opera­
tor. It is worth mentioning that no recursion operator has 
been found for any integrable equation with higher spatial 
dimensions. II 

In this work, we want to point out that a condition more 
general than the Lax condition (1) can be used to establish 
the integrability of a nonlinear evolution equation with high­
er spatial dimensions, 

L, =BL-LA. (4) 

More precisely, given a nonlinear evolution equation with 
higher spatial dimensions, u, = K (u). Let A be K I, the Ga­
teaux derivative of K. If we can find an operator L = L(u) 
such thatL, = BL - LA for some operator B =B(u), then 
the equation is integrable, a Miura transformation 12 can be 
found, and the corresponding inverse scattering problem is 
now given by the system 

. Lt/J=O, t/J, =At/J. (5) 

Note the absence of At/J on the right-hand side of the first 
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equation of the system (5). This is the difference between 
(5) and (2a), (2b). However, the gain is that we do not have 
to look for the recursion operator of an equation with higher 
spatial dimensions to determine its integrability. We can also 
derive infinite hierarchies of the symmetries of the equation 
through (5). 

In Sec. II below, we shall give the definitions of the ter­
minologies which appear in this paper. Our main result is 
presented in Sec. III. The Kadomtsev-Petviashvili equation 
( 3) is used as a prototype in our work. The equivalence 
between our formulation (5) with (4) and the Lax formula­
tion (2a) and (2b) with (1) is also demonstrated in Sec. III 
(Remarks 4 and 5). The derivation of the infinite hierarchies 
of the symmetries of the Kadomtsev-Petviashvili equation 
(3) is given in Sec. IV. 

II. DEFINITIONS OF TERMINOLOGIES 

Definition 1: Given a function F( u) = F(x, ... ,t,u,ux , ... ) 
which depends on u and its partial derivatives and possibly 
on the variables x, ... , and t, 

F'[V] aF(~; EV) I E=O 

is the Gateaux derivative ofF in the direction v with respect 
tou. 

Definition 2: Given a nonlinear evolution equation 
Ut = K(u), whereK(u) depends on u and its partial deriva­
tives and possibly on the variables x, ... , and t, a function 
s(x, ... ,t,u,ux,.") is called a symmetry (generator) of the 
equation if s satisfies the linearized equation of u t = K ( u ) , 

:; = K'[S], 

where K I [s] is defined as in Definition 1. These symmetries 
are the infinitesimal generators of one-parameter groups of 
invariant transformations of the equation. 

Definition 3: The Lie product of F and G, [F,G], is de­
fined by [F,G] =F'[G] - G/[F], whereF'[G] and G'[F] 
are defined as in Definition 1. 

Definition 4: A symmetry of an equation is called a sym­
metry propagator of the equation if the Lie product of this 
symmetry with another symmetry of this equation gives a 
new symmetry of this equation, where the Lie product is 
defined in Definition 3. 

III. THE KADOMTSEV-PETVIASHVILI EQUATION 

Consider now the Kadomtsev-Petviashvili (KP) equa­
tion (3). Let K(u) = a X-Iuyy - 6uux - UXXX ' We have 

A =K'=ax-Ia; -6uax -6ux -a;. (6) 

Let 

L = ax - Vx a x- I - V - (lIv1)i a x- lay, 

then 

AL -LA -Lt =/+ga x-
I +hax +NL, 

where 

f = Vt + 6uvx + Vxxx - v1ivxy - v1ivvy 

+ 3v~ - 2v1iuy + 6px - 6vp, 
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(7) 

p = Ux + ~ Vxx + ~ vVx + (1I2v1)ivy, 

g = Ix - 6pxx + 2v1ipy + 6vpx, h = 12p, 

and 

N = - 6p - v1ivy + v1ivx a x-I ay + 3vxx + 3vx ax' 
Therefore, in order to have (4), Lt =BL -LA, it fol­

lowsthat/= o=p =g= h. Hence, fromp = 0 and/= 0, 

u= -~vx _!v2_ (1I2v1)ia x-
l vy +11., (8) 

where A. is a constant, and v satisfies 

Vt - ~V2vx - v1ivx a x- I Vy + Vxxx - a x- I Vyy + 6A.vx = o. 
(9) 

Remark 1: Note that we can actually show that (8) im­
plies 

ut + 6uux + uxxx - a x- IUyy 

= M(vt - ~V2vx - v1ivx a x- I Vy 

+ Vxxx - a x- I Vyy + 6A.vx ), 

where 

M = -! ax - ! v - (1I2v1)i a x- lay. 

Thus (8) and (9) imply that u satisfies the KP equation (3). 
Therefore, (8) is a Miura transformation and (9) is a modi­
fied KP equation. 

Remark 2: The corresponding inverse scattering prob-
lem to (4) is 

LfjJ = (ax - Vx a x- I - V - (lIv1)i a x- lay)fjJ = 0, 

fjJt =AfjJ= (ax-Ia; -6uax -6ux -a;)fjJ. (10) 

Remark 3: Let v = 2t/Jx/t/J. We can get 

t/Jxx + (lIv1)it/Jy + ut/J = A.t/J 

from (8) and 

P (t/Jt + 4t/Jxxx + 6ut/Jx + 3ux t/J - v1i(a x- IUy )t/J) = 0, 

whereP= - t/Jx + t/Jax, from (9). Note that 

t/Jxx + (lIv1)it/Jy + ut/J = A.t/J, ( 11 ) 

t/Jt + 4t/Jxxx + 6ut/Jx + 3ux t/J - v1i(a x- IUy)t/J = 0 

is the pair of Lax operators found by Dryuma. 13 

Remark 4: We can show by a direct computation that 
fjJ = (t/J~)x' where fjJ is from (10), t/J is from (11), and ~ is 
the complex conjugate of t/J. This justifies the equivalence 
between our formulation (10) with (4) and the Lax-pair 
formulation (2a) and (2b) [i.e., (11)] with (1). 

Remark 5: As to the modified KP equation (9) with 
A. =0, 

we can show that (L I) t = B IL I - L IA I for some operator 
B I , where LI =ax -v- (lIv1)ia x-

Iay, and Al =K;. 
Thus, the corresponding inverse scattering problem is 

LI f.L = (ax - v - (lIv'J)i a x- lay) f.L = 0, 

f.Lt = Al f.L = (3vvx + lV2 ax + v'Ji(a x- IVy )ax 

+ v'Jivx a x-I ay - a! + a x-I a;)f.L. (12) 

Note that the relation between ( 12) and the Lax-pair formu­
lation for the modified KP equationl4 
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(a! - Va", - (1/YJ)i ay)71 =P71, 

71, = ( - 4a! - ~v2a", + YJi(a ",- IVy )a", (13) 

+ 3v", a", + 6va!)71, 

can be shown to be J.t = exp ( - YJi py) 71",. This justifies the 
equivalence between our formulation (12) and the Lax-pair 
formulation (13). 

IV. INFINITE HIERARCHIES OF THE SYMMETRIES FOR 
THE KP EQUATION 

Let 
~ ~ 

v = L k - "v" - 2k, ¢ = L k - "¢", 
n=1 n=O 

~ 

L = L k -nL", 
n= -I 

where k = /T. Then, from (8), 

1 ~ 1 ( ~ )2 u=--Lk-n(vn)",_- L k - nvn- 2k 
2 n=1 4 n=1 

1 . ~k-na-Ia k2 
- .1'f1 ~ '" yV" + . 

2v.) n= I 

Hence, 

VI = U, V2 = ! u'" + (1/2YJ)i a ",- Iuy, 

V3 = 1 Uxx: + (1/2YJ)iuy + 1u2 - ~ a ",- 2uyy , 

and, in general, 

1 1 n-I 

Vn+1 =-(Vn )", +- L VmV,,_m 
2 4 m=1 

1 'a- I ( ) + 2YJ I '" Vn y' 

From (7) and (10), we have 
~ ~ 

for n;;;'2. 

~ k - nL = a - ~ k - n(v ) a - I 
~ n x ~ nx x 

n= -1 n=l 

-(~ k-nv -2k)-_I- ia - Ia 
n~1 n YJ '" y' 

("]'_1 k -nL" )(,.~o k -"¢n) = 0, (14) 

eTc;' = ¢2 =! ImU", - (m/12)/ m
-l, 

and 

Hence, 

L_I = 2, Lo = a", - (1/YJ)i a ",-I ay, 

L I = -(vl)",a",-I- vl , 

and in general, 

Ln = - (v")",a,,,-I- vn , forn;;;'1. 

From (14) we have 
~ 

L Lm¢n_rn=O. 
m= -I 

Hence, 

for n;;;'l, where (Sm ) '" = ¢m' 

(15) 

(16) 

(17) 

Remark 6: Suppose that we have found ¢I for O<I<n 
and 51 for O<I<n - 1. In order to find ¢" + I' we have to find 
Sn' To find 5", since (Sn)", = ¢,,' we must use Eq. (15) for 
¢,,+ I' (¢n+ I)' =A¢,,+ I' to determine the function which 
does not depend on x and enters into the integration of ¢" 
with respect to x. This function is a polynomial in I andy in 
the following work. 

Remark 7: Since ¢,,'s satisfy the linearized equation of 
the KP equation, Eq. (15), they are symmetries ofthe KP 
equation (cf. Definition 2 in Sec. II). 

We are now ready to derive the infinite hierarchies of 
symmetries ¢" for the KP equation. The s,,'s needed for 
deriving ¢n + 1 's are also given for the sake of the complete­
ness of the presentation. 

From (16), we have ¢o = 0 and (¢I)", = 0, hence, 
¢I = 0 in order for ¢I to be a symmetry. We then choose 
So = 1m and 51 = (mI2YJ)il m- ly so that¢2 is a symmetry, 
where m is a non-negative integer. Hierarchies 
(u,;', m,n = 0,1,2,3, ... ): From (17), we have 

a'{' = ¢3 = (1/2YJ)i(tmuy + (mI2)/ m-Iyu", - (m(m - 1)/12)/ m- 2y), 

~ = ¢4 = - k(tmK + (2mI3)t m- Iyuy + (mI3)t m- Ixu", + (2mI3)t m- Iu 

- (m(m - l)/18)t m- 2x + (m(m - 1)/6)t m-2y2u", - (m(m - l)(m - 2)/36)/ m-ly2), 

where 

K = K(u) = a;; IUyy - 6uu", - Ux:x:x:' 
oj' = ¢s = ( - 1/4YJ) it mq a ",- 2uyyy - U",,,,y - 4uuy - 2u", a ",- Iuy ) _ (m/16YJ)it m - lyK 

- (mI24YJ)it m- I(2 a ",-I uy + xUy ) - (m(m - l)/48YJ)it m- 2 (2yu + rUy + xyu",) 

- (m(m - l)(m - 2)/288YJ)it m- 3(y3u", -xy) + (m(m - l)(m - 2)(m - 3)/1728YJ)itm-4y3, 

etc. Note that in the above derivation, 52' 53' and 54 were found to be 
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52 =! tmu - (m/12)t m- Ix - (m(m -1)/24)t m- 2y 2, 

53 = (1!2Y3")iU m a ,,-IUy + (m/2)t m
-

Iyu - (m(m - l)/12)t m 
-2xy - (m(m - l)(m _ 2)/72)t m - 3y3), 

and 

54 = - kuma ;-IK + (2m/3)tm-Iya ,,-IUy + (m/3)t m - Ixu + (m/3)t m - 1 a ,,-IU 

- (m(m - 1)/36)t m- Zx2 + (m(m -1)/6)t m
-

Zy2u - (m(m - 1)/6Y3")it m - 2y 

- (m(m - l)(m - 2)/36)t m- 3xy2 - (m(m - l)(m - 2)(m - 3)/432)t m- 4y4), 

respectively. 
Remark 8: d.:'s are the well-known symmetries l5 which 

can be derived from the conserved quantities l6,17 which do 
not depend explicitly on the variables x, y, and t and u! 's are 
the new symmetries8

,IO that depend explicitly and linearly on 
the variables x, y, and t. 

Remark 9: The general hierarchies O:'s were also de­
rived in the work of Chen, Lee, and Zhu 18 by a different 
approach. In that work, they also derived a relation among 
these infinite hierarchies of symmetries: 

[o:,u.] = «(m(s + 1) - r(n + 1))/16) O:::~ZI, 

for m + r>l and n +s>2. 

Therefore, we need only three elements, namely, og, ~, and 
u~, to generate the whole set of symmetries. Note that there 
are conserved quantities l8 corresponding to the O:'s. Also 
the O:'s are symmetry propagators for m>2 or n>3. 

In summary, the integrability-test scheme proposed by 
Chen, Lee, and Liu,6 namely, to identify the temporal equa­
tion and the spectral operator of the Lax pair as the linear­
ized perturbed equation that defines the symmetries and the 
linear recursion operator of the symmetries, respectively, for 
an integrable equation with one spatial dimension, can be 
generalized to integrable equations with higher spatial di­
mensions. The temporal equation is still the linearized per­
turbed equation that defines the symmetries but the spectral 
operator is no longer the linear recursion operator of the 
symmetries and the Lax condition has to be modified in our 
formulation [cf. (l), (2a), (2b), and (4) and (5)]. 
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The mapping into the remote future for particles on the line interacting by repulsive directed 
forces is considered. Under suitable assumptions on the forces, it is proved that the mapping 
(which assigns the scattering data to the initial data) is continuous on a nonempty open set in 
the phase space. 

I. INTRODUCTION 

Let us consider the classical mechanical system of N 
point masses in the space Rd of d dimensions interacting by 
repulsive forces. It has been shown in Refs. 1 and 2 (under 
additional technical assumptions) that the asymptotic ve­
locities of particles Vi = lim t _ ao Vi (t) exist for any trajec­
tory of the system. The same is true for the dynamics deter­
mined by Hamiltonians with the cone potentials (Ref. 3, see 
also Sec. II). 

Let X 2n be the phase space of the Hamiltonian system 
with n degrees offreedom with the property above, that is for 
any xeX the motion along the trajectory x( t) with x (0) = x 
has the maximal number of asymptotic velocities as t .... 00 • 

Coordinates of these velocities in some basis determine n 
functionsfl (x), ... ,f n (x) on X, which, as we pointed out in 
Ref. 3, are functionally independent and Poisson commute, 
{f i,/j} = 0 for all i and j. In other words, if the asymptotic 
velocities exist for any trajectory of a Hamiltonian system 
then the system is completely integrable. 

The proof of this given in Ref. 3 in the case of cone 
potentials assumes that the functions f 1""'/ n onX are con­
tinuously differentiable. As F. Calogero and M. Kruskal 
(private communications) pointed out, the differentiability 
of asymptotic velocities can not be taken for granted. In fact, 
the question turns out to be quite difficult. 

In this paper we investigate the case of particles on the 
line, i.e., d = 1, interacting by repulsive directed forces (see 
Sec. II). Assuming that the forces of interaction are contin­
uous and decay sufficiently fast at infinity we prove that 
there exists an invariant (under dynamics) nonempty open 
set Y + of initial data such that the asymptotic velocities and 
the asymptotic phases (at t = + 00) are continuous func­
tions on Y +. Naturally, the same is true for the asymptotic 
velocities and phases at t = - 00. 

If the forces have finite range then we show in Theorem 
1 that the scattering data are smooth on Y +. 

The main techniques of the paper are the Hamiltonians 
with cone potential (cf. Refs. 3 and 4). Theorem 7 which is 
the main result of the paper follows from a more general 
assertion (Theorem 6) about the continuity of scattering 
data for the Hamiltonian dynamics with cone potentials. We 
will continue the study of regularity of the scattering data in 
forthcoming publications. 

The material of the paper is new if the number of inter-

acting particles is greater than 2. For two particles the prob­
lem reduces to the motion of one particle in an external field. 
Scattering in this case has been treated in detail in Ref. 5. 

II. THE SETTING. THE CASE OF FINITE RANGE 
DIRECTED INTERACTIONS 

Let for 1 <.i <.j<.n the functions Pij be defined on 
(Lij,oo), where - 00 <.Lij' We assume that for any i <jthe 
function Pij is either identically zero or non-negative, con­
tinuously differentiable, and monotonically decreases from 
00 to 0 when x runs form Lij to infinity. We also assume that 
the derivatives pij monotonically increase from minus infin­
itytozero. Letml, ... ,mn be the mass of particles. The Hamil­
tonian of our system of n particles with pair potentials Pij is 
given by 

H=.!..(mlx~ + ... +m"x~) + LPij(X j -Xi)' (1) 
2 i<j 

where Xi = Vi are the particle velocities. We say that the 
particles with Hamiltonian (1) interact via pairwise direct­
ed potentials Pij' The configuration space of the system (1) 

consists ofn-tuples (xl, ... ,x" ) such thatLij <x j - Xi for all 
i <.j. 

Let now Wbe a non-negative C 1 function on the config­
uration space. Assume that a W / aXi <.0 for all i and consider 
the Hamiltonian 

1 " 
H=- L miv1+ LPij(X j -Xi) + W(xl, ... ,x,,). (2) 

2 i=1 i<j 

We say that the total potential 

V= LPij(X j -Xi) + W(x!> ... ,x,,) (3) 
i<j 

is the sum of the internal potentiall: i <j Pij (x j - Xi ) and the 
external potential W. An important special case of (3) is 

W(xl, ... ,x,,) =W1(X1) + ... +w,,(x .. ), (4) 

with Wi (x»O and w;(x)<.O. 
We denote by C the proper (i.e., without straight lines) 

cone in Rn spanned by e j - ei for i <j and by ei , where 
e I, ... ,e" is the standard basis ofRn . Then the total potential V 
is a cone potential in the sense of Ref. 3 with respect to the 
cone - C. The vector F(x) = - V V(x) is the force at 
the configuration x. Denote - pij (x) by f ij (x) and 
- VW(x) byG(x). Then theforceatx = (x!> ... ,xn) isgiv-

en by 
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F(x) = Ifij(x j -x;)(ej - e;) + G(x) , (5) 
i<j 

where, if the external potential is given by ( 4 ), 
G(x) = ~;g; (x;) e; with g; (x) = - w;(x). The term f ij 
X (x j - x;) (e j - e;) accounts for the interaction of the ith 
and the jth particles and the total force F is directed with 
respect to the cone C (see Ref. 4). 

Let x; be the acceleration of the ith particle. The dynam­
ics x(t) of our many-body problem is given by the Newton 
equations 

(mlxl, ... ,mnxn) =F(x) , (6) 

and we are interested in the asymptotics of x(t) as t goes to 
infinity. 

Under our assumptions on the pair potentials Pij and the 
external potential W the limits limt _ ± 00 V; (t) = V; ( ± 00) 
exist (cf. Ref. 3) for any trajectory {x(t)} ofthe dynamics 
(6). Denote the vectors (v I ( - oo), ... ,vn ( - 00») and 
(v I ( + 00 )"",vn ( + 00») by v_ and V+, respectively. They 
are called the asymptotic velocities and the dynamics (6) 
such that the asymptotic velocities exist for every trajectory 
is called asymptotically free. Under certain decay assump­
tions on the potentials the asymptotics of almost all trajec­
tories {x (t)} satisfies 

x(t) = v ± t + a ± + 0(1), x(t) = v(t) = v ± + 0(1) , 

(7) 

as t --+ ± 00, respectively (cf. Ref. 6). The motions satisfying 
(7) are called asymptotically uniform and the vectors a ± 

are called the asymptotic phases. The set of pairs (a _ ,v _ ) 

obtained from the asymptotics (7) is the domain of the scat­
tering transformation (see, e.g., Ref. 5) S: (a _ ,v _ ) 

--+(a+,v+) and for this reason (a_,v_) or (a+,v+) are 
called the scattering data. In what follows we denote by Y the 
space of positions and velocities and call Y the phase space 
(this is a slight abuse of terminology). Let (x,v) be a point in 
Y and let {x(t)} by the trajectory such that x(O) = x, 
x(O) = v. Assigning to (x,v) the scattering data (a+,v+) 
[resp. (a_,v_)] on the trajectory {x(t)} we obtain the map­
pings W + [resp. W _] defined almost everywhere on Yand 
we haveS = W+W=I. 

Since W ± contain all the information about the scatter­
ing and for reasons outlined in the introduction, we are inter­
ested in the smoothness of these transformations. It suffices 
to investigate W +, which can be called the mapping into the 
remote future. 

In the rest of this section we consider the case of finite 
range interactions. 

Definition 1: Let potentials Pij' 1..;;; <}<n, and Wbe as 
above. Assume that there exists A > 0 such that all 
Pij (x) = 0 ifx>A and W(xl, ... ,xn ) = 0 ifalllxk I >A. 

In this situation we say that the nobody system with the 
Hamiltonian (2) has finite range directed interactions. 

Theorem 1: For a system of particles with directed finite 
range interactions the mappings W ± are defined every­
where. There exist nonempty open sets Y ± in the phase 
space such that the restrictions of W ± on Y ± ' respectively, 
are differentiable at least as many times as the functions Pij 
and W. 

Proof: Let {x(t)} be the trajectory with the initial data 
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(x,v) and let v+ = (VI (00 ), ••• ,vn (00») be the asymptotic ve­
locity. If all potentials are zero then the particles are free and 
there is nothing to prove. Assume that not all P ij are equal to 
zero. Let kjbe such thatpij#O. Thenv;( + oo)<vj(oo). 
Indeed, assuming the opposite we obtain that x j (t) - x; (t) 
goes to minus infinity as t--+ 00, thus, Pij(x j (t) - x; (t») goes 
to infinity with t which contradicts the conservation of ener­
gy. 

Assume, for simplicity of exposition, thatp;,;+ I #0 for 
all i, i.e., that all nearest neighbors interact. Then, by argu­
ment above, VI ( 00 ) < ... <vn ( 00 ). Denote by Y + the set of 
initial data for which the strict inequalities hold. Consider 
first the case when the external potential is zero. For 
(xo,vo)eY + there exist 3E> 0 such that v? + I ( 00 ) - v?( 00 ) 

> 3E and there exists TI > 0 such that I v? (t) - v? ( 00 ) I < E 
for t> T I. Therefore v?+ I (t) - v?(t) >E for t> T I, thus 
there exists T> 0 such that x?+ I (t) - x?(t) > 2A for r>T. 
Since particles which are more thanA apart are free, we have 
v?(t) = v?( 00) and x?(t) = x?( n + v?( 00) (t - n for 
t> T. By standard theorems about the smooth dependence of 
solutions of ordinary differential equations on initial data 
(see, e.g., Ref. 7), there exists for any 8> 0 a neighborhood 
o of (xo,vo) in Y such that for any (x,v) in 0 we have 
Iv; (T) - v?( T) 1< 3EI2 and Ix; (T) - x?( T) I <8. From the 
latter inequality we obtain that x; + I (T) - x; ( n > A if 8 is 
small enough and the former one implies that v; + I (T) 
- v; (n > E12. Therefore for any initial conditions (x,v) in 
0, the particles at time T are so far apart that they do not 
interact and, besides, they are moving further away from 
each other. Thus for any (x,v) in 0, x (t) = x ( n 
+ v ( T) (t - T) for t> T. Therefore the restriction of W + on 
o is given by 

v; (00) = v;(n, a; = x;(T) - v;(T)T, (8) 

fori= 1, ... ,n.By (8), W+ln is essentially the mapping ~ 
of translation by T along the trajectories of Eq. (6). By the 
smooth dependence of solutions on initial data, the map­
pings W t are differentiable as many times as the right-hand 
side of (6), which proves the assertion for W + In. The argu­
ment also shows that Y + is open. It is obviously nonempty 
since for initial conditions (x,v) such that x;+ I - x; >A 
and v;+ I - v; >0 for all i, we have v( 00) = v. 

Let now the external potential Wbe different from zero. 
Assume, for simplicity, that there is L> - 00 such that 
W(x) --+ 00 if any coordinate x; goes to L. Then the same 
argument as above shows that for the asymptotic velocities 
we have O<vI ( 00 ) < ... <vn ( 00 ). Repeating the previous 
argument with obvious modifications we obtain that W + is 
differentiable on the nonempty open set Y + of initial data for 
which the strict inequalities 0 < VI ( 00 ) < ... < Vn ( 00 ) 
hold. The theorem is proved. 

III. PARTICLES ON THE LINE WITH DIRECTED 
INTERACTIONS. CONTINUITY OF ASYMPTOTIC 
VELOCITIES 

We consider a system of n particles on the line interact­
ing by pairwise directed potentials Pij and assume that the 
external potential is zero. 

Theorem 2: Consider the nobody problem given by the 
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Hamiltonian ( 1) where the pair potentials Pij satisfy the as­
sumption of Sec. II. Let VI (00 )"",vn (00) be the asymptotic 
velocities at plus infinity which are well defined functions on 
the phase space Y. Then there exists a nonempty invariant 
open set Y + in Y such that VI (00 )"",vn (00 ) are continuous 
on Y+. 

We will prove the theorem after some preparation. Re­
call that, by our assumptions,pij (x) - 00 whenx-+Lij from 
the right. The values of Lij do not matterin the proof and we 
set for simplicity Lij = - 00 for all i <j. 

First we consider the system of three particles with pair 
potentialsPI3'PI2' andp23 and denote by bl , b2, b3 the asymp­
totic velocities. By Ref. 3, they exist for any initial data (x,v) 

of the three-body problem and satisfy b l<b2<b3. We write 
the Newtonian equations of motion explicitly as 

mlxl = -/12(X2 -XI) -/13(X3 -XI), 

m;i2=/12(X2 -xI ) -/23(X3 -X2) , (9) 

m3x3 =/23(X3 - x 2) +1 13(X3 - XI) . 

We denote by Y the phase space of our three-body problem 
and for any A and B we denote by YA,B the part of Y consist­
ing of pairs (x,v) such that 

X2 - X I,X3 - X2 >A; V2 - VI,V3 - v2>B. (10) 

Consider the system of equations 

mlxl = -I 12(X2 - XI) , 

m;i2=/12(X2 -xI ) , (11 ) 

m3X3 =/23(X3 - x 2) +1 13(X3 - XI) , 

which has the Newtonian form mX = F(x) where the force 
Fis no longer conservative. We want to compare solutions of 
(9) and (11) with the same initial date (x,v). 

First of all, for any X the vector F(x) belongs to the span 
of e2 - e l and e3, i.e., the force F is directed in the sense of 
Ref. 4. Thus, by results of Ref. 4, for any trajectory {x (t)} of 
( 11) the asymptotic velocities bl , b2, b3 exist. 

Comparing ( 11 ) with (9) we see that when the particles 
I 

are moving according to (11), the first and the second parti­
cles are pushing the third to the right with the forces 
I 13(X3 - XI) and 123(X3 - x 2), respectively, but the third 
particle does not push back. Let the initial data (x,v) belong 
to YA,B with A and B greater than zero, so that the particles 
at t = 0 are located in the right order and are moving away 
from each other. Denote by (x(t),v(t») and by (x (t),v(t) ) the 
position and velocity at time t> 0 for the "real motion" (9) 
and, respectively, for the "fake motion" (11). Since in the 
"fake motion" the second particle is not pushed back by the 
third, we have V2(t»V2(t), therefore X2(t»X2(t). The 
same argument applied to the first and the third particles 
shows that VI (t»v I (t) and XI (t»x I (t). Since, in the mo­
tion ( 11) the first and the second particles are further to the 
right than they are when moving according to (9), they push 
the third particle harder, thus, V3(t»V3(t) and 
X3 (t) >X3 (t). Therefore for the asymptotic velocities we 
have 

(12) 

In the preceeding argument we assume that the particles 
moving by (11) do not change their initial order, i.e., the 
first particle does not catch up with the second and the sec­
ond particle does not catch up with the third. This will cer­
tainly be the case if b2<V3. We will now estimate bl , b2, b3, 

thus providing estimates for the asymptotic velocities bl , b2, 

b3 • 

The first two equations of ( 11) describe the Hamilto­
nian system of two particles with the potential of interaction 
P12(X2 - x.). The asymptotic velocities bl and b2 can be 
found from the conservation of total momentum 

( 13) 

and the conservation of energy 

!mlvi +!m2v~ +PI2(X2 -XI) =!mlbi +!m2b~. (14) 

After elementary computations we obtain from (13) and 
(14) 

b
l 

= mlvl + m2v2 _ ( m lm2 ){(V2 - VI )2 + [2(m l + m2)/(m.m2) ]P.2(X2 - x l )}l/2 

m l +m2 m 1 +m2 m1 
(15) 

and 

b
2 

= m.vI + m2v2 + ( m lm 2 ){(V2 - VI )2 + [2(m l + m 2)/(m lm2) ]PI2(X2 - x 1)}l/2 

m. + m2 m 1 + m 2 m 2 
(16) 

We could compute b3 from (11), but it is too complicat­
ed and, fortunately, we can obtain an upper bound on b3 in a 
much simpler way. Since the velocity of the second particle 
in the motion ( 11 ) is monotonically increasing approaching 
the limit b2 as t -+ 00 , the position of the second particle satis­
fies X2 (t) <x2 + b2t and, of course, X I (t) <x2 (t) <X2 + b2t. If 
we had the equality, the first and the second particles would 
have been closer to the third, thus, pushing it stronger to the 
right. Denote by h3 the limit of X3 (t) as t -+ 00 from the equa­
tion 

m~3=/23(X3-X2-b2t) +/13(X3-x2-b2t). (17) 

By (12) and the argument above, we have b3<b3<b3. From 

now on we denote b3 by b3 and forget about the old b3• 
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Now we calculate b3 from (17). Denote X3 - X2 - b2t 
by x. Then (17) becomes 

m~ =/23(X) +1 13(X) , (18) 

with the initial conditions x(O) = X3 - X2, x(O) = V3 - b2. 
Since (18) describes the motion in the field of potential 
P13(X) + P23(X), the energy !m3x2 + P23(X) + P13(X) is 

conserved. Thus, limt _ oo x(t) = b3 - b2 satisfies 
- - 2 - 2 

!m3(b3 - b2) = !m3(V3 - b2) + P13(X3 - X2) 

+ P23(X3 - X2) . (19) 
Solving for b3 we obtain 

b3 = b2 + [(v3 - b2)2 + (21m3) (P13 + P23) (X3 - X2)] 1/2. 

(20) 

Eugene Gutkin 353 



                                                                                                                                    

Now we have formulas (15), (16), and (20) for hi, h2, 

and h3' respectively, but they are too complicated. Fortu­
nately, by elementary computations that we leave to the 
reader, we obtain from these formulas the estimates 

VI - [P12(X2 - XI) ]1m I (v2 - vl)<hl<vI , (21) 

v2<h2<V2 + [P12(X2 - XI) ]lm2(v2 - VI) , (22) 

and 

"'b- '" + m2(v2 - VI }(PI3 + P23}(X3 - x 2) 
V3 ..... 3 ..... V3 . 

m 3[m2(v2 - VI }(V3 - v2) - P12(X2 - XI)] 
(23) 

The estimates above were obtained using the "fake sys­
tem of particles" where the third particle does not push back 
on the first and the second Analogously, we can consider 
another fake system of particles where the first one does not 
push back on the second and the third. Following the pre­
vious argument (we leave details to the reader) we obtain for 
the corresponding asymptotic velocities b l, b2, b3 

m2(v3 -v2)(P12+P13}(X2 -xI ) "'-b "'v 
VI - ..... I ..... I' 

m l [m2(v2 - VI }(V3 - V2) - P23(X3 - x 2)] 

(24) 

and 

V2 - P23(X3 - x 2)lm2 (v3 - V2) <b2 . (25) 

Parallel to (12) we have 

bl<bl, b2<b2, b3<b3 . (26) 

Now we are ready to prove the following. 
Lemma 1: Consider the system of three particles on the 

line with masses ml, m 2, m3 interacting via directed poten­
tialsPl2' P23' P13 satisfying assumptions of Sec. II. Let b l, b2, 
b3 be the asymptotic velocities (at + 00) of the particles 
corresponding to an initial data (x,v) such that XI <X2 <X3, 

VI <V2 <V3' and 

m 2(v2 - VI }(V3 - v2) >max(PI2(x2 -XI ),P23(X3 -x2»)· 

(27) 

Then the following inequalities are satisfied: 

_ __ ~m~2~(~v~3_-_V~2~)~(P~I~2~+~P~I~3~)(~X~2_-__ X~I)~ __ 
VI -

mdm 2(v2 - VI) (v3 - v2) - P23(X3 - x 2)] 

<b
l
<VI<V2 _ P23(X3 - x 2) <b2<V2 + P12(X2 - XI) 

m 2(v3 - v2) m 2(v2 - VI) 

<v3<b3<V3 

+ m 2(v2 - VI) (P13 + P23) (X3 - x 2) 

m 3[m2(v2 - VI )(V3 - V2) - P12(X2 - XI)] 
(28) 

Besides, 

P23(X3 - x 2) 0 b2 - bl >(V2 - VI) - > , 
m 2(v3 - v2) 

(29) 

and 

P12(X2 - XI) 0 b3 - b2> (v3 - V2) - > . 
m2(v2 - VI) 

(30) 

ProoF Recall that the argument with the "fake mo­
tions," which we used to obtain the inequalities (21 )-(26), 
is valid if the particles do not overtake each other. This will 
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certainly be the case ifh2 < V3 and VI <b2• By (22) and (25), 
it suffices to have 

V2 + [P12(X2 - XI) ]lm2(v2 - VI) < V3 , 

and 

VI < V2 - [P23(X3 - x 2) ]lm2(v3 - v2) , 

which follow from (27). Putting the estimates (12) and 
(21)-(26) together we obtain the chain ofinequalities (28), 
which implies (29) and (30). 

In order to prove Theorem 2 we need the following. 
Proposition 1: Consider the system of n particles on the 

line with masses m I, ... ,mn interacting via directed potentials 
Pij satisfying assumptions of Sec. II. Denote by bl, ... ,bn the 
asymptotic velocities (at + 00) of particles along the trajec­
tory starting at a point (x,v) in the phase space Y. Then for 
anYE> o there exist numbers A andBsuch that if (x,v)eYA.B 

then Ib,. - v,. 1< E for i = 1, ... ,n. 
ProoF We will prove the assertion by induction on n. 

The case n = 2 is obvious and the case n = 3 follows immedi­
ately from Lemma 1. Assume that the assertion is proved up 
to n - 1. Following the argument of Lemma 1 consider the 
"fake motion" where the nth particle does not push back on 
the other particles. Denote by hl, ... ,h,. _ I the asymptotic ve­
locities of the first n - I particles and by b ~ the asymptotic 
velocity of the nth particle in this "fake motion." By argu­
ment preceeding Lemma 1, we have 

bl<hl, ... ,b,._1 <h"_1 ,b,. <b ~ . (31) 

Assume that h,. _ I <v,. and consider the "double fake mo­
tion" where the particles 1, ... ,n - I move as before and the 
motion of the nth particle is given by 

m,.x,. =ft.n(X,.(t) -X"_I -h"_lt) 

+ ... +!,._I.,.(X,.(t) -X"_I -h,._lt). 

(32) 

Denote by h,. the asymptotic velocity of the nth particle in 
the motion (32). By our argument preceeding Lemma 1, 
b,. <b ~ <h,.. Setting x(t) = X,. (t) - X,. _ I - h,. _ I t we 
transform (32) into 

(33) 

which is the equation of motion of a particle of mass m,. in 
the external potential PI,. (x) + ... + P,. _ I.,., Using the 
conservation of energy for (33) and the initial conditions 
which are x(O) = X,. -X"_I' x(O) = V,. - h"_1 we ob­
tain 
- - - 2 
b,. =b,._1 + [(V,. -b,._I) + (2/m,,)(pI"(X" -X,._I) 

+ ... +P,._I.,.(X,. _X,._I»)]1I2, (34) 

which immediately implies the inequality 

b
- PI,. (X,. - X,.) + ... + P,. - I.,. (X,. - X,. - I ) 

,.<v,. + _ 
m,. (V,. - b,. _ I) 

(35) 

By induction hypothesis, we can find Al and BI such 
that for 

(36) 

and 

Eugene Gutkin 354 



                                                                                                                                    

V2 - VI •... 'V,._I - V"_2 >BI , 

we have 

hi < VI + E, ... ,h,. _ I < v,. _ I + E . 

By (35) 

(37) 

(38) 

h
- PI,. (X,. - X,. - I ) + ... + p,. - I.,. (X,. - x,. - I ) 

,. <v,. + ~:.....-.::..---~~---....:....;.:..-.:..::.:....~----...:..-
m,. (V,. - v,. _ I - E) 

(39) 

Find A2 such that 

PI,. (A2) + ... + P,. - I.,. (A2) 
~-~-------~--~<E. 

. m,.BI 
(40) 

and set B'=BI+E, A'=max(A I,A2)' Then for (x,v) 
eY ... I.B I we have 

hl<vI +E, . ·,h,.<v,. +E. (41) 

Repeating this argument with the other "fake motion" 
where the first particle does not push back, we obtain the 
"fake asymptotic velocities" bl, ... ,b,. such that 

bl <hl ..... b,. <h,. • (42) 

and the numbers A ",B" such that for (x,v)eY ... ",B" we have 

VI - E<bl, ... ,v,. - E<b,. . (43) 

Setting A = max(A ',A "). B = max(B',B ") and putting 
(31). (41), (42), and (43) together we obtain the assertion 
of the proposition. 

Corollary 1 (of the proof): We keep notation and the as­
sumptions of Proposition 1. Then for any E> 0 and {j > 0 one 
can find A such that the asymptotic velocities hj satisfy 
Ihj - Vj 1< E if (x,v)eY ... ,c5' 

Proof In view of (21) and (22). the assertion is obvious 
if the number of particles is equal to 2. Assume, by induction, 
that the assertion holds up to n - 1. In particular, it holds 
for n - 1 particles with EI = min(E,lJ/2) and {jl = {j. 
This means that we can find Al such that hi <VI 
+{j/2 .... ,h,._1 <V"_I +{j/2 if X2-XI, ... ,x,._1 -X"_2 
>AI and V2 - VI"",V"_I - V"_2 >{j. Then V,. - h"_1 
>v,. - V"_I -lJ/2>{j/2 and, by (35), 

b,. - Vn 

< PI,. (X,. - x,. _ I ) + ... + p,. _ I,,. (X,. - x,. - I ) 

m,.lJ/2 

(44) 

We can find A ';;;.A I such that 2(PI,. (A') + ... 
+ Pn-I,,. (A '»)/{jm,. <E insuring that the ineqUalities 

x j+ I - Xj >A' and vj+ I - Vj >{j for all i imply 
hi < VI + E, ... ,h,. < v,. + E. Repeating the argument for the 
other set of "fake asymptotic velocities" b j we obtain A " and 
the inequalities bl > VI - E, •• ,b,. > v,. - E. In view of (32) 
and (42), it suffices to set A = max(A ',A "). 

Denote by Gt the group of time translations naturally 
acting on Y. For (x.v)eY we simply have G' (x,v) 
= (x(t),v(t»). By basic theorems on the continuous depen­
dence of solutions on initial data (see, e.g., Ref. 7), the trans­
formations G' are homeomorphisms of Y. We call a set X in 
YinvariantifG' (X) =X forallt. AnysubsetXofY defined 
by asymptotic properties of trajectories {x (t)} starting in X 
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is obviously invariant. Now we are able to prove Theorem 2. 
Proof of Theorem 2: Recall that, by our original nota­

tion, the asymptotic velocities at t -+ + 00 are denoted by 
VI ( 00 ), ... ,Vn ( 00) and let Y + be the subset of the phase space 
Y definedbytheconditionsvl( 00) < ... <Vn (00). We will 
show that the functions Vj (00) are continuous on Y +. For 
any (xo,vo)eY+ there exists d>O and TI>O such that for 
t> TI we have v~ + I (t) > v~(t) + d for i = 1, ... ,n - 1. It suf­
fices to find for any E> 0 a neighborhood D" of (xo.vo) such 
that for any (x,v) in D" the corresponding asymptotic veloc­
ities Vj (00) satisfy IVj ( 00) - Vj I < E. We can assume that 
E < d. Consider the open set Yd,T, in Y defined by the condi­
tions IVj - v~(TI)1 <Ele for all i. Then Yd,T, contains 

GT, (xo,vo) and for any (x,v) in Yd,T, we have Vj+ I - Vj 
> d 13 for all i. By Corollary 1, there is A > 0 such that the 
inequalitiesvj+1 -vj >dI3andxj+1 -xj>A foralliim­
ply that I Vj ( 00) - Vj I < E. Obviously, we can find T> TI 
suchthatx~+ I (t) -x~(t) >A + 2EI3fort;;;.T.Considerthe 
neighborhood D",T of (xo( T),vo( T») defined by inequalities 
IXj -x~(T)1 <E/2, IVj - v~(T)1 <E/3 for i= I, ... ,n. Then 
for any (x,v) in D",T we have Xj+ I -Xj >A, Vj+ I - Vj 
> d 13 for all i. Therefore for the vector of asymptotic veloc­
ities(vi (00 ), ... ,v,. (00» corresponding to (x,v) fromD",T we 
have IVj (00 ) - Vj I < E for i = I, ... ,n. Thus for (x,V)eD",T 

Ivj(oo) -v~(00)I<E+E!3+E=7EI3. (45) 

Consider D" = G- T D",T' Then D" is an open neighbor­
hood of (xo,vo) and for any (x.v)eD" the inequalities (45) 
hold. Since E is arbitrary. we conclude that the mapping 
(x.v) -+V+ is continuous at (xo.vo)eY +. Since (xo,vo) isarbi­
trary, we proved the continuity of W + on Y +. If E is small 
enough, D" belongs to Y +' thus Y + is open. It is nonempty, 
by Proposition 1, and invariant, by definition. The theorem 
is proved. 

Now we treat the case of purely external potential. 
Theorem 3: Consider the n-body Hamiltonian 

(46) 

with potential W satisfying the assumptions of Sec. II. Then 
the asymptotic velocities (VI (00 ), ... ,vn (00 ») exist for any 
point (x,v) in the phase space Yand we denote by Y + the 
subset of Y given by inequalities VI ( 00 ) > 0 for all i. 

Then Y + in an invariant open (nonempty) set and the 
mapping (x,v) -+V+ is continuous on Y +. 

Recall that, by our assumptions, W;;;.O and there is 
L;;;. - 00 such that W(xl, ... ,x,.) -+ 00 if for at least one i, 
xl-L from the right. For simplicity of exposition we assume 
that L = - 00. Besides, W(xl, ... ,xn) -+0 when all Xj -+ 00. 
For any A and B we denote by YA,B the subset of Y given by 
inequalitiesxj >A, Vj >B for all i. We need the following. 

Lemma 2: For any E> 0 we can find A such that on YA,o 
the inequalities IVj (00) - Vj I <E are satisfied for all i. 

Proof Let {j > 0 be arbitrary and choose A such that 
W(xl, ... ,x,.) <{j if Xj >A for all i. Let (x,v)eYA,o and let 
(x(t),v(t»), t;;;'O, be the corresponding trajectory. The func­
tions Vj (t) monotonically increase approaching their limits 
VI (00). Therefore we have Vj (t);;;,v j > 0 for all i and, by con­
servation of energy, for any t:>O. 
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1 n 

= - L mivi (t)2 + W(XI (t), ... ,xn (t» . (47) 
2 i=1 

Denote Vi (00) by Ui and take the limit t- 00 in (47). We 
obtain 

1 n 2 1 n 2 - L miui - - L mivi = W(XI,· .. ,xn) <0. (48) 
2 i=1 2 i=1 
For any O<v<u we have (u - V)2 = (u - v) (u - v) 

«u - v)(u + v) = u2 - v2, which implies 

u - v«u2 - V2 )1/2. (49) 

Applying (49) to (48) we get for any i 

ui - v; < [mi (u; - v;)] 1I2(m;) -1/2 

< [jtl mjuJ - jtl mjvJ](mi)-1/2«28/mY/2. 

(50) 

Thus to satisfy the inequalities I Vi ( 00) - v; I < E it suf­
fices to take 0 such that for any i, (281m;) 1/2 < E, i.e., 0 
<! ~min(ml, ... ,mn) and find A such that W(xl, ... ,xn ) <0 
ifxl,,,,,xn >A. 

Proolol Theorem 3: Let (xo,vo)eY + and let E> 0 be 
arbitrary. It suffices to find a neighborhood DE of (xo,vo) 
such that DE C Y + and for any (x,v) in DE we have 
Iv; (00) - v?( 00) 1< dor all i. Let d> 0 be such that v?( 00) 
> d for all i and choose TI > 0 such that v? (t) > d /2 for 
t> T I. Since x?(t) - 00 for all i when t- 00 we can choose 
T2> TI such that for r~ T2 we have x? (t) > 2A where YA•O is 
the set defined in Lemma 2. Define the setDE• T, by inequal­
ities IXi -x? (T2)I<A, Iv; -v?(T2)I<E for all i. Then 
D E•T, is an open neighborhood of GT, (vo ,x0) which is con­
tained in YA •O if E is less than d /2 which can assume without 
loss of generality. For any (x,v) from D.-.T, we have for all i 

Ivi(oo) -v?(oo)1 = I(v;(oo) -v;)+(vi -v?(T2 ») 

+ (v?(T2 ) - v?( 00»1 < 3E. (51) 

Then DE = G- T'D.-.T, is an open neighborhood of (xo,vo) 
(see the proof of Theorem 2) and for any (x,v)eDE we have, 
by (51) 

Iv; ( 00 ) - v?( 00 ) I < 3E, i = 1, ... ,n . 

Since E is arbitrarily small, this proves the theorem. 
Now we can treat the general many-body directed 

Hamiltonians. 
Theorem 4: Consider the n-body problem on the line 

with the Hamiltonian (2) where the pair potentials Pij and 
the external potential W satisfy the assumptions of Sec. II. 
For a point (x,v) in the phase space Ywedenote by v( 00) the 
vector of asymptotic velocities at t = + 00 and let Y + C Y 
be given by 

0<vl (00)<V2 (00)<" ·<vn(oo). 

Then Y + is a nonempty open invariant set and the map­
ping (x,v) -v( 00) is continuous on Y +. 

Proof: By remarks in Sec. II, the potential V of the n­
body problem is a cone potential and the force 
F(x) = - VV(x) is directed with respect to the cone C 
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spanned by vectors e j - e; for i <j and ek, k = 1, ... ,n. The 
dual cone C* consists of vectors 1:7= I h;e; such that 

0<b l <b2<' . '<bn • (52) 

By results of Refs. 3 and 6, the mapping (x,v) -v( 00) is 
defined everywhere and v ( 00 ) belongs to C * for any (x, v ). 
The set Y+ is defined by the condition v( 00 )elnt C*. For 
any A and B we denote by YA•B the subset of Y given by the 
inequalities 

Xl >A, X2 - XI >A, ... ,Xn - x n _ 1 >A ; 
(53) 

vl>B, V2-VI>B, ... ,vn -Vn_ 1 >B. 

The following lemma is crucial. 
Lemma 3: For any E> 0, 0> 0 there exists A such that 

(x,v)eYA•6 implies Iv; - v; (00) 1< E for all i. 
The proof is a combination of proofs of Corollary 1 and 

Lemma 2 and we leave it to the reader. Assertion of the 
theorem follows from the lemma the same way Theorem 2 
follows from Corollary 1 or Theorem 3 follows from Lemma 
2. We spare the details. 

IV. CONTINUITY OF ASYMPTOTIC PHASES FOR CONE 
POTENTIALS 

Recall that a potential Von Rn (which is allowed to take 
value + 00) is called a cone potential with respect to a 
closed proper cone Cif Vis differentiable on the open set X in 
Rn where V(x) < 00 and the force F(x) = - V V(x) is con­
tained in C for any X in X. In what follows we assume that V 
is continuously differentiable on X and that Assumptions 1 
and 2 of Ref. 6 are satisfied. That is, V;;;. 0, 

infV(x) =0, 
x 

and that 

Vex) - 00 if (x,c) - - 00 

for at least onecfrom Cand that Vex) -Oif (x,c) - 00 forall 
ceInt C. 

Let Y = X X Rn be the phase space and recall that a 
trajectory x(t) defined by (x,v)eYis called asymptotically 
uniform (at t = + 00) if 

x(t) =a +bt+o(1), (54) 

as t - 00. Here a and b are the asymptotic phase and velocity, 
respectively. By Refs. 3 and 6, the mapping (x,v) -b is de­
fined everywhere, b belongs to the dual cone C *, and we 
denote by Y + the subset of Y given by the condition 
belnt C*. 

We call Y + the set of regular points in Y. 
Theorem 5: (See Ref. 6.) Let the potential V satisfy 

1"" V(ct)dt < 00 , (55) 

for any celnt C *. Then the mapping W +: (x,v) - (a,b) is 
defined on Y +. 

At this point we have to digress a little bit. Let I (y,t) be 
a continuous vector function on Yo X [0,00 ) and let the limit 
I (y) = limt~ "" I (y,t) exist for any y. We say that the con­
vergence I (y,t) -I (y) is locally uniform on Yo if for every 
Yo from Yo and any E> 0 there exists a neighborhood D of Yo 
in Yo (Yo is assumed to be open) and T> 0 such that 
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11/(y,t) - 1(Y)11 <E for any yeD and t> T. By a standard 
theorem of analysis (see, e.g., Ref. 8), the limit function 
I (y) is continuous if the convergence 

I(y,t) - 1(Y) 
t_ 00 

is locally uniform. 
The following theorem will be applied to the many-body 

problems with directed interactions. 
Theorem 6: Let the assumptions be as above and let Yo 

be an open invariant subset of Y + such that the convergence 
v(t) = v(y,t) -v( (0), as t- 00, is locally uniform. Then 
W +: (x,v) - (a,b) is continuous on Yo' 

Proof: By Theorem 5, the mapping W +: (x,v) - (a,b) 
= (a,v ( 00 ») is well defined on Yo and, by discussion preceed­
ing the theorem, b depends continuously on (x,v). A 
straightforward computation (cf. Ref. 6) gives 

a=x-I( dudrF(x(u»), (56) 
JO'>7>0 

where the improper integral in (56) is the limit of 

u>r, If dudr F(x(u») as t- 00 • 
1>'1'>0 

Since F (x (u) ) belongs to the proper cone C, convergence of 
the integral in (56) is equivalent to its absolute convergence 
which is equivalent to the convergence of integrals 
S S 0'>7">0 du dr(c*,F(x(u»)) for all c*eC *. Wewanttoshow 
the continuity of the mapping 

(X,V)-I( dudrF(x(u») 
)0'>'1'>0 

on Yo' Because of the absolute convergence we can change 
the order of integration in (56) and obtain 

I L>T>O dudr F(x(u») 

= 100 
du F(X(U»)lO' dr = 100 

uF(x(u»)du. (57) 

The improper integral SO' uF(x(u»)duis the limit func­
tion/(y) = liml(Y,t) where I (y,t) = S~ uF(x(u»)duand 
y = (x,v). In view of the discussion preceeding the theorem, 
it should be clear what we mean by saying that the 
mapping y-SO' uF(x(u»)du is continuous if the integral 
SO' uF (x (u»)du converges locally uniformly on Yo' 

We claim that SO' u F (x (u) )du converges locally uni­
formly if and only if the scalar integral SO' u(F(x(u»), v(u» 
du does. Indeed, by assumption, the vector function 
(y,u) -.v(u) converges to y-v( (0) = b locally uniformly 
on Yo, which proves the implication from the locally uniform 
convergence of SO' uF(x(u»)du to that of SO' u (F(x(u»), 
v(u» du. To do the opposite implication, choose a basis 
CI""'Cn eC ofRn and let cT, ... ,C!EC * be the dual basis. Then 
for any u;;;.O 

u(F(x(u»),v(u» = Lu(F(x(u»),cT) (cjJv(u». (58) 
; 

LetYoEYo and let bo = vo( (0) be the corresponding asymp­
totic velocity. Since boEInt C * and since the convergence 
v (t) - v ( 00 ) is locally uniform, we can choose a neighbor­
hood D of Yo in Yo and T> 0 such that for any yeD and t> T 
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we have v(t)EInt C *. Since the continuity ofa at Yo and GT Yo 
are equivalent, we can assume without loss of generality that 
T = O. Then all the factors in the right-hand side of ( 58) are 
non-negative, which implies for any i = 1, ... ,n, 

u(F(x(u) ),cT) (u(F(x(u) ),v(u» (cjJv(u» -I. (59) 

Using the locally uniform convergence of v(u) to v( (0) 

again, we can choose the neighborhood D of Yo small enough 
so that for i= 1, ... ,n and u;;;'O we have (c;,v(u»>d>O. 
Then the functions (y,u)--+(cjJV(U»-1 converge to 
(c; ,v( 00 » -I uniformly on D which implies the locally uni­
form convergence of the integral SO' u(F(x(u», 
v(u»(c;,V(U»-1 du and, by (59), the same holds for 
SO' u(F(x(u»), cT)du. Since cT form a basis of Rn we con­
clude that SO' uF(x(u»)du converges locally uniformly. 

We have 

Loo u(F(x(u»),v(u»du 

= I ( (F(x(u) ),v(u) )du dr 
)0'>1">0 

= Loo dri
oo 

(F(x(u»),v(u»du 

= _ (00 dr (00 VV(s) = (00 dr V(x(r»). (60) 
Jo L(T) Jo 

By (60) and the previous argument, the integral in (56) 
converges locally uniformly on Yo if and only if the integral 
SO'dr V(x( r») does. 

It remains to show that the convergence of SO' V(c*t)dt 
for any c* from Int C * implies the local uniform conver­
gence of SO' dr V(x(r») on Yo' Let Yo = (xo,vo)eYo and let 
boEInt C * be the corresponding asymptotic velocity. For any 
E> 0 we can find a neighborhood D of Yo and T;;;.O such that 
foryeDand t;;;.T, Ilv(t) - boll <E. Since the uniform conver­
gence of SO' V(x( r»)dr and ST V(x(t) )dr are equivalent, we 
can assume without loss of generality that Ilv(t) - boll < E 
for t>O. Since bo belongs to the open cone Int C *, for E small 
enough we can find blE Int C * such that lib - boll < E implies 
b - boEC *. Thus for any y = (x,v) from our neighborhood 
D of Yo we have x (t) - x - b I tEC * for t;;;'O. Therefore (cf. 
Ref. 6), V(x(t»)< Vex + bit) for all t;;;.O and for any T;;;.O 

Loo V(x(t»)dt<Loo Vex + b,t)dt. (61) 

Foranytwovectorsx,yinRn wewritex;;;.yifx - yeC*. 
By Ref. 6, x;;;. y implies V(Y);;;' V(x). Since the neighborhood 
DCRn of Xo is bounded, there exists x,ER" such that x;;;'x i 

for any x in DC Rn . Therefore for t;;;.O and any y = (x,v) in 
Dwehave 

x(t);;;.x + b,t;;;,x , + bit. 

Since b,EInt C *, there exists tl;;;.O such that XI + b,t,eC *. 
Thus for 1";;;.t l 

x(t);;;,(x i + b,t,) + b,(t - t,);;;.b,(t - t l ) . (62) 

In view of (61) and (62), forany T;;;.t l 

(00 V(x(t) )dt< (00 V(b , (t _ tl»)dt = (00 V(b,t)dt. 
JT JT JT-t, 

(63) 
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Letting T -+ 00, we obtain, by (63), that the integral 
fa V(x(t»)dt converges uniformly on D, which proves the 
theorem. 

Now we prove the main result ofthis paper. 
Theorem 7: Let 

1 " 
H = - L miv; + LPij (x jXi ) + W(xl,···,x,,) 

2 i= I i<j 

be the Hamiltonian of a n-body problem with directed inter­
action where the pair potentials Pij and the external potential 
Wsatisfy the assumptions of Sec. II. By previous results, the 
vector b of asymptotic velocity (at + 00) exists for any ini­
tial data y and satisfies O<b,,' . ·,b" if W#O and 
b,,' .. ,b" if W = O. Denote by Y + the set in Ywhere the 
strict inequalities hold. Then Y + is a nonempty open invar­
iant set and the mapping W +: y -+ (a,b) is continuous on 
Y+. 

Proof: Proving the results of Sec. III we have shown that 
for y = (x,v) in Y + the vector function v(t) converges to 
v ( 00 ) = b locally uniformly (see Proposition 1, Lemma 2, 
and Lemma 3). The total potential V is a cone potential and 
we have shown in Sec. III that Y + is open and nonempty. 
Applying Theorem 6 with Yo = Y + we obtain the assertion. 

V. EXAMPLES AND DISCUSSION 

It is not hard to give concrete examples of potentials 
satisfying assumptions of Sec. II. 

A. Example 1: Exponential potentials 

Let n>2 be the number of particles and let the masses 
ml, ... ,m" be arbitrary. Let for any 1,; <j,n the numbers 
a·· >0 and C.·>O be gl·ven. Assume also that we have IJ IJ 
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numbers dk>O, l>k<N, and bik>O for l,i,n, I <k,N, 
where N> 1 is some integer. Then the pair potentials Pij (x) 
= cije - aif' and the external potential 

W(xl, .. ·,x,,) = ktl dk exp( - itl bikXi ) 

satisfy the assumptions of Sec. II. Thus, Theorem 7 holds for 
the n-body problem on the line with the Hamiltonian 

1 " N 
H - ~ 2 + ~ -aij(Xj-x,) ~ d 

- - £... m i Vi £... cije £... k 
2 i=1 i<j k=1 

x exp( - .f bikXi) . 
1=1 

(64) 

When m I = . . . = m" = I and the only nonzero param­
eters in the potential are Ci,i + I = ai,i + 1 = 1, i = 1, ... ,n - 1, 
we get the classical Toda lattice. 

It is also easy to give examples of potentials for which 
the conclusions (and therefore the assumptions) of 
Theorem 7 are violated. We will briefly discuss a simple ex­
ample of this type. 

B. Example 2: Billiard In a wedge 

Consider a closed cone C * with angle a* > 0 on the 
plane. Choose coordinates x,y so that the vertex of C * is the 
origin and one of the sides of C * is the positive x axis (see Fig. 
1 ). The cone C * is proper if a* < 11' and we set V = 0 inside 
C * and V = 00 outside C *. Then V is a (degenerate) cone 
potential and the mechanical system with two degrees of 
freedom corresponding to the Hamiltonian 

H = !(u2 + v2
) + V(x,y) (65) 

is the billiard inside C *. Let ef, e1 be the unit vectors span­
ning the walls of C * (Fig. 1). Then the force F of the poten­
tial Vis nontrivial only on the walls of C * where it is propor­
tional to e I and e2, respectively (Fig. 1). Thus, F spans the 
dual cone C which has angle 11' - a. 

The billiard ball moving inside C * with velocity (u,v) 
hits the walls of C * a few times where it bounces off by the 
usual law of reflection until its velocity becomes a vector in 
C *. Then it stops hitting the walls and goes away to infinity 
inside C*. 

Denote by Si the reflections in the walls of C * (Si are 
linear orthogonal transformations ofR2

). Using the method 
of reflecting the billiard table instead of reflecting the ball 
(see, e.g., Ref. 9) we come to the following. 

Proposition 2: Let XEC * and VER2 be the initial data. 
Assume that the ray x + tv, t>O does not hit the vertex of C *. 
Then there is a sequence SI, ... ,sk of reflections that depends 
only on the ray {x + tv, t>O} and 1>0 such that for t>T, 
x(t) = Sk' • 'SI (x + tv). The sequence SI, ... ,sk is locally 
constant when (x,v) varies and it is not defined if x + tv hits 
the vertex of C *. 

The proof of this proposition is straightforward and is 
left to the reader. Figure 2 illustrates it. Now we deduce from 
it the mapping W +. 

Corollary 2: (i) Let a # 11'/n. The mapping W+: 
(x,v) -+ (a,b) is defined on all initial datay = (x,v), XEC* 
such that X '" - tv for t>O. Denote by Y + C Y the dense open 
set of such initial data. For every yin Y + there is a sequence 
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FIG. 2. Billiard trajectory in a wedge. 
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S" .•• ,sk of reflections about the walls ofC· and we denote 
Sk· • ·S, by w,(y). Then the mapping W+ is given by 
a = w+(y)x, b = w+(y)v. The function w+(y) is locally 
constant on Y + and W + does not extend by continuity from 
Y+ to Y. 

(ii) Let a = 1T/n where n;>2 is an integer. Then all the 
assertions of (i) remain true except the last one. The map­
ping W + uniquely extends by continuity to all of Y. 

The proof consists in a careful consideration of possible 
reflection patterns (see Fig. 2) and we leave it to the reader. 
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The direct scattering problem for an inhomogeneous lossy medium is examined for the one­
dimensional case in which the phase velocity profile is discontinuous at the boundaries ofthe 
medium. Scattering operators (or impulse responses) and propagation operators are defined 
and equations that govern their behavior are developed. Knowledge of the scattering kernels 
for one round trip in the medium implies that the scattering kernels can be determined on any 
time interval. Numerical examples are presented. It is also shown that this scattering problem 
is reducible to one in which there are no phase velocity mismatches. This reduction provides 
considerable numerical advantage in the solution of the direct scattering problem. The inverse 
problem is examined in a companion paper. 

I. INTRODUCTION 

This paper deals with transient wave propagation in 
one-dimensional dissipative media. Various aspects of this 
problem have been studied in two previous papers, 1,2 hereaf­
ter referred to as Parts I and II. The present paper is never­
theless fairly self-contained, although the first two sections 
of Part I should be consulted for an overview of the problem 
and a discussion of the relevant literature. Some additional 
discussion of the literature is contained in the introductory 
section of Part II. 

The model problem being considered here involves one­
dimensional electromagnetic wave propagation in a medium 
characterized by spatially varying permittivity and conduc­
tivity profiles. The distinction between this model and that 
considered in Parts I and II is that phase velocity mis­
matches at the boundaries of the scattering medium are now 
allowed. Thus, the results presented here are generalizations 
of those derived in Part I. 

The goal of this paper is to derive equations for the scat­
tering and propagation operators for the model problem de­
scribed above and to examine certain properties which they 
exhibit. These operators, as well as a concise statement of the 
problem, are given in Sec. II. Integrodifferential equations 
for these operators are then derived in Sec. III. These equa­
tions permit one to numerically construct scattering and 
propagation operators, and this is done at the end of Sec. III 
for a particular set of examples. In Sec. IV it is shown that 
finite time traces of these operators can be extended in a 
straightforward fashion to time traces over longer periods of 
time. The basic idea here is that if the scattering operators 
are known for one round trip in the medium, then for longer 
times nothing new is occurring in terms of scattering phe­
nomena. 

Throughout this paper it is assumed that the operators 
under discussion have certain simplified forms. In Appendix 
A, a justification for this simplification is given. The ideas in 
Appendix A then lead one to (correctly) surmise that a sec­
ond simplification of the scattering problem under consider-

ation would reduce the present problem to that considered in 
Part I. In Appendix B this further simplification is carried 
out. While this simplification presents a distinct computa­
tional advantage for the direct scattering problem, it is inter­
esting that it has the opposite effect for the inverse scattering 
problem. Thus, the primary purpose for the analysis in Secs. 
III and IV lies in its usefulness in the inverse problem, which 
is the subject of a companion paper, 3 hereafter referred to as 
Part IV. 

II. STATEMENT OF THE PROBLEM 

As mentioned in the Introduction, the problem consid­
ered here is a generalization of that considered in Parts I and 
II. Thus, the reader should consult Sec. II of Part I for a full 
explanation of the underlying ideas introduced here. An in­
homogeneous slab occupies the region O<z<L. The permit­
tivity E and conductivity 0' of the slab are functions of depth z 
only. On either side of the slab there is a homogeneous, loss­
less medium. Unlike the problem considered in Parts I and 
II, it is not assumed that the permittivity is continuous 
across the interfaces at z = 0 and z = L. 

In the region z < 0 an incident electromagnetic plane 
wave propagates along the z axis, impinging on the slab at 
time t = O. This produces an electric field E(z,t) satisfying 

E zz (z,t) - c- 2 (z)Ett (z,t) - b(z)Et (z,t) = 0, (2.1) 

where 

c- 2 (z) = E(Z)Jlo, 
(2.2) 

b(z) = O'(z)Jlo, 

andJlo is the permeability in vacuum. The phase velocity c is 
assumed to be continuously differentiable within the slab 
and the dissipation b is continuous within the slab. 

Converting to travel time coordinates as in Eq. (2.13) of 
Part I yields the transformed problem 

uxx -Uss +A(x)ux +B(x)us =0, 

where 

(2.3) 
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d 
A(x) = --lnc(z(x»), 

dx 
(2.4) 

B(x) = -Ib (z(x»)c2(z(x»), (2.5) 

1= iLC-I(Z)dZ, 

and In denotes the natural logarithm function. The functions 
A and B vanish outside of the interval [0,1]. However, the 
discontinuities in C at the boundaries of the slab imply that in 
the transformed problem (2.3), the spatial derivative of u at 
x = 0, x = 1 is discontinuous. This discontinuity is given by 

Coux (O-,s) = U x (0+ OS), 

ClUx (1 + OS) = Ux (1- OS), 

where 
Co = [E(O- )/E(O+)] 1/2 = c(O+ )lc(O-), 

C I = [E(L +)IE(L -)] 1/2 = c(L -)/c(L +). 

(2.6) 

(2.7) 

It is shown in Appendix A that the effects of the discon­
tinuity in Ux at x = 0, Eq. (2.6), can be removed from both 
the direct and inverse problem in a straightforward manner. 
Therefore, it is assumed in the remainder of this and the next 
paper that this discontinuity is not present. In other words, 
the quantity Co in Eq. (2.6) is assumed to be equal to 1; i.e., 
the phase velocity will be taken to be continuous at Z = o. It 
is also possible to remove the effects of the discontinuity in 
Eq. (2.7). However, for reasons discussed in Appendix B 
and in Part IV, the discontinuity at x = 1 is retained. 

As in Parts I and II, the solution of Eq. (2.3) in the 
regions exterior to the slab reduces to right and left moving 
waves related to each other through scattering and propaga­
tion operators. These are given by 

u'+ (s) = [&4' + (O)u i+ (. >] (s) = p(O)u i+ (s - 2) 

+ fR +(O,s-s')u i+ (s')ds', s>O, (2.8) 

ut+ (s) = [ .. 9""+ (O)u i+ (. >] (s) 

= 1"(0) [u i+ (s) + f T(O,s - s')u
i
+ (S')dS'l 

s>O, 

ui+ (s) = [Y+ (O)ut+ (.)] (s) 

= 1"(0) -I [u t+ (s) 

+ [ W(O,s - s')ut+ (S')dS'], s>O, 

u'+ (s) = [r+ (O)ut+ (.)] (s) 

= v(O)u t+ (s - 2) + 1"(0)-1 

where 

X fv+(o,s-S')ut+ (s')ds', s>O, 

(2.9) 

(2.10) 

(2.11 ) 

p(O) = rexp[fB(X)dX]. 1"(0) = 2t + (O,1)/(c l + 1), 

v(O) = (1-c l )t-(0,1)/2, r= (I-cl)/O +c l ), 

t ± (0,1) = exp { + ~f [A(x) +B(x) ]dX}. 
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The form of the operators given in Eqs. (2.8 )-(2.11) can be 
ascertained in a number of ways; see, for example, Appendix 
A. Notice that when CI = 1 these operators reduce to those 
used in Parts I and II. 

The direct scattering problem studied in this paper is 
that of determining the scattering operators &4' + and .7+ 
given that A (x) and B(x) [or equivalently, E(Z) and u(z)] 
are known. This will be done by deriving integrodifferential 
equations for the scattering kernels R + and Tin Eqs. (2.8) 
and (2.9) which relate these kernels to the permittivity and 
conductivity of the medium. 

The inverse problem studied in Part IV is that of deter­
mining E(Z) and u(z) and the total depth of the medium, L, 
using scattering data from the slab. In terms of the trans­
formed problem Eq. (2.3) this means thatA(x) and B(x) 
are to be constructed from finite time traces of the scattering 
kernelsR + and Tgiven in Eqs. (2.8) and (2.9). In the deri­
vation in Part IV it is shown that two different sets of scatter­
ing data can be used for this purpose. One set involves only 
reflection data, while the other utilizes a smaller set of reflec­
tion data in conjunction with transmission data. 

The formulations of the problems given here are asym­
metric in the sense that scattering data from only one inci­
dent field are considered. This is in contrast to the problems 
studied in Parts I and II, in which incident fields from both 
sides of the slab are used. It is the discontinuity in E at the 
interface z = L that motivates this distinction. The notation 
in Eqs. (2.8 )-( 2.11) also displays this asymmetry in thatthe 
arguments of the kernels are (O,s) instead of (0,1,s) as in 
Part I, Sec. II. This reflects the fact that the right edge of the 
medium will always be fixed at x = 1. Differential changes in 
the operators only with respect to changes in the left edge of 
the medium will be considered. Thus, scattering and propa­
gator kernels for subregions [x,l] of the original medium 
will be denoted byR +(x,s), T(x,s), W(x,s),and V+(x,s). 

III. EQUATIONS FOR THE SCATTERING AND 
PROPAGATOR KERNELS 

In this section, relations between the scattering proper­
ties of the medium (given by A and B) and the scattering and 
propagator kernels are derived. The first portion of this anal­
ysis is similar to that given in Part I, Appendix C, Eqs. (C 1 )­
(C3). Thus, replace the independent variable x in Eq. (2.3) 
with the dummy variable z [not to be confused with the 
variable appearing in Eq. (2.1)], since x is used to denote the 
end point of a subregion [x,l] of the slab [0,1]. Now intro­
duce the change of basis from (u,uz ) T to (u+ ,u-) T via 

u ± (z,s) = H u(z,s) + a s- IUz (z,s)], (3.1) 

where 

a s- luz (z,s) = f~ co Uz (z,s')ds'. 

Notice that u ± are right and left moving waves in a homo­
geneous medium. In this new basis, Eq. (2.3) becomes 

~ (u+(z,s») = (a(z) P(Z») (u+(Z,S») , (3.2) 
az u- (z,s) r(z) 8(z) u- (z,s) 

where 
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1 a 
a(z) = - T[A(z) -B(z)] - as' 

(:J(z) =HA(z) +B(z)], 

r(z) = HA (z) - B(z)], 

c5(z) = - ~[A(z) + B(z)] + ~. 
2 as 

(3.3 ) 

Now consider a subregion [x, 1] of the original slab 
[ 0, 1 ]. Incident and scattered fields for this subregion take 
the form 

{
ui+ (s - Z + x), z..;;x, 

u+(z,s) = t 
u+ (s-z+x), z;;;.l, 

u-(z,s) =u'+ (s+z-x), z";;x. 

(3.4) 

(3.5) 

The scattering and propagation operators for the subregion 
[x, 1] are the generalizations of the operator relations in Eqs. 
(2.8 )-(2.11) and are written as 

u-(x,s) =p(x)u+(x,s - 2(1-x») 

+ fR +(x,s-s')u+(x,s')ds', s>O, (3.6) 

u+(1,s+ I-x) =r(x)[u+(x,s) 

+ f T(x,s - S')u+(x,s')dS']. s>O, 

(3.7) 

u+(x,s) =r- l (x)[u+(1,s+ I-x) 

+ f W(x,s-S')U+(1,s'+I-X)dS'], s>O, 

(3.8) 
u-(x,s) =v(x)u+(1,s-1 +x) +r-I(x) 

xfv+(x,s-s')u+(1,s' + l-x)ds', s>O, 

(3.9) 

where 

p(x) = r exp[fB(X')dX'], 
rex) =2t+(x,1)/(cl + 1), 

vex) = (1-cl )t-(x,I)12, (3.10) 

r= (l-CI)/(1 +CI), 

t ± (x,I) = exp{ =1= ~ f [A(x') =l=B(x') ]dX'J, 

and 
u+(x,s) = 0, s<O. 

The imbedding equation for the reflection kernel 
R + (x,s) is derived by differentiating Eq. (3.6) with respect 
to x and then using Eqs. (3.2) and (3.6) to obtain 

r(x)u+ (x,s) - (:J(x) [P(X)u+(X,S - 2(x - 1)) 

362 

+ [R + (x,s - s')u+ (x,s' )dS'] + us- (x,s) 

=p'(x)u+(x,s- 2(x - 1») +p(x) 

xu,,+ (x,s - 2(x - 1)) + 2p(x)u s+(x,s - 2(x - 1») 
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+- R +(x,s-s')u+(x,s')ds'. a is 
ax 0 

(3.11 ) 

The kernel R + (x,s) is a piecewise continuous function in the 
domain O..;;x..;;l, s>O and to proceed with the derivation 
the discontinuities of R + (x,s) have to be treated with some 
care. Thus, assume that there are two discontinuities present 
in R + (x,s) along the curves 

s=di(x), i= 1,2, 

O<dl(x) <d2 (x), O<x<l, 

in the (x,s) plane. More general assumptions involving an 
arbitrary number of discontinuities would proceed analo­
gously but the analysis below shows that two discontinuities 
are sufficient. 

Straightforward but lengthy calculations now show that 
Eq. (3.11) implies 

R / (x,s) 

= 2R.+ (x,s) - B(x)R + (x,s) - HA (x) + B(x)] 

XfR +(x,s -s')R + (x,s')ds' 

-H(s-2(1-x)1o(x)[A(x) +B(x)] 

XR +(x,s-2(1-x»), s>O, s;64(1-x), 

R +(x,O+) = - HA(x) -B(x)], O<x< 1, 

R + (1,s) = 0, s>O, 

where 

t
o, s<O, 

H(s) = Heaviside function = 1, 
s>O. 

( 3.12) 

(3.13) 

The same calculation shows that the discontinuities d; (x), 

i = 1,2, satisfy 

d; (x) = - 2, 

d2 (x) = 4( 1 - x), 

with a jump 

(3.14 ) 

(3.15) 

[R +(x,s)];:!g=~~: = - !p2(X) [A(x) +B(x)]. 
(3.16 ) 

The jump along the characteristic curve d I (x) has to be de­
termined using standard propagation of singularities argu­
ments.4 The jump is 

[R +( )]S=2(1-,,)+ X,S s=2(I-x)-

= a exp[fB(X')dX' ]{r[A (1) + B(1)] 

+A(1) -B(1) -rf[A 2(X') -B2(X')]dXl 

(3.17) 

Equation (3.12) is the imbedding equation for the re­
flection kernel for the slab with a right edge discontinuity in 
E. Unlike the continuous case, there is a second jump in 
R + (x,s) along s = 4(1 - x). The imbedding equation now 
also contains an additional term due to the presence of a hard 
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back wall. Notice that for times less than one round trip, i.e., 
0<s<2(1-x), the imbedding equation for R + (x,s) and 
the corresponding one in Eq. (3.1) of Part I are identical. 
Domain of dependence arguments show that the two kernels 
have to be identical for 0 < s < 2 (1 - x). In the absence of 
the right edge discontinuity (i.e., C1 = 1), Eqs. (3.12)­
(3.17) agree with the previous results in Part I for the con­
tinuous profile. 

The imbedding equation for the transmission kernel is 
derived in an analogous way. The starting point is the trans­
mission operatorfor the subregion [x,l] given by Eq. (3.7). 
Differentiation with respect to x and use of Eqs. (3.2) and 
(3.6) gives 

-u/(1,l +s-x) 

= 1" (x) [u+(x,s) + [T(X,s-S')u+(x,s')dS'] 

+ 1'(x) { - r(x)u+ (x,s) - u/ (x,s) 

+ P(x) [P(X)u+(x,s - 2(1 - x») 

+ [R + (x,s - s' )u+ (x,s' )dS'] 

+ ~ r T(x,s - s')u+ (x,s')dS'}, ax Jo 
Similarly, a differentiation with respect to S gives 

u/(1,l +s-x) 

(3.18 ) 

= 1'(x) [u s+ (x,s) + ~ [ T(x,s - s')u+ (x,s')dS'l 

(3.19) 

As in the derivation of the equation for the reflection 
kernel, special consideration has to be taken to the presumed 
discontinuities of T(x,s). This time it is enough to assume 
one discontinuity along a curve S = d (x). 

After some lengthy calculations with Eqs. (3.18) and 
(3.19), the final result is 

Tx(x,s) = - HA(x) +B(X)]{R + (x,s) 

+ [T(x,S-S')R + (x,s')ds' 

+ H(s - 2(1 - x)lo(x)T(x,s - 2(1 - X»)}, 

s>O, s#2(1-x), (3.20) 

T(1,s) = 0, s>O, 

and 

d(x) = 2( 1 - x), 

where the jump is 

[T(x,s) ];~m =~~: = - !p(x)[A(x) + B(x)]. (3.21) 

The early time behavior of T is obtained by integrating Eq. 
(3.20), 
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T(x,O+) = -!f[A 2 (X') -B 2(x')]dx' 

+!r[A(1) +B(1)]. (3.22) 

This imbedding equation also has an additional term not 
present in the continuous case and, furthermore, the kernel 
Tis discontinous along the line S = 2 (1 - x). These are ef­
fects due to the jump in E. Notice again, that as C1 ..... 1, the 
results for the transmission kernel above reduce to the re­
sults in Part I. 

The imbedding equation for the W kernel can be ob­
tained similarly to the derivation presented above. However, 
there is another way of deriving the desired result by employ­
ing the resolvent equation of T. A combination ofEqs. (3.7) 
and (3.8) gives the resolvent equation for the transmission 
kernel T 

T(x,s) + W(x,s) + [ W(x,s - s') T(x,s')ds' = 0, S > O. 

(3.23 ) 

This equation is now differentiated with respect to x. The 
jump discontinuity of Wis the negative of that for T. Using 
the imbedding equation for the transmission operator, Eq. 
(3.20), and repeated usage of the resolvent equation finally 
gives the result 

Wx(x,s) =HA(x) +B(X)]{R + (x,s) 

+ [W(x,s - s')R + (x,s')ds' 

+H(S-2(1-x)lo(X)W(X,s-2(1-X»)}, 

s>O, s#2(1-x), (3.24) 

and the jump is 

[W(x,s)];~m=~~: =!p(x)[A(x) +B(x)], 

and 

W(x,O+) 

(3.25) 

=~ ([A 2 (x') -B 2(x')]dx' -~r[A(1) +B(l)]. 
8 Jx 4 

(3.26) 

In Part I, Appendix A, it is shown that as a function of S 

the kernel W(x,s) has compact support in [0,2(1 - x)]. 
The jump condition in Eq. (3.25) therefore gives the value of 
W(x,s) at S = 2(1 - x) -, namely 

W(x,2(1-x)-)= -!p(x)[A(x) +B(x)]. (3.27) 

The final imbedding equation for a variation of the left 
end point of the slab is the equation for the propagator kernel 
V +. Its relation to R + and T is obtained by inserting Eqs. 
(3.6) and (3.7) into Eq. (3.9). This yields 

R + (x,s) 

= V+(x,s) + [T(x,s-S')v+(X,s')dS' 

+H(s-2(1-x)lo(x)T(x,s-2(l-x»), s>O, 
(3.28) 

or by solving for V+(x,s) usingEq. (3.23), 
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V+(x,s) 

=R + (x,s) + fW(X,s-S')R + (x,s')ds' 

+H(s-2(1-x)\o(x)W(x,s-2(1-x»), s>O. 
(3.29) 

(Notice that an immediate comparison between Eqs. (3.24) 
and (3.29) gives 

Wx(x,s) =HA(x) +B(x)]V+(x,s), s#2(1-x).) 
(3.30) 

The desired equation for V + (x,s) now follows as above. 
Differentiate Eq. (3.29) once with respect to x and once with 
respect to s and use the imbedding equations for R + (x,s) 
and W(x,s) together with repeated usageofEq. (3.29). The 
final result is 

Vx+(x,s) =2V/(x,s) -B(x)V+(x,s) 

+HA(x) -B(x») W(x,s) , s>O, 

V+(x,O+) = -HA(x)-B(x»), O<x<1. 

(3.31) 

(3.32) 

The same calculation also shows the jump discontinuity in 
V + (x,s) at s = 2 (1 - x). But it is known from Appendix A 
of Part I that as a function of s the kernel V + (x,s) has its 
support in [0,2 ( 1 - x) ). Therefore, the jump discontinuity 
implies that 

V+(x,2(1-x)-) 

= - ! exp[fB (X')dX']{A(1) -B(1) 

- ~ r f [A 2(X') - B 2(X')]dXl (3.33 ) 

A series of numerical computations illustrates the new 
features of the kernels derived above. The E and q profiles as 
functions of the depth z are depicted in Fig. 1. Figures 2-5 
show the properties of the reflection kernel R + (O,s), the 
transmission kernel T( O,s), and the propagator kernel 
W( O,s) for times up to three round trips for various values of 
the parameter C I. 

In Fig. 2 the value of the parameter C I is .Jf76. This 
particular choice of C I corresponds to a case with vacuum on 
the right-hand side of the slab. The first and second jumps 
(at s = 2 and s = 4) in the reflection kernel R + (O,s) are 
clearly seen. Notice also the jumps in T(O,s) and W(O,s) at 
one round trip (s = 2). In Fig. 3, C I = 1 and the transition in 
E to the homogeneous background is continuous. The second 
jump in R + (O,s) at two round trips (s = 4) vanishes and 
T( O,s) and W( O,s) are now continuous functions of time s. 
In general, the amplitude of the kernels in the second round 
trip is smaller in this continuous case compared to the ker­
nels in Fig. 2. This is due to the lack of the hard echo from the 
back wall. The kernels for a slab backed up with a homogen­
eous medium of large relative permittivity (c i = 2) are 
shown in Fig. 4. The limit value CI = 00 corresponds to a 
perfectly conducting back wall at z = L. The kernels for this 
limit of CI are shown in Fig. 5. For the case CI = 00, the 
kernels T(O,s) and W(O,s) have no physical meaning and 
they are obtained as limits as CI -+ 00. However, these kernels 
have mathematical meaning in the sense that they can be 
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FIG. 1. The relative permittivity and conductivity profiles in the numerical 
examples. 

used in the solution of the inverse problem. In fact, it is 
shown in Part IV that even in the case C I = 00, the kernels 
T(O,s) and W(O,s) can be obtained uniquely from reflection 
data. Notice that the reflection kernels in all the examples 
presented above are identical for times less than one round 
trip. Notice also that the amplitude of the reflection kernel in 
the limit case C I = 00 remains large even after one and two 
round trips. 

IV. THE EXTENSION OF DATA 

The concept of extension of data, which was developed 
in Part I, is here generalized to the case with a hard back 
wall. In this section the variable x is assumed to be fixed. 

The important fact that both W(x,s) and V + (x,s) van­
ish for times greater than one round trip in the subregion 
[x,l) is the key to the extension of the scattering kernels. 
The compact support of Wand V + is 

W(x,s) = 0, s> 2(1 - x), (4.1) 

V+(x,s) =0, s>2(1-x). (4.2) 

The extension of the transmission kernel follows the 
same derivation as the continuous case, since the resolvent 
equation, Eq. (3.23), is the same in both cases. Thus, rewrite 
Eq. (3.23) for s> 2(1 - x) and use Eq. (4.1) to obtain 
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FIG. 2. The physical reflection, transmission, and propagator kernels 
R + (O,s), T(O,s), and W(O,s) for three round trips in the medium. The jump 
discontinuity at the back edge of the slab is C I = .,ff76. 
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l' {- r20

-

X

) W(x,s-s')T(x,s')ds', 2(1-x)<s<4(1-x), 
T(x,s) + W(x,s-s')T(x,s')ds'=G(x,s) = JS-20-X) 

20-x) 0, s>4(1-x). 
(4.3) 

Suppose the transmission kernel T(x,s) is known for one round trip, i.e., 0 < s < 2 (1 - x). The resolvent kernel W(x,s) is 
then completely known for all s>O by Eq. (4.1) and so is the function G(x,s) for s> 2( 1 - x). Equation (4.3), which is a 
Volterra equation of the second kind for T(x,s) for s> 2 (1 - x), then determines the transmission kernel uniquely for 
s> 2( 1 - x). Thus, data at a fixed x for one round trip completely determine the transmission kernel T(x,s) for all s (at the 
fixed value of x). In particular, the jump in T(x,s) ats = 2(1- x) is 

r20 - x) 

[T(x,s)]~:m=~~: = - Jo W(x,2(1-x) -s')T(x,s')ds' - T(x,20-x)-) 

= W(x,2( 1 - x) -), (4.4) 

which agrees with the results in Sec. III. 
The extension of the reflection kernel for times beyond one round trip is also quite similar to the derivation in Part I. 

However, one additional term is now present due to the jump discontinuity in E at the right edge. Straightforward calculations 
with Eqs. (3.28) and (3.29) for s>2(1 - x) and the compact support of V+(x,s) in Eq. (4.2) give 

R + (x,s) = p(x)T(x,s - 2(1 - x») + So
2

0-X) T(x,s - s') [R + (x,s') + [R + (x,s' - s") W(x,s")ds" ]dS', 

s>2(1-x). (4.5) 

Notice that only R + data forO <s < 2( 1 - x) enter in the integral on the right-hand side. Notice also that to be able to extend 
the reflection data beyond one round trip the transmission data T(x,s) have to be known for 0 <s < 2(1 - x) so that the 
resolvent kernel W(x,s) and the extension of T(x,s) can be obtained. 

Another approach, more analogous to the extension of transmission data in Eq. (4.3), is to rewrite Eq. (3.29) for 
s> 2(1 - x) and use Eq. (4.2) to obtain 

R+(x,s) + (' W(x,s-s')R+(x,s')ds'=g(x,s)-p(x)W(x,s-2(1-x»), s>2(1-x), (4.6) 
J2(I-X) 

where 

{

_ r20-X) W(x,s-s')R+(x,s')ds', 2(1-x)<s<4(1-x), 
g(x,s) = JS-20-X) 

0, s>4(1-x). 

(4.7) 

Equation ( 4.6), which is a Volterra equation of the second kind, determines the reflection kernel for s > 2 (1 - x). Once again 
notice that transmission data for one round trip are necessary for the extention of reflection data. 

The jump inR + (x,s) ats = 2( 1 - x) is in both cases 

[R +(x,s)]~:m=~~: =p(x)T(x,O+) + f O

-

X

) T(x,2(1-x) -S')[R +(x,s') 

+ E' ~(x,s' - s")R + (x,s" )ds" ]ds' - R +(x,2(1 - x)-) 

f2(l - x) 

= - p(x) W(x,o+) - Jo W(x,2(1 - x) - s')R + (x,s')ds' - R +(x,2(1 - x) -). (4.8) 

The jump at s = 4 ( 1 - x) is just the identity 

[R + (x,s) ]~::g =~~: =p(x) [T(x,s) ]~:m =~~:. 

v. SUMMARY AND CONCLUSIONS 

The scattering problem treated in this paper is a general­
ization of the problem analyzed in Part I in that the permit­
tivity of the slab is no longer assumed to be continuous across 
the interfaces z = 0 and z = L. Thus, in this more general 
problem there are phase velocity mismatches at the inter­
faces of the slab which give rise to hard echoes from the front 
and back walls. 
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(4.9) 

It is shown by employing a Redheffer star product tech­
nique that the effects of the leading edge discontinuity in the 
permittivity can be removed (Appendix A), and similarly 
for the effects from the back edge discontinuity (Appendix 
B). Thus, the direct scattering problem for the resulting con­
tinuous permittivity profile can be solved with the technique 
developed in Part I. However, in the solution ofthe inverse 
problem (Part IV) it is not desirable to remove the back edge 
discontinuity. In fact, it is shown in Part IV that by retaining 
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the back wall it is possible to reduce the amount of data 
required for simultaneous reconstruction of both the permit­
tivity and the conductivity. It is the importance of the back 
edge discontinuity and the properties of this scattering prob­
lem that are developed in this paper. 

With this idea in mind, equations for the scattering and 
propagator kernels for a slab with a back edge jump discon­
tinuity are developed in Sec. III. These kernels show several 
new features in comparison with the results in Part I, the 
most notable being the presence of additional jump discon­
tinuities in the kernels due to the hard reflector at the back 
wall. 

The equations developed in Sec. III can be used to con­
struct the scattering kernels R + (O,s) and T(O,s) for arbi­
trarily large values of s. However, in Sec. IV it is shown that 
it suffices to compute the kernels for one round trip only 
(0 < s < 2). For larger values of s the scattering kernels can 
be computed via extension of data, which amounts to solving 
a Volterra equation of the second kind. In terms of speed and 
accuracy, this is computationally superior to using the equa­
tions in Sec. III for s > 2. Similarly, the technique of Appen­
dix B is best used to compute scattering and propagator ker­
nels for one round trip only, after which extension of data is 
used for larger values of s. 

The model problem used in this paper is the same as that 
in Refs. 5 and 6. However, the approach used in the present 
series of papers is entirely different and more intuitive than 
in those earlier articles. The reason this approach is more 
intuitive is because the scattering and propagation operators 
are built up using invariant imbedding ideas, in which the 
physical scattering medium is envisioned to be one element 
in a set of media whose scattering operators are easily related 
to one another. The present approach is also considerably 
more general than that used in Refs. 5 and 6, as it has already 
been shown to be a viable technique in a variety of other 
problems, such as scattering in dispersive media 7 and viscoe­
lastic media8 as well as analysis of noise and bandlimiting 
effects in inverse problems.9 
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APPENDIX A: SIMPLIFIED EXPRESSIONS FOR THE 
SCATTERING OPERATORS 

The form of the scattering operators f!lt + and Y+ in 
Eqs. (2.8) and (2.9) and the propagation operators 71""+ 
and r+ in Eqs. (2.10) and (2.11) are the result of a simpli­
fication introduced in Sec. II, namely, the assumption that 
without loss of generality, the permittivity E(Z) can be as­
sumed to be continuous at Z = O. It is now shown that (1) if 
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the permittivity is continuous atz = 0, then the Eqs. (2.8)­
(2.11) result, and (2) if the permittivity is not continuous at 
z = 0, then suitable transformations of the physical scatter­
ing operators permit Eqs. (2.8) and (2.9) to still be used as 
the starting point for the direct and inverse problems. 

Turning to the first point, assume that Co = 1 in Eq. 
(2.6). It follows from Theorem 2 of Ref. 5 (with suitable 
change of notation) that Eqs. (2.10) and (2.11 ) are valid for 
all s> O. With T(O,s) defined to be the resolvent kernel of 
W(O,s) [see Eq. (3.23) with x = 0], Eq. (2.9) is then valid 
for all s > O. Finally, Eq. (2.8) results upon substituting Eq. 
(2.9) into Eq. (2.11). 

Addressing the second point, assume that the permittiv­
ity is not continuous atz = 0, so that Co =1= 1. Then the opera­
tors given in Eqs. (2.8) and (2.9) are not the physical scat­
tering operators in the sense that they do not correctly relate 
the physical fields, ui+ ,u'+ ,and ut+ ' to each other. In order 
to obtain the proper relations between these fields, star prod­
ucts of scattering operators will be used. This is done by 
assuming that the scattering medium is composed of two 
portions, the first consisting of the leading edge jump discon­
tinuity in E and the second consisting of the remainder of the 
medium as shown in Fig. 6. The scattering operators for the 
first portion are the familiar operators for medium 1 illus­
trated in Fig. 6. Denoting these operators with a subscript 1 
results in 

u'+ (s) = [f!lt t ui+ (.)] (s) = ,)ui+ (s), 

u'_ (s) = [f!lt I" ui_ (.)] (s) = - ,)ui_ (s), 

u t+ (s) = [Ytui+ (')](s) =ttui+ (s), 

ut
_ (s) = [Yl"u i_ (')](s) =t)-ui_ (s), 

where 

') = (co - l)/(co + 1), 

t t = 2co! (co + 1), t)- = 2/ (co + 1). 

(Al) 

The scattering operators for the remainder of the medium 
are those given in Eqs. (2.8) and (2.9). These are not de­
noted with a SUbscript as they are the operators considered 

e-profile for 
composite m.dium 

s 
W.dium 1 

s 
W.dium 1 

W.dium 2 

+ 

+ 

W.dium consid.red 
in this poper 

W.dium 3 

FIG. 6. Decomposition of the discontinuous permittivity profile. The con­
ductivity profile does not need to be decomposed. 
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throughout this paper. The physical reflection and transmis­
sion operators can be built up using the composition of oper­
ators from these two subregions. Denote these physical oper­
ators with a subscript C (for composite). Using the 
Redheffer star product,1O it follows that 

flt/ =fltt +YI-flt+(1-flt l-flt+)-IYt, (A2) 

Yc+ = Y+(1- flt l- flt+)-IYt, (A3) 

where 1 is the identity operator. 
Since the operator 1 - flt 1- flt + is a delay Volterra oper­

ator of the type studied in Ref. 11 it can be inverted. Write 
the inverse as 

(1- flt l- flt+)-l = 1 + flt l- flt+ + (flt l- flt+)2 + .... 
Now substitute Eqs. (2.8), (2.9), and (Al) into (A2) and 
(A3) to obtain the general form of the composite operators. 
These are seen to be 

[flt/ui+ (.)] (s) 

= r1u i+ (s) + t 1+ t 1-

x i ( - rl)n -I(p(o»)n ui+ (s - 2n) 
n=1 

+ fR / (s - s')ui+ (s')ds', 

[Y/ u i+ (.)] (s) 

= r(O)t 1+ Lto( - rIP(O)tu i+ (s - 2n) 

+ fTc (s - s')u
i
+ (S')dS'l 

(A4) 

(AS) 

Now a relation between the kernel R c+ above and the 
kernel R + can be derived. Rewrite Eq. (A2) by operating 
with 1 - flt 1- flt + and use the fact that flt + and flt 1- com­
mute with Yt to obtain 

(flt / - flt t )( 1 - flt 1- flt+) = Y 1- flt+ Y 1+ . 

Expanding this using Eq. (A4) produces 

R + (O,s) - R / (s) - H(s - 2)r1 

X [p(O)R + (O,s - 2) + R c+ (s - 2)] 

+ H(s - 4)(rI P(0»)2R + (O,s - 4) - r l (t 1+ t 1-)-1 

X fR + (O,s')R / (s - s')ds' = 0, 0<s<6, 

where H(s) is the Heaviside function. This is again a Vol­
terra equation of delay type and consequently R + can be 
uniquely determined from R / and conversely. 

Next, a relation between Tc and T is derived. Begin by 
writing Eq. (A3) as 

Y/ (1 - flt 1- flt+) = Y+ Yt. 

Expanding this using Eq. (AS) yields 

T(0,s) = Tc (s) + rlR + (O,s) + H(s - 2)rl p(O) 

X [Tc (s - 2) - rlR + (O,s - 2)] 

+ H(s - 4)~(p(0»)2R + (O,s - 4) 

+ rlf Tc (s')R + (O,s - s')ds', 0 <s < 6. 
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Thus, T can be found from Tc and R + and conversely Tc can 
be found from T and R +. 

APPENDIX B: AN ALTERNATE APPROACH TO THE 
DIRECT PROBLEM 

It was shown in Appendix A that the effect of the dis­
continuity in permittivity at z = 0 can be removed from both 
the direct and inverse problem. This produced a much 
simpler formulation of those problems than would have been 
otherwise possible. In the same manner, it is possible to re­
move the effect of the discontinuity in permittivity at z = L. 
For the inverse problem, removing this discontinuity is not 
desirable. It will be shown in Part IV that the discontinuity 
simplifies the implementation of the inversion algorithm and 
reduces the amount of data needed as compared to the con­
tinuous case. On the other hand, removing the discontinuity 
in the direct problem provides a distinct computational ad­
vantage. This point is now examined. 

In Appendix A the physical scattering medium was de­
composed into two portions, the first being just the leading 
edge discontinuity in E and the other being the remaining 
portion of the medium. That remaining portion will not be 
further subdivided into two simpler media, one consisting of 
the back edge jump discontinuity in E and the other consist­
ing of the remainder of the medium. As shown in Fig. 6, the 
operators for these media will be denoted with SUbscripts 3 
and 2, respectively. The entire conductivity profile can be 
incorporated into medium 2 as the discontinuities in u do not 
produce hard reflections. The scattering operators for medi­
um 3 are given by 

u'+ (s) = [flt3+Ui+ (')](s) =rui+ (s), 

u t+ (s) = [Y3+Ui+ (')](s) =tlui+ (s), 

where 

r= (1-c l )/(1 +c1 ), 

t 3+ = 2/(1 + cl )· 

The scattering operators for medium 2 are the same as those 
used in Parts I and II: 

u'+ (s) = [flttui+ (')](s) 

= fR t (O,s - s')ui+ (s')ds', 

u'_ (s) = [flt 2- ui_ (.)] (s) 

= fR 2- (O,s - s')ui_ (s')ds', 

u t± (s) = [Y2± u i± (.)] (s) 

=t±(O,l)[ui
± (s) + f T2 (O,s-S')Ui

± (S')dS'l 

The goal is now to express the flt + , Y+ , and 71"'+ oper­
ators of Sec. II in terms of the operators given above. Consid­
er the transmission operator first. It follows from using the 
star product that 

Y+ = Y 3+ (1 - flt 2- flt 3+ ) -IY2+ 

or 
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Expressing these operators in terms of their kernels results in 
the identity 

T2(0,s) = T(O,s) - rR 2- (O,s) 

- r fR;- (O,s')T(O,s -s')ds', s>O. (Bl) 

It follows that if R 2- and Tz are known, then T can be found 
as it is the solution of a Volterra second kind equation. This 
completes the process of finding T in terms of simpler ker­
nels. 

It is possible to use Eq. (B 1) to obtain the propagator 
kernel W(O,s) in terms of kernels for the continuous medi­
um 2. To do this, use the fact that W(O,s) is the resolvent 
kernel for T(O,s) and solve Eq. (Bl) for rR 2- (O,s) to obtain 
(after some simplification) 

rR 2- (O,s) + T2 (0,s) + W(O,s) 

+ fW(0,s')T2(0,s-S')dS'=0, s>O. (B2) 

Finally, solve Eq. (B2) for W(O,s) using the fact that 
W2 (0,s) is the resolvent kernel for Tz(O,s). The results in 

W(O,s) = W2 (0,s) - rR 2- (O,s) 

- r fR 2- (O,s') W2(0,s -s')ds', S>O. (B3) 
Notice that this is an explicit expression for W(O,s). This 
equation can be expressed in terms of the propagator kernel 
V 2- (O,s), by using Eq. (3.20) in Part I. The result is 

W(O,s) = W2 (0,s) -rV2-(0,s), s>O. (B4) 

Finally, consider the reflection kernel R +. Using the 
star product, it is seen that 

&i+ = &iz+ + .'72- &i 3+ (1 - &i 2- &i3+ ) -1.'72+, 

or, since the Volterra operators (1 - &i 2- &i 3+) and 
.'72- &i 3+ commute, 

(1 - &i 2- &i 3+ )(&i+ - &i 2+ ) =.'7:; &i 3+ .'72+ . 

Expressing these operators in terms of their kernels results in 

R + (O,s) - R 2+ (O,s) - r fR 2- (O,s - s') 

X [R + (O,s') - R 2+ (O,s')]ds' 
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= H(s - 2)p(0) [2T2 (0,s - 2) + rR 2- (O,s - 2) 

+ [-2 T2(0,s _ 2 _ S')T2 (0,s')dS'l s>O, (BS) 

where R(s) is again the Heaviside function. Equation (BS) 
is a Volterra equation of the second kind for R + - R 2+ . In 
particular, for 0 <s < 2 the right-hand side ofEq. (BS) van­
ishes which implies that 

R + (O,s) =R 2+ (O,s), 0<s<2 

as was mentioned in Sec. III. For s > 2, the kernel R + can be 
uniquelydeterminedfromEq. (BS) providedR 2+ ,R 2-' and 
T2 are known. 
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Implementability of gauge transformations and quantization of fermions 
in external fields 
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Quantization of fermions in an external soliton field, leading to a representation of the 
canonical anticommutation relation (CAR), which is inequivalent to the representation 
connected to the massive Dirac operator, is studied. Classes of gauge and axial gauge 
transformations that can be unitarily implemented are determined. In the latter case 
quantization conditions for gauge functions are obtained; integers entering can be interpreted 
as winding numbers. 

I. INTRODUCTION 

Although extensive treatments of the quantization of 
fermions in external fields exist in the literature, lone usually 
deals with potentials that vanish at infinity. New problems 
arise if one takes potentials with nontrivial asymptotics: the 
simplest situation is given by a one-dimensional Dirac opera­
tor with external soliton potential. In this paper we shall 
treat the second quantization of the one-particle operator 

(Ht/J)(x) = (ap +.B tanh x)t/J(x) = Et/J(x), (1.1) 

with t/JEL z(R) ® C Z = K; a and.B denote two 0' matrices, 
which we choose to be a = - O'z and f3 = 0'1. Equation 
( 1.1) is of the special form 

( 
0 A) d 

H = A to' A = dx + tanh x, 

which leads to two Schrodinger operators: 

d 2 

AA tt/JI = E 2t/JJ> AA t = - dx2 + 1, 

d 2 2 
A tAt/Jz = E 2t/J2' A tA = - - + 1 - -- . 

dx2 cosh2x' 

( 1.2) 

(1.3 ) 

AA t and A tA are "almost" isospectral, which means that 
their spectra agree except for a zero mode of the latter. Solv­
ing (1.3) now is trivial and leads to generalized eigensolu­
tions corresponding to scattering from the left and right and 
to positive ( + ) and negative ( - ) energies: 

1//;}(k,x) = 8(k) e
ikx (± _ ikl+ tanh x), 

p;;r .JP+T 
( 1.4) 

t/J';.)(k,x) = t/J*~)(k,x). 
In addition there exists one bound state for energy zero 

with wave function 

t/Js(x) = ('" o( »), t/>s(x) = 1. (1.5) 
'f's x ,j2 cosh x 

The spectrum consists therefore of a single point and two 

a) Present address: Fakultiit rur Physik, Universitiit Bielefeld, Federal Re­
public of Gennany. 

continua from - 00 to - m and from m to 00, which are 
twofold degenerate. 

Let us remark that the potential treated here is the low­
est soliton solution of the modified Korteweg-de Vries equa­
tion. We take it for simplicity reasons, although certain re­
sults apply to a more general class of potentials. Any 
potential with nontrivial asymptotics 

lim Vex) = ± m, 
x- ± 00 

has exactly one zero energy bound state; in addition we 
should remark that a suitable defined charge quantum num­
ber assigns charge - ~ to the ground state representation 
which we shall study below. 2 Recently we have shown3 that 
this representation of the canonical anticommutation rela­
tions (CAR) is inequivalent to the representation connected 
to the Dirac operator with constant mass. This indicates that 
the calculation of a ground state charge has to be done care­
fully and a regularization procedure has to be used. A possi­
ble approach uses the resolvent regularization for an index 
which may be evaluated using scattering theory.4 

Here we shall start with the representation of the CAR 
connected to the one-particle Hamiltonian H of Eq. (1.1) 
and study the question of unitary implementability of gauge 
transformations. Let .# denote the C *-algebra generated by 
operators a(/) and at(g), where a(/) depends antilinear 
on / and at (g) linear on g, and/ and g belong to K; assume 
that the operators obey the CAR 

{a(/),at(g)} = (/,g), {a(/),a(g)} = 0, /,ge)ff, 
( 1.6) 

where ( ., . ) denotes the scalar product in K. 
Since the spectrum of H splits into a positive energy 

part, a negative energy part, and a zero energy part, we may 
split our Hilbert space into 

K=P+K(j)PsK(j)P_K, (1.7) 

where P ± and Ps denote projection operators onto the ap­
propriate spectral parts of H. Note that due to the special 
structure of H, there exists an antiunitary operator C satisfy­
ing C 2 = 1 such that 

CH= -HC, CP+ =P_C, CPs =P.C, (1.8) 

which means charge conjugation. For the chosen representa-
tion, C is given explicitly by . 
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( 1.9) 

(C will be used later on in order to define a conjugation 
in JiY'). 

In the following we shall study a quasifree state over the 
algebra.I<ff determined with the help of the projection opera­
tor P+: 

tV.(a(fn)·· 'a(fl)at(gl)" 'at(gm») = t)"m detU;,P +gj)' 
( 1.10) 

Choosing P + on the rhs amounts to the intuitive idea of 
filling the negative Dirac sea and will lead to a lower bound­
ed second quantized Hamiltonian. There are actually two 
pure states we may treat. Replacing P + in (1.10) by 
P + + Ps means filing the zero mode, too. This leads to a 
state Cds 

Cds (a ( fn)' . 'a( fl )at(gl)" 'at (gm») 

=t)"m det(.t:,(P+ +Ps)gj)' ( 1.11) 

Both states tVs and Cds are pure states.s With the help of the 
Gel'fand, Naimark, Segal (GNS) construction we associate 
to tVs as well as to Cds cyclic representations 

(JiY''''s,n"",O",) and (JiY' "",n"",O",,) 

of .I<ff such that 

tVs (x) = (O"",n"" (x)O",,), 

Cds(x) = (O"",n"" (x)O",,), Vxe.I<ff. 
(1.12) 

Later on it will be convenient to denote n"" (a ( f ») for 
feP +JiY', fePsJiY', or feP _JiY' differently [see (2.4) ] : 

n",Jat(p +f» = Bt(f), 

n", (at(Psf») = C(f), n", (at(p -f») = D(f)· 
s , 

(1.13 ) 

With the help of the charge conjugation we shall construct 
the physical Hilbert space in Sec. II. 

In order to study gauge transformations we start with a 
group G and a unitary representation of operators {Va ,aeG} 
acting on JiY'. To any Va there exists a unique *-automor­
phism T a of.I<ff such that T a reduces to Va on the operators 
a(f): 

(1.14 ) 

Examples of automorphism are the time translation au­
tomorphism 

Tt(a(f»)=a(eitHf), feR, (1.15) 

and the charge conjugation automorphism 

Te(a(f») = at(Cf)· ( 1.16) 

Our main interest concerns gauge, axial gauge, and 
chiral transformations of the type 

lim as(x) = m1T', lim as(x) = n1T', 
x- - 00 x_ + 00 

where the integer n - m can be interpreted as a winding 
number.6 No restriction is implied on a, which reflects the 
fact that global gauge transformations leave H invariant for 
any a while as = n1T' is required for invariance of axial 
gauge transformations. 

Consequences of this result, an elaboration of the cur­
rent algebra connected to our problem as well as a discussion 
of the projective representation obtained from the second 
quantized form of Va with an appropriate Schwinger term 
will be published separately. 

Let us finally make remarks on the literature. The gen­
eral discussion of quasifree states over the CAR-algebra has 
been done by Araki and Wyss,7 Powers and St0rmer,s and 
Lundberg. 8 The representation of the CAR related to the 
massless as well as massive Dirac operator has been studied 
extensively.6.9.10 Various other states have been studied by 
the Streater group. II More recently the current algebra for 
fermion currents in one plus one dimensions l2 as well as the 
boson-fermion correspondence l3 and the connection of 
these problems to infinite-dimensional groups has been stud­
ied. 14 

II. CONSTRUCTION OF THE REPRESENTATION 
(K ",.,II",.,O",.) 

We start from the splitting of our Hilbert space JiY'into 
P +K al PsK al P _JiY', follow Ref. 15, and define first the 
"physical" Hilbert space K' by 

K'=KpalKsalKa, (2.1) 

where Kp and Ka are copies of K + = P +K and Ks 
= PsK. We define projection operators f!JJ p,f!JJ s' and f!JJ a 
projecting onto Kp,Ks, and Ka, respectively, and denote 
by Ip, Is, and Ia the identification maps 

Ip: K + ..... Kp, Is: Ks ..... K.. Ia: JiY' + -+ Ka . 
(2.2) 

From the above information we conclude that there is a 
bijection r from K -+ K' such that 

r=IpP+ + IsPs +IaCP_, 
(2.3) 

r - I = I - I f!JJ + I - I f!JJ + C I - I f!JJ 
p p s s a a' 

where C denotes the charge conjugation operator (1.8). 
With the help of these operators we may identify 

{

h t(rP +f) = Bt(f), 

n",Jat(f») = c(rPsf) = C(f), 

d(rP -f) = D(f), 

{

h t(rP +f) = Bt(f), 

n",,(at(f») = ~(rPsf) = ~t(f), 
d(rP -f) = D(f), 

(2.4) 

T~(a(f») = a( V~ f), V~ = eia(x) + iu,a,(X), 

a,esec00 (R), a',a;ecQ" (R), ( 1.17) for all feJf'. The ground state vectors are now determined 
by 

where we made restrictions on a and as to simplify the 
proofs. We will require that the automorphism is unitarily 
implementable; in Sec. III we shall see that this leads to the 
quantization condition on 0 5 : 
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B(f)O"" = C(f)O"" = D(f)O"" = 0, 

B(f)O"" = G(f)O"" =D(f)O"" = 0, 
(2.5) 

and identified with the cyclic vectors of the representations 

H. Grosse and G. Karner 372 



                                                                                                                                    

(K .... "I1 .... "O .... ) and (K "",I1 .... ,0""). The relation between 
both ground state vectors is trivially given by 

ct(/)O .... , = 0 .... , Ct(/)O"" = 0 .... " (2.6) 

The fennion field operator can now be decomposed as 

"'(I) =B(/) + C(/) +Dt(/), (2.7) 

and acts on the representation space £"', which is the closure 
of the linear hull of vectors of the fonn 

n,m 

II Bt(J;)Dt(gj)O .... , 
j,j= I 

and (2.8) 

k,l 

II Bt(hi)Dt(kj)Ct(/)O .... ,; 
i,j= I 

thus £'" can be identified with K .... ,' 
In order to discuss the representation of the time evolu­

tion automorphism we first define the Hamiltonian operator 
H. acting in £'" by starting from H [Eq. (1.1)] and map­
ping the negative part of the spectrum of H onto the postive 
half-line. More precisely H. is defined by 

'H I iH' re' tr - = e ... (2.9) 

Thus 

reiHtr-1 

= IpP +eiHtI p- I f?jJ P + I.PJ .- I f?jJ • 

+ IaCP _eiHtC I a- I f?jJ a 

= itH, = exp it{IpP +HI p- I f?jJ P + Ia P +HI a- I f?jJ a}' 
(2.10) 

where obviously H. >0 is positive definite and the contribu­
tion from the zero mode drops out. 

From the above we get for the second quantized opera-
tors 

dr(H)O =0, r(iH,t)=eidnH,)t. (2.11) . ...., 

A similar procedure works obviously for the representation 
(K "",I1"",0",,). 

III. UNITARY IMPLEMENTABILITY OF GAUGE 
TRANSFORMATIONS 

We shall consider gauge transfonnations and axial 
gauge transfonnations of the general type 

V. (x) = e16 (X) + iu,as(x) = (C(X) sex») , 
~ -sex) c(x) (3.1) 

c(x) = eia(X) cos 8 s(X), sex) = eia(X) sin 8 s(x). 

Starting from a state ((). defined in Eq. (1.10) by the 
projection P +' one goes over, with the help of the transfor­
mation (3.1), to anew state defined by VaP +V e I. We shall 
require that this transfonnation can be implemented unitari­
ly in the Hilbert space K .... , so that there exists n V~) with 

II .... (a( Va I») = r( Va ) II .... (a(/»)r( Va) -I. (3.2) s _ _ s _ 

The two states lead to equivalent representations iff 

X~ = V~P+Vil-P+ePlJ2(K), (3.3) 

where PlJ 2 (K) denotes the class of Hilbert-Schmidt opera-
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tors over K. Note that X~ obeys a cocycle condition 

X~'l:: = V~Xl::Vil +X~, (3.4) 

and a Hilbert-Schmidt operator valued cohomology can be 
associated with the above problem. II 

In order to figure out conditions on 8(x) and 8 s(x) 
such that (3.3) is fulfilled it is convenient to replace this 
condition by the equivalent ones 

P+V~P_ePlJ2K and P_V~P+ePlJ2(K); (3.5) 

the equivalence can be easily seen from the identities 

liP ± - VP ± V-IIIHs 

= Tr(VP=F V-Ip ± +P=F VP ± V-I), 

liP ± VP=F IIHs = Tr P ± VP=F V-Ip ± (3.6) 

which holds for any orthogonal projection P _ (with 
P + = 1 - P _) and unitary V. 

In order to check (3.5), an explicit representation of the 
projection operators is useful; from ( 1.4) we get immediate­
ly 

1( 1 ±I1) (00) 
P + = 2'" ± II· 1 - II. ' p. = 0 1T. ' 

(3.7) 

where II and II. have the kernel representation 

I1( ) Joo dk ik(x-y) (- ik + tanhy) 
x,y = -e , 

- 00 21T Jl2"+T 
II. (x,y) = t/>. (x)t/>. (y). 

(3.8) 

A simple calculation yields the matrix elements of 
4P+V~P_ =M: 

Mil = CI - SI' MI2 = C2 + S2 - s' II. - II ·c· II., 

M21 = - C3 - S3 + I1.·s + II. ·c· II·, 

M22 = C4 + S4 - I1··s' II. 

- II. ·s· II - I1.·c - c· II. + I1s ·c· II., 

where Ci and Si are given by 

CI = C - I1·c·I1·, C2 = I1·c - c'I1, 

C3 = c· II· - II· 'C, C4 = C - II· ·c· II, 

SI = I1'S + s· II·, S2 = S + II ·s· II, 

S3 = S + I1··s· II·, S4 + s· II + I1··s. 

(3.9) 

(3.10) 

Since a matrix operator is Hilbert-Schmidt iff all matrix 
elements have this property, we require that MijePlJ 2(K) 
for i,j = 1,2, with K = L 2(R,dx). It turns out that 
CjePlJ 2(K) without putting any restrictions onto c(x), but 
SiEPlJ 2(K) iff sex) fulfills special boundary conditions. 
This we fonnulate as the following theorem. 

Theorem: The gauge transfonnation Va with 
~ = (8(x),8s(x»), 8,8sECoo, and 8',8;eCo is unitarily 
implementable in the representation (K .... "I1 .... "O .... )iff 
limx __ 00 8 s(x) = m1T and limx_ + 00 0s(x) = n1T with 
n,meZ. 

Proof: We remark first that II. is a one-dimensional pro­
jection operator; all tenns of Mij where II. enters have, 
therefore, finite Hilbert-Schmidt (HS) nonn and are irrele­
vant. 

Next we remark that finiteness of IICdlHs implies finite­
ness of IICi IIHs for i = 2,3,4; this is seen by writing out the 
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Hilbert-Schmidt norms, using cyclicity of the trace, the 
properties that nn* = 1 and n*n = 1 - ns and observing 
that terms involving ns are finite. 

It is therefore enough to require that IISdlHS < 00 and 
IICdlHS < 00. 

(i) From (3.8) we first obtain the kernel ofS\ incoordi­
nate space: 

S\(x,y) = - {( - ik + tanhy)s(y) f
oo dk eik(x - y) 

- 00 21T ...flCI+T 
+Uk+tanhx)s(x)}, (3.11) 

which transformed to momentum space may be split into 
two parts 

A 

S\(p,q) = Us (p,q) + Ws(p,q), 

Us (p,q) = s'(p - q) 'Ku (p,q) , 

w. (p,q) = 'i. (p - q)Kw (p,q) , 

(3.12) 

where s' denotes the Fourier transform of s' (x) and 'i. the 
Fourier transform of tanh x·s(x). The kernelsKu andKw are 
explicitly given by 

( 
P q) 1 Ku(p,q) = - --, 

WT+T .JiT+T p - q 

Kw(p,q)=(~+ ~). 
p+l q+l 

(3.13 ) 

Note that we have done a partial integration in the first con­
tribution to S \; K u (p,q) is defined by continuity at p = q. We 

next need an estimate on the kernel; since p/WT+T is 
monotonous in p we get 

(3.14) 

Since s' is eS(R) we observe that the HS norm of U. is 
finite, we get [S(R) being the Schwartz space] 

IIU. IIHS <Loooo dp J:oo dqls'(p-q)1
2 

(3.15 ) 

As for the second contribution from W. (p,q), we first 
note that 

~1 <IKw(P,qW<2(~1 +~1)' (3.16) 
p+ p+ q+ 

from which we deduce the bounds 

( 3.17) 

From (3.17) we find that the necessary and sufficient condi­
tion for W.e&8 2(~) is given by 'i(p)eL 2(R,dp) or equiv­
alently t(x)eL 2(R,dx). Thereforesin2 as(x) has to be inte­
grable for large Ixl or, since a;eC 0 (R) we get 

l
+ 00 

dx sin2 as (x) < 00 ¢:} lim as = n1T 
c X-oo 
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and (3.18 ) 

lim as(x) = m1T, n,meZ. 
x_ - 00 

(ii) Using (3.8) again, we may first write the kernel of 
C \ in coordinate space, 

C\(x,y) =c(x)o(x-y) - dz ----
f

oo foo dk eik(x - z) 

- 00 - 00 21T ...flCI+T 
X ( - ik + tanhz)c(z) 

f
oo df e-il(Z-y) 

X - (if + tanh z), 
- 00 21T ...rrr+T 

(3.19) 

and transform to momentum space 

(:\ (p,q) = c(p - q) 'Kc (p,q) + t '(p - q) 'Ku (p,q) 

+ ~h(p - q) 'Kc?h (p,q), (3.20) 

where we have been splitting the tanh2 z contribution and c, 
~ A 

t " and ch denote the Fourier transform of c (x), 
(d /dx)(tanhx'c(x») and of c(x)/cosh2(x) , respectively. 
The two new kernels are given explicitly by 

pq+ 1 
Kc(p,q) = 1 - , 

WT+T.JiT+T 
1 (3.21 ) Kc?h(P,q)= ~~' 

vp + Ivq + 1 

while Ku was already entering in (3.13). It is now simple to 
see that the reasoning leading to finiteness of the HS norm in 
(i) applies here as well. For the first term in (3.20) one does 
the "partial integration trick" and uses c' eS (R), and the last 
two terms also give finite contributions. Note that we need 
no restrictions on the asymptotic values of c(x). 

IV. REMARK 

In this paper we have started the investigation of an 
external field problem which "determines" certain quantum 
numbers by themselves." We observe that the gauge trans­
formations are implementable iff the gauge functions take 
asymptotic values, which also give invariance of H for rigid 
transformations. This fact resembles the situation of the 
massive Dirac operator.9 The obtained quantization condi­
tion is obviously connected to the nonconservation of the 
axial charge for our external field problem. It is tempting to 
suggest that the integer involved (n - m) may correspond 
to the Fredholm index of the operator P + VeP + entering 
into a Bogoliubov transformation, where P': denotes the 
projector onto the positive energy part of H. This together 
with a study of the current algebra connected to our problem 
is under investigation. 
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Motivated by physically plausible axioms, the concept of a transition amplitude space (tas) is 
defined. Various connections between this framework and other axiomatic approaches to the 
foundations of quantum mechanics are derived. In particular, transition probability spaces, the 
algebraic approach, the operational statistics and quantum logic approaches, and traditional 
Hilbert space quantum mechanics are considered. It is shown that a tas always admits a 
Hilbert space representation. Results are obtained concerning isomorphisms and 
automorphisms for tas's. The concept of an A -form is introduced and the relationship between 
certain A-forms and bounded linear operators on a Hilbert space are studied. Finally, it is 
shown that sums and tensor products oftas's can be formulated in a natural way. 

I. INTRODUCTION 

In the traditional Hilbert space formulation of quantum 
mechanics, transition amplitudes play a secondary role. 
Their definition and properties follow from the Hilbert space 
structure of the pure states of the physical system. It is our 
view that transition amplitudes should play the central role 
in an axiomatic foundation for quantum mechanics. Thus 
we should begin with the transition amplitude as the basic 
undefined axiomatic element. The properties of these ele­
ments should be delineated and the axiomatic structure 
should be built upon these properties. This idea is basic to the 
early work of Feynmanl

-
3 in his path integral formalism, 

although he was more interested in computational matters 
than foundational ones. Moreover, many investigators have 
studied axiomatic systems based on transition probabili­
ties,4-8 and this seems to be a step in the right direction. 
However, we feel that transition amplitudes are more funda­
mental and that transition probabilities are easily derived in 
terms of them. The fact that the transition probability is the 
modulus squared of the transition amplitUde is the best way 
to explain interference phenomena that are characteristic of 
quantum systems. 1,2 If this fact is ignored, then the interfer­
ence phenomena are obscured. As we shall show, once a few 
simple properties oftransition amplitudes are given, Hilbert 
space representations follow quickly. This is a great advan­
tage, since a Hilbert space structure for quantum mechanics 
is physically unmotivated and is only the result of fairly re­
strictive ad hoc assumptions. 

At the basic level, our main problem is to find the cor­
rect properties of transition amplitudes. To this end, letSbe 
the set of pure states for a quantum system. If A is to be a 
transition amplitUde, thenA should be a map from S xS into 
C, where we interpret A (x,y) as the transition amplitUde 
from state x to statey. To understand what this means, it is 
important to distinguish between two types of transition am­
plitudes, a static transition amplitude Ao and a dynamic 
transition amplitUde A" t> O. Dynamic transition ampli­
tudes are physically more transparent so we begin with 
them. It is clear that A, (x,y) should be interpreted as fol­
lows. If the system is initially in the state x, then the ampli-

tude that the system is in the state y at time t> 0 is A, (x,y). 
We would then define the probability P, (x,y) ofa transition 
from x to y in time t to be lA, (x,y) 12. 

There are strong physical reasons that our system acts 
like a Markov process at the amplitude level. If the system is 
in the state x at time to, then future states for t > to depend 
only on x and not on states prior to to. In other words, quan­
tum state evolutions do not appear to possess memory. An 
important property of Markov processes is that they satisfy 
the Chapman-Kolmogorov equation. In our framework this 
may be stated as follows. There exists a set M of intermediate 
states such that 

A" +', (x,y) = I At, (x,z)A t, (z,y) , (1.1) 
zeM 

for all t l,t2 > 0 and for every x,yES. As far as we are con­
cerned, (1.1) is the most important basic property of At. 

Now we may view the static transition amplitude 
Ao(x,y) as the limit Ao(x,y) = lim,_o A, (x,y). Taking the 
limit of (1.1) gives 

Ao(x,y) = I Ao(x, z)Ao(z,y) , 
zeM 

( 1.2) 

for allx,yeS.1t is convenient and useful to extend the process 
A".!. > 0, to negative t. ~is is done by defining A _ , (x,y) 
=A, (y,x), t> 0, where A, denotes the complex conjugate 
~ A,. Thus if the initial state is x and t> 0, we interpret 
A, ( y,x) to be the amplitude that the state was y at t units of 
time previously. Ifwelett ..... O, we obtain Ao(x,y) = Ao( y,x) 
and we can write (1.2) in the form 

Ao(x,y) = I Ao (x,z)Ao( y,z) , 
zeM 

(1.3 ) 

for all x,yES. Equation (1.3) will be used as the main defin­
ing relation for Ao in Sec. II. The other defining relation will 
be 

Ao(x,x) = 1 . ( 1.4) 

This has a natural physical interpretation. We could also 
derive (1.4) from the plausible assumption that a state x 
transforms into the intermediate states in M with certainty. 

376 J. Math. Phys. 28 (2), February 1987 0022-2488/87/020376-10$02.50 @ 1987 American Institute of Physics 376 



                                                                                                                                    

Then (1.3) gives 

1 = L Po(x,z) = L Ao(x,z)Ao(x,z) = Ao(x,x) . 
z:eM z:eM 

One can give other interpretations for A o, and these give 
alternative ways of justifying (1.2) [and subsequently 
(1.3)]. We can view Ao as a transmission amplitude. In this 
viewpoint,5.6 we represent the physical system as a particle. 
In fact, since we are making a statistical analysis, it is better 
to represent the system as an ensemble or beam of noninter­
acting particles. A pure state x can be thought of as a filter 
which transmits only particles with certain specified proper­
ties. We call this an x filter. If an x filter is placed in the path 
of the particle beam, then only particles in the x state are 
transmitted. Suppose we now place an x filter preceding a y 
filter in the beam path. Then Ao(x,y) is interpreted as the 
amplitude of transmission for the beam through the y filter 
given that it is transmitted through the x filter. The transmis­
sion probability Po(x,y) = IAo(x,y) 12is the ratio ofthenum­
ber of particles that pass through the y filter to the number of 
particles that pass through the x filter in the two-filter exper­
iment. 

Now suppose we place a z filter between the x and y 
filters. Let Ao(x,z,y) be the transmission amplitude for this 
set of three filters and let Po (x,z,y) = IAo(X,z,y) 12 be the cor­
responding transmission probability. It is then clear that 

Po(x,z,y) = Po(x,z)Po(z,y) . (1.5) 

However, at a deeper level we propose that 

Ao(x,z,y) = Ao(x,z)Ao(z,y) . ( 1.6) 

Property (1.6) has been emphasized by Feynman and oth­
ers2.3 and is called the product rule for transition amplitUdes. 
Of course, (1.5) easily follows from (1.6). We next propose 
the existence of a complete set M of z filters. Such a set M has 
the property that an individual particle ofthe beam is trans­
mitted by precisely one of the filters in M. That is, M is a 
selection process that classifies particles into distinct cate­
gories. There may be many such selection processes but the 
important point is that there exists at least one. It is now 
natural to assume that Ao (x,y) is the sum of the transmission 
amplitudes over the various particle categories in M. That is, 

Ao(x,y) = L Ao(x,z,y) . ( 1.7) 
z:eM 

Then (1.2) follows from (1.6) and (1.7). 
It should be mentioned that ( 1.2) does not hold for tran­

sition probabilities. For these, only the much weaker relation 
:Iz:eM Po(x,z) = 1, holds. Because of this less restrictive con­
dition, there are pathological examples of transition probabi­
lities that do not come from transition amplitUdes. Although 
Some of these examples may have physical significance,5.6 
the situation is not entirely clear. In any case, (1.2) is not 
only physically plausible, it has strong mathematical conse­
quences. 

Still another interpretation is that Ao(x,y) gives an am­
plitude for the information that y has in common with x (see 
Refs. 4 and 9). An analysis similar to that given previously 
can be used to justify (1.2) in this situation. 

In the Hilbert space formulation of quantum mechan­
ics, (1.1 )-( 1.4) follow from the Hilbert space structure. In 
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this case, a pure state is represented by a unit vector x in a 
complex Hilbert space H. We then define Ao(x,y) to be the 
inner product (x,y). Then (1.4) isjustthe relation Ilxll = 1. 
If M is an orthonormal basis for H, then (1.2) [or (1.3) ] is 
Parseval's equality. The time evolution for pure states is giv­
en by a one-parameter unitary group UI and the dynamic 
transition amplitude is defined asAI (x,y) = (UI x,y). Then 
( 1.1) follows from 

AI, + I, (x,y) = (UI, + I, x,y) = (U" x,U~ y) 

= L (U" x,z)(z,U~ y) 
reM 

= L (U" x,z)(U" z,y) 
reM 

= LA" (x,z)A" (z,y) . 
reM 

II. DEFINITIONS AND EXAMPLES 

Let S be a nonempty set and let A: S xS -C. We say 
that x,yES are orthogonal (xly) ifx=FY and A (x,y) = O. It 
follows from Zorn's lemma that the collection of maximal 
orthogonal sets..-l/ A covers S; that is, S = U..-I/ A' We call a 
se~Mc;;;.S an A-set if for every x,yeS, we have :IreM IA (x,z) 
XA( y,z) 1< 00 and 

A (x,y) = L A (x,z)A( y,z) . (2.1) 
reM 

Denote the collection of A -sets by ff A' We call A: S X S - C 
a transition amplitude if (i) ffA =FO, and (ii) A (x,x) = I for 
all xeS. Property (ii) is a mild normalization condition since 
it follows from (i) and (2.1) that A (x,x) >0. Notice that if A 
is a transition amplitude on S, then from (2.1) we have 
A (x,y) = A ( y,x) for all x,yeS. If A is a transition amplitude 
on S we call (S,A) a transition amplitude space (tas). A 
strong (ultrastrong) tas is a tas (S,A) which satisfies (iii) 
A(x,y) = 1 [(iv) IA(x,y) 1= 1] implies x = y. Of course, an 
ultrastrong tas is strong. A tas (S,A) is total if..-l/ A = ffA. 
The following lemma shows that (S,A) is total if..-l/ A c;;;.ff A . 

Lemma 2.1: If (S,A) is a tas, thenffA c;;;...-I/A' 
Proof: LetMeA'A and supposex,yeM withx=F y. De­

noting M '\ {x} by M', we have 

1 =A(x,x) = L IA(x,z) 12 = 1 + L IA(x,z) 12 . 
reM z:eM' 

Hence A (x,y) = 0 so xly. To show that MeJIA suppose 
xlM. Since A (x,z) = 0 for all zeM we have 

1 =A(x,x) = L' IA(x,z)1 2=O. 
z:eM 

This is a contradiction. 0 
If a tas (S,A) is not strong, we can easily construct a 

strong tas closely associated with (S,A). Define a relation ::::: 
on Sby x::::: y if A (x,y) = 1. Then clearly::::: is reflexive and 
symmetric. It will follow from Lemma 3.1 (b) that::::: is tran­
sitive so ::::: is an equivalence relation. Denote the corre­
sponding equivalence classes by x,xeS, and let S = S / :::::. 
Then the function A: S XS ..... C defined by A(x,y) = A (x,y) 
is well defined [again by Lemma 3.1(b)] and (S,A) be­
comes a strong tas. We call (S,A) the associated strong tas. 
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In a similar way, we define a relation - on S by x-y if 
IA (x,y) I = 1. It will follow from Corollary 3.3(a) that - is 
transitive and hence is an equivalence relation. Denote the 
corresponding equivalence classes by x,xES, and let 
S = S 1-. Unfortunately, A cannot be transferred to S in the 
usual way. However, if SI ~S consists of one representative 
from each x,xES, then (SI,A) becomes an ultrastrong tas, 
which we call an associated ultrastrong tas. 

Example 1: The unit sphere S(H) of a complex Hilbert 
space H with A (x,y) = (x,y) is a total, strong tas. In this 
case we use the notation vY H = vYA = vi/' A' Notice that 
(S(H),A) is not ultrastrong since IA (ax,x) I = 1 whenever 
lal = 1. An equiValence class x has the form 

x = {ax: aeC, lal = 1} . 

If we select a representative x I eX from each equiValence class 
and let SI = {XI: xES(H)}, then (SI,A) is a total, ultra­
strong tas. Of course, vY H is the set of orthonormal bases 
forH. 

Example 2: Let Sbe a nonempty set and let A: S xS - C 
be defined by A (x,y) = 1 if x = y and A (x,y) = 0 if x =1= y. 
Then S itself is the only A-set. Indeed, for every x,yES we 
have 

LA (x,z)A(z,y) = A (x,y) , 
zeS 

so S is an A-set. Moreover, if M is a proper subset of Sand 
xt$M, then 

A (x,x) = 1 =1=0 = LA (x,z)A (Z,x) , 
zeM 

so M~A' It follows that (S,A) is a total, ultrastrong tas. 
We call (S,A) a trivial tas. 

Example 3: Let H be a complex Hilbert space and let 
S= {xeH: x=l=O}. Define A: S XS-C by A (x,y) = (x,y)1 
IIxlillyli. Then A (x,x) = 1 andforanyMe1A we have 

L A (x,z)A (z,y) 
zeM 

_ '" (x,z) (z,y) _ (x,y) _ A(x 
- ~ IIxllllzll IIzllllyll-lIxlillyll- ,y), 

for every x, yES. Hence (S,A) is a total tas. However, (S,A) 
is not strong since A (x,y) = 1 if and only ifxlllxll = ylll yll 
so, for example, A (x,lx) = 1. 

Example 4: LetA (x,y) = (x,y) be the usual inner prod-
uct on C2

• Let x = (1,0), y = (0,1), z = (l,l)/v2, be ele­
ments ofC2 and let S = {x,y,z}. Then (S,A) is an ultrastrong 
tas with vYA = { {x,y} }. Moreover, {z}e1 A but {z}ElvYA 
so (S,A) is not total. 

We now consider the relationship between a tas and a 
transition probability space.5 Let Sbe a nonempty set and let 
T:S xS - [0,1]. We call (S,T) a transition probability space 
if(i) T(x,y) = 1 if and only if x = y, (ii) T(x,y) = T(y,x) 
for every x,yES, (iii) for any xES andMe1 T we have l:yeM 

T(x,y) = 1. 
Theorem 2.2: Let (S,A) be a total tas. Then the pair 

(S,T) where T(x,y) = IA (x,y) 12 is a transition probability 
space. 

Proof: Ifx =y, then we shall show in Corollary 3.3(a) 
that A (x,z) = A (x,y)A (y,z) for all zES. It follows that 
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IA (x,z) 12 = IA (y,z) 12 for allzES. This implies that T: S XS 
- R is well defined. It will also be shown in Corollary 3.3 (a) 
that IA(x,y)l<l forallx,yES so T:S XS - [0,1]. Now con­
ditions (i) and (ii) clearly hold. Since A (x,y) = o if and only 

"'-
if T(x,y) = 0 we have vi/' T = vi/' s' Since (S,A) is total, for 

"'- A 

any Me1 T and xES we have 

2: T(x,y) = L IA(x,y) 12 =A(x,x) = 1. 
yeM yeM 

Hence condition (iii) holds. 0 

III. REPRESENTATIONS 

A representation of a tas (S,A) into a Hilbert space H is a 
map ¢l: S-H such that A (x,y) = (¢l(x),¢l(y» for all 
x,yES and¢l(M)EJ1i'H forsomeMEJ1i'A' Notice that if¢l is a 
representation, then II ¢l (x) II = 1 for all xES and xl y if and 
only if ¢l(x)l ¢l( y). It follows that ¢l is injective on sets of 
mutually orthogonal elements. However, ¢l need not be in­
jective on S. For instance, in Example 3 if we define ¢l: S-H 
by ¢lex) = xlllxll, then ¢l is a representation that is not injec­
tive. 

Lemma 3.1: Let (S,A) be a tas. 
(a) If ¢l: S -H is a representation, then ¢l(M)EJ1i' H for 

all MEJ1i'A' Conversely, if M~S satisfies ¢lIM is injective 
and ¢l(M)EJ1i' H' then MEJ1i'A' 

(b) The following statements are equivalent. 
(i) There exists an injective representation ¢l: S-H. 
(ii) (S,A) is strong. 
(iii) A (x,z) = A (y,z) for every zES implies x = y. 
(iv) Every representation of (S,A) is injective. 
Proof: (a) Since ¢l is a representation, there is aM.EJ1i'A 

such that ¢l(MJ )EJ1i'H' Now let MEJ1i'A' By Lemma 2.1, 
¢l(M) is an orthonormal set in H. Moreover, for any xeM. 
we have 

II ¢l(x) 112 

=A(x,x) = L IA(x,zW = L I( ¢lex), ¢l(z»1 2
• 

zeM zeM 

It follows that 

¢lex) = L (¢l(x), ¢l(z» ¢l(z) , 
zeM 

for allxeMJ• For/eH, if 11 ¢l(z) for every zeM, thenll ¢lex) 
for every xeMl . Since ¢l(MJ )EJ1i' H' 1=0. Thus ¢l(M) is a 
maximal orthonormal set so ¢l(M)EJ1i' H' Conversely, sup­
pose ¢lIM is injective and ¢l(M)EJ1i' H' Then for any x,yES 
we have 

A(x,y) = (¢l(x), ¢l( y» 

= L (¢l(x), ¢l(z» < ¢l(z), ¢l( y» 
zeM 

= L A (x,z)A(z,y) . 
zeM 

Hence MEJ1i'A . 
(b) (i)::::} (ii) Suppose (i) holds and A (x,y) = 1. Since 

(¢l(x),¢l(y» = II ¢l(x) II 1I¢l(y)1I it follows from 
Schwarz's inequality that ¢lex) = a¢l( y) for some aec' But 
then 
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a =a( t,6(y), t,6(y» = (t,6(x), t,6( y» = 1, 

so t,6(x) = t,6( y). Since t,6 is injective x = y. 
(ii) =:} (iii). Suppose (ii) holds and A (x,z) =A(y,z) 

for every zeS. Then A (x,y) = A ( y,y) = 1 so x = y. 
(iii) =:} (iv). Suppose (iii) holds and t,6: S ..... His a repre­

sentation. If t,6 (x) = t,6 ( y), then for every zeS we have 

A (x,z) = ( t,6(x), t,6(z» = ( t,6( y), t,6(z» = A (y,z) . 

Hence x = y so t,6 is injective. 
(iv) =:} (i) will follow from Theorem 3.2. 0 
If (S,A) is a tas and xES we call the function A x: S ..... C 

defined by Ax (y) = A (x,y) an amplitude function. Ampli­
tude functions correspond to the "wave functions" of tradi­
tional quantum mechanics. The next theorem shows that 
these wave functions are elements of a Hilbert space and they 
may be used to construct a representation of (S,A ). 

Theorem 3.2: Every tas admits a representation. In par­
ticular, if (S,A) is a tas, then there exists a Hilbert space 
containing {Ax: xES} such that x t--+Ax is a representation. 

Proof: Fix an MEJV A and let H be the set of functions/: 
S ..... C such that 

(3.1 ) 

and 

f(x) = Lf(z)A(z,x) , (3.2) 
zeM 

for all xES. It follows from (3.1) that the sum in (3.2) al­
ways converges absolutely since by Schwarz's inequality we 
have 

[ ]
112 [ ]112 1 I f(z)A (z,x) I, Llf(zW L IA(z,xW 

[ J 
112 

= L If(z)j2 . 

It is straightforward to show that H is a complex linear 
space. We define (f, g) = IzeM fez) g(z) forf, geH and by 
Schwarz's inequality this sum converges absolutely. It is 
clear that ( . , . ) is sesquilinear, Hermitian, and positive semi­
definite. If ([,f) = 0, thenf(z) = 0 for all zeM. Applying 
(3.2), wehavef(x) = o for all xES sof= O. Thus (H,(·,·» 
is an inner product space. 

To show that H is complete, let In Ell be a Cauchy se­
quence. If xeS, then by (3.2) we have 

I.t;(x) - fj(x)1 = 11 [.t;(z) - fj(z)]A(z,x) I 
< L I.t;(z) - fj(z)IIA(z,x)1 

[ ]

1/2 

< L \.t;(z) - fj(zW = 11ft - fjll· 

Hence fn (x) is a Cauchy sequence in C so it converges to a 
numberf(x)eC. We now show thatfEll. For any E > 0 there 
exists an n such that i,j > n implies 1I.t; - fj 112 < E. Then for 
any finiteMo~Mwe have 

L \.t;(z)-.fj(z)j2<II.t;-fjIl2<E, 
zeMo 
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if i,j > n. Hence for j > n we obtain 

L \ fez) - fj (z) 12 = lim L I.t; (z) - fj (z) 12 < E . 
ZEMo 1_ C/O zeMo 

It follows that for j > n 

L If(z) -fj(ZW<E, (3.3) 
zeM 

and hence by Minkowski's inequality 

L~lf(ZWr/2 

< [~ if(z) - fj (z) 12] 112 + [1 1fj (z) 12] 1/2 < 00 • 

Thus (3.1) holds. Moreover, (3.2) holds since 

f(x) = ~im.t;(x) = L ~im.t;(z)A(z,x) = Lf(z)A(z,x) . 
1- 00 ZfEM ,- 00 zeM 

Hence feR and /; ..... f follows from (3.3). 
NowAyeH foranyyeSsinceIzeM \Ay(zW = 1, and for 

any xeS 

Ay(x) =A(y,x) = IA(y,z)A(z,x) = LAy(z)A(z,x). 
zeM %EM 

Define t,6: S-Hby t,6(x) = Ax' Then 

( t,6(x), t,6( y» 

= LAx(z)Ay(z) = IA(x,z)A(y,z) =A(x,y). 
zeM zeM 

It follows from Lemma 2.1 that t,6 (M) is an orthonormal set 
in H. If fEll, zeM, it follows from (3.2) that 

(f, t,6(z» = (z~f(Z') t,6(z'), t,6(Z») = fez) . 

Hence 

IIf1l2 = L If(z)\2= L \(f,t,6(z»)jZ. 
%EM ZEM 

It follows that t,6(M)EJV H" 0 
The null set n (A) for a transition amplitUde A is the set 

of all finite sequences (a;.xj), i = 1, ... ,n, ajEC, xjeS, such 
that l: a j A (x;.y) = 0 for alJyeS. 

Corollary 3.3: If (S,A) is a tas, then the following condi­
tions hold. 

(a) IA (x,y) 1<1 and IA (x,y) I = 1 if and only if A (y,z) 
= A ( y,x)A (x,z) for all zES. 

(b) For any a\> ... ,a"eC, x\>' .. ,xnES we have 

L aJij A (xj,Xj);;>O , 
i,j 

and equality holds if and only if (a;,x; )7= I en (A). 
(c) EveryMEJVA has the same cardinality, and if (S,A) 

is total, every MEJIA has the same cardinality. 
Proof: Let t,6: S ..... Hbe a representation. 

(a) IA(x,y) \ = 1< t,6(x), t,6(y»I<1I t,6(x) II II t,6( y)1I 

=1. 

If \A (x,y) I = 1, then there is an aEC such that t,6 (x) 
=at,6(y). Now 

1 = ( t,6(x), t,6(x» = a( t,6(x), t,6( y» = aA (x,y) . 
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Hence for any zES 

A( y,z) = a-1A(x,z) =A(x,y)A(x,z) . 

(b) L a;aj A (x;,xj) = L a;aj ( </J(x;), </J(xj » 
~j ~j 

= (L a; </J(x;), La; </J(X;») 

;;;.0. 

If equality holds, then for any yES we have 

~ a; A (x;oY) = (~a; </J(x;), </J( y) ) = 0 . 

Hence (a;ox;)7 = 1 En (A). The converse follows from the fact 
that { </J ( y): yES} is total in H. 

(c) If MEJY'A' then </J(M) is an orthonormal basis for H 
and all orthonormal bases have the same cardinality. 0 

The next result characterizes transition amplitudes 
which coincide. 

Corollary 3.4: If A and B are transition amplitudes on S 
satisfying (a) nCB) ~n(A), (b) ffB nffA #0, thenB = A. 

Proof Let </J and ,p be representations of (S,A) and 
(S,B) on Hilbert spacesHA andHB , respectively. LetKA be 
the linear hull of {</J(x): xES} and define the map U: KA 

-HB by 

To show that U is well defined, suppose 

Then for any yES, we have 

Applying (a) we have 

Hence 

Applying (b) there exists an MEJY'B nffA and by Lemma 
3.1(a), </J(M)EJY'H

A
' ,p(M)EJY'H

B
' Since U</J(M) = ,p(M) , 

U has a unique extension to a unitary transformation from 
HA ontoHB. Thenforanyx,y6S we have 

B(x,y) = (,p(x), ,p(Y»B 

= (U</J(x), U</J( y» A = ( </J(x), </J( y» A 

=A(x,y) . o 
The dimension dim(S,A) ofa tas(S,A) is the cardinality 

of any NEJY'A' 
Theorem 3.5: Let (S,A) and (T,B) be tas's. Then 

dim(S,A) = dim(T,B) ifandonlyif(S,A) and (T,B) admit 
representations in the same Hilbert space. 
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Proof If (S,A) and (T,B) admit representations in H, 
then 

dim(S,A) = dimH = dim(T,B). 

Conversely, suppose dim(S,A) = dime T,B) and let </J: S 
- H and ,p: T - K be representations. Since dim H 
= dim K, there exists a unitary transformation U: K .... H. 
Define ,p': T -H by,p' = U,p. Then ,p' is a representation of 
Tsince,p'(M)EJY' H forallMEJY'B and for allx,yeT we have 

B(x,y) = (,p(x), ,p(Y»K = (U,p(x),U,p(Y»H 

= ( ,p' (x), ,p' ( y) ) H' 

IV. ISOMORPHISMS AND A-FORMS 

o 

Two tas's (S,A) and (T,B) are isomorphicifthere exists 
a bijection J: S .... T such that A (x,y) = B ( Jx,Jy) for all 
x,y6S. We then callJ an isomorphism. An isomorphism from 
S to S is called an automorphism. Notice that if J: S .... T is an 
isomorphism, then J(ffA ) = ff B' 

Theorem 4.1: Let (S,A) and (T,B) be tas's. 
(a) if J: S - T is an isomorphism, then for any represen­

tations </J: S - H, ,p: T _K there exists a unique unitary trans­
formation U: H - K such that ,pJ = U</J. 

(b) Conversely, if (S,A), (T,B) are strong, </J: S-H,,p: 
T - K are representations and there exists a unitary trans­
formation U: H-K such that U</J(S) = ,peT), then (S,A) 
and (T,B) are isomorphic. 

Proof (a) If MEJY'A' then </J(M)EJY' H' Now J(M) 
EJY'B and ,p[ J(M) ]EJY'K' Define the unitary transforma­
tion U: H -K by defining U</J(z) = ,p( Jz) for all zEM and 
extend by linearity and closure. Now for every xES, we have 

</J(x) = L A (x,z) </J(z) , 
ZEM 

and hence 

U</J(x) = L A (x,z),p( Jz) . 
ZEM 

Moreover, 

,p( Jx) = L B( Jx,Jz) ,p( Jz) = LA (x,z) ,p( Jz) . 
ZEM ZEM 

Hence U</J = ,pJ. To show that U is unique, let V: H -K be 
unitary and suppose V</J = ,pJ. Then UI </J(S) = VI </J(S) 
and in particular U and V agree on </J(M)EJY' H' Hence 
U=V. 

(b) Define J: S - T by Jx = ,p-I U</J (x). Then J is a bi­
jection and for all x,yES we have 

A (x,y) = (</J(x),</J(Y»H = (U</J(x), U</J(Y»K 

= B (,p-IU</J(X), ,p-IU</J( y») 

=B( JX,Jy). o 
We say that two representations </J: S .... H and ,p: S-K 

are unitarily equivalent if there exists a unitary transforma­
tion U: H -K such that ,p = U</J. 

Corollary 4.2: Any two representations of a tas are uni­
tarily equivalent. 

Proof Let Jbe the identity map I in Theorem 4.1 (a). 0 
Corollary 4.3: Let (S,A) be a tas and let </J: S .... H be a 
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representation. If J: S --+ S is an automorphism, then there 
exists a unique unitary operator U on H such that rfJJ = UrfJ. 
Conversely, if (S,A ) is strong, U: H --+ H is a unitary operator 
and UrfJ (S) = rfJ (S), the J = rfJ - I UrfJ is an automorphism. 

A one-parameter group 0/ automorphisms on a tas (S,A) 
is a map J from R to the automorphism group of S such that 
J(O) = I andJ(s + t) = J(s) J(t) for alls, tER. A one-pa­
rameter group of automorphisms J is continuous if 
t I--+A ( J(t)x,y) is continuous for all x,yeS. 

Theorem 4.4: Let rfJ: S --+ H be a representation of the tas 
(S,A ). If J is a continuous one-parameter group of automor­
phisms on (S,A), then there exists a unique self-adjoint oper­
ator Ton H such that rfJJ(t) = e - itT rfJ for all tER. 

Proof: By Corollary 4.3, there exist unique unitary oper­
ators U(t) on H such that rfJJ(t) = U(t)rfJ for all tER. Since 
U(O)rfJ = rfJ and 

U(s + t) rfJ = rfJJ(s + t) = rfJJ(s) J(t) 

= U(s) rfJJ(t) = U(s) U(t) rfJ , 

we see that U(O) = I and U(s + t) = U(s) U(t). Let M 
E./Y'A and hence rfJ(M)E./Y' H' Iff, geH, we have 

(U(t)/,g) 

= (U(t) ~ (f,rfJ(z» rfJ(z), ~ (g,rfJ(z» rfJ(Z») 

= L (f,rfJ(z» ( rfJ(z'),g) (U(t) rfJ(z), rfJ(z'» 
z,z' 

= L (f,rfJ(z» ( rfJ(z'),g) ( rfJ[ J(t)z], rfJ(z'» 
Z,z' 

= ~ (f,rfJ(z» ( rfJ(z' ),g)11. (J(t)z,z') . 
Z,z 

It follows that t 1--+( U(t)f,g) is continuous so U(t) is a weak­
ly continuous one-parameter group of unitary operators on 
H. By Stone's theorem there exists a unique self-adjoint op­
erator Ton H such that U (t) = e - itT for all teR. 0 

If (S,A) is a tas, a map B: S xS --+C is called a/orm. A 
sequence (a;,x; )eCxS is called a null sequence iffor every 
yeS we have 

Lla;A(x;,y)l<oo and La; A (x;,y) =0. (4.1) 
i i 

We denote the set of null sequences by no(A). Notice that 
n(A) ~no(A). We call a formB anA-form iffor all yeS and 
(a;,x; )eno(A) we have 

L a i B(x;.y) = La; B( y,xi) = 0 . (4.2) 
i i 

Notice that (4.2) is a type of absolute continuity condition. 
We now prove a variant ofthe Radon-Nikodym theorem. 

Lemma 4.5: A form B is a A -form if and only if for all 
ME./Y'A and x, yeS we have 

B(x,y) = L B(x,z)A(z,y) = L A (x,z)B(z,y) . (4.3) 
%EM %EM 

Proof: Suppose B is an A-form and let ME./Y'A' x,yeS. 
Since l:%EM IA (x,z) 12 < 00, A (x,z) = 0 except for a count­
able set Z2,z3' .... Let XI = x, X, = Z;. i = 2,3, ... , and let 
a l = 1, a; = -A(X,zi)' i= 2,3, .... We now show that 
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and 

= IA(x,y) 1 + L IA(x,zi)A(z;,y) 1 
; 

..;IA(x,y)1 + [L IA(X,zi)12f/2[L IA(Z;,y)12f/2 

= IA(x,y) I + I, 

La;A(x,,y) =A(x,y) - LA(x,z;)A(z;,y) =0. 

It follows from (4.2) that 

A similar method gives the other equality in (4.3). Con­
versely, suppose (4.3) holds and (a;,x;)Eno(A). Then for 
ME./Y'A we have 

L a;B(xi,y) = La; L A (x;,z)B(z,y) 
i i %EM 

= L B(z,y) La; A(x;,z) = O. 
%EM ; 

Again, the other equality in (4.3) is similar. 0 
A form B is bounded if there exists a b>O such that for 

any ME./Y'A and any (a;,zi )eCxM, i = l, ... ,n, we have 

(4.4) 

Notice that A itself is bounded since 

Theorem 4.6: Let (S,A) be a tas and let rfJ: S --+ H be a 
representation. There exists a bijection B --+ B from the set of 
bounded A -forms onto t1.1.e set of bounded linear operators on 
H such that B(x,y) = (BrfJ(x), rfJ( y» for every x,yeS. 

Proof: Let B be a bounded A-form and let ME./Y'A' Let 
Ho~H be the linear hull of{ rfJ(z): zeM}. OnHo define 

Then B is a bounded linear operator on H 0 since 

IIB(La;rfJ(Z;»)112 = ~ ILai B(z;,z) 12";b
2

L la;12 

= b 211 L a i rfJ(z;) 112 . 

A 

Since Ho is dense in H, B has a uniq~ bounded linear exten-
sion to H, which we also denote by B. Ifx,yeS, z'eM, since 

BrfJ(z') = L B(z',z) rfJ(z) , 
%EM 

S. Gudder and S. Pulmannova 381 



                                                                                                                                    

we have from Lemma 4.5, 
"'-

(B¢>(x), ¢>( y» 

= Iii IA(x,z')¢>(z'), IA(y,z)¢>(Z») 
\ z'EM ZEM 

= / I A (x,z')B(z',z) ¢>(z), I A(y,z) ¢>(Z») 
\ z,z'EM ZEM 

= / I B(x,z) ¢>(z), I A( y,z) ¢>(Z») 
\ZEM ZEM 

= I B(x,z)A(z,y) = B(x,y) . 
ZEM 

"'-
It is clear that B-B is injective. To show suIjectivity, sup-
pose L is a bounded linear operator on H and define a form B 
by B(x,y) = (L¢>(x), ¢>( y». To show thatBis bounded, let 
MEJY'A. and (aj,zj )ECXM, i = 1, ... ,n. Then 

~ IIaj B(Zj,z) 12 

= ~ IIaj (L¢>(Zj),¢>(Z»1
2 

= ~ I(L I at ¢>(Zj), ¢>(Z») 12 

= II L I aj ¢>(Zj) 112< ilL 11211 I aj ¢>(Zj) 112 

To show that B is an A-form, we have for MEJY'A. 

I B(x,z)A(z,y) = I (L¢>(x), ¢>(Z»( ¢>(z), ¢>( y» 
ZEM ZEM 

= (L¢>(x), ¢>( y» = B(x,y) , 

and 

I A (x,z)B(z,y) = I ( ¢>(x), ¢>(z» (L¢>(z), ¢>( y» 
ZEM ZEM 

= I (¢>(x),¢>(z»(¢>(z),L*¢>(y» 
ZEM 

= ( ¢>(x), L *¢>( y» 

= (L¢>(x), ¢>( y» = B(x,y) . 

We conclude from Lemma 4.5 that B is an A-form. 0 
Let B(S,A) be the set of bounded A-forms on the tas 

(S,A). It is easy to check that B(S,A) is a complex linear 
space under pointwise addition and scal~r multiplica­
tion. For BEB(S,A), define B*(x,y) =B(y,x). Then 
B *E(S,A). Moreover, for BEB(S,A) define liB II to be the 
infimum of the b's in (4.4). Finally, for B, CEB(S,A), 
MEJY'A.' define the form BC by 

BC(x,y) = I B(z,y)C(x,z) . 
ZEM 

It is not hard to show that BCEB(S,A) and is independent of 
theMEJY'A.' The next result is a straightforward corollary of 
Theorem 4.6. 

Corollary 4.7: B(S,A) is a C *-algebra under the above 
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"'-
operations with identity A, and B -B is an isometric *-iso-
morphism. 

A state on B(S,A) is a positive linear functional p: 
B(S,A) - lR such that p (A) = 1. An important class of 
states are given as follows. For xES, define the state Px by 
Px (B) = B(x,x). If¢>: S -H is a representation, we see that 
Px (B) = (B¢>(x), ¢>(x». This observation together with 
Corollary 4.7 gives a connection between the present frame­
work and the algebraic (or C*-algebra) approach to quan­
tum mechanics. 10-13 

AnA-form B is automorphic iffor every MEJY'A.' x,yES, 
we have 

I B(x,z)B( y,z) = I B(z,y)B(z,x) =A(x,y) . (4.5) 
ZEM ZEM 

If J: S-S is an automorphism, we define the form BJ by 
BJ(x,y) =A( Jx,y) forallx,yES. 

Lemma 4.8: (a) If J: S - S is an automorphism, then B J 

is automorphic. 
(b) If B is automorphic, then B is bounded. 
Proof' (a) Let ¢>: S -H be a representation. By Corol­

lary 4.3 there is a unitary operator U on H such that 
¢>J = U¢>. Hence 

BJ(x,y) =A( Jx,y) 

= ( ¢>( Jx), ¢>( y» = (U¢>(x), ¢>( y» . 

By Theorem 4.6, BJ is an A-form. Moreover (4.5) follows 
immediately. 

(b) IfMEJY'A.' (aj, zj)ECXM, i = 1, ... ,n, then we have 

~ I ~ a j B(Zj,z) 12 = ~ t; alij B(zj,z)B(zj,z) 

= ~ alij ) B(zj,z)B(zj,z) 
l,j ~ 

= I ajajA(zj,zj) = I laj l2 • 
i,j 

o 

It follows from Lemma 4.8, that if B is automorphic, 
then BEB(S,A). It is easy to show that the set of automor­
phic forms is a group under multiplication in B(S,A), which 
we call the automorphic group. If B = B J for some automor­
phism J we say that B is implemented by J. 

Corollary 4.9: Let (S,A) be a tas and let ¢>: S -H be a 
representation. "'-

(a) The map B - B is a group isomorphism from the 
automorphic group onto the group of unitary operators 
onH. 

(b) If (S,A) is strong, an automorphic form B is imple­
mented if and only if B¢>(S) = ¢>(S). 

Proof' (a) ~uation (4.5) is equivalentto BB * = B * B 
................ A A A 

= A. Hence BB * = B *B = I, so B is unitary. The rest is 
straightforward. 

(b) This follows from Corollary 4.3. 0 
We call Er;.S an event if there exists an MEJY'A. such 

that Er;.M. TwoeventsE, Fare orthogonalifEnF = o and 
EUFr;.M forsomeMEJY'A.' IfEisanevent, we call the form 
A E defined by 

AE(x,y) = I A (x,z)A(z,y) 
ZEE 
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the A transition amplitude conditioned by E. For an event E 
and an xeS we call/Lx (E) = A E (x,x) the probability of E in 
the state x. Notice that 0, /Lx (E), 1, /L (M) = 1 for all 
Mf:'..If/A' and if E, F are orthogonal, then /Lx (EUF) 
= /Lx (E) + /Lx (F). Let t/J: S -H be a representation, let 

feH be a unit vector and let PI be the one-dimensional pro­
jection onto! If E is an event, form the projection operator 
PE = l:zeE p~(Z)' We then have 

AE (x,y) = L ( t/J(x), t/J(z» ( t/J(z), t/J( y» 
zeE 

= (PE t/J(z),t/J(y». 

It follows from Theorem 4.6 that AEeB(S,A) and P E = A E' 
Let'C = {AE: Eis an event}. For AE, AFE'C, defineAE<AF 
if AE AF = AE and define A E = A - AE. The proof of the 
next theorem is straightforward. 

Theorem 4.10: If (S,A) is a total tas, then ( 'C",') is an 
atomistic, U orthocomplete, orthomodular poset. 

A bounded A -form B is an A -conditional transition am­
plitude if for every Mf:'..If/A' x,yeS we have 

L B(x,z)B( y,z) = B(x,y) . 
%EM 

Denote the set of A-conditional transition amplitudes by L. 
Notice that 'C r;,L. For B I ,B2eL, defineBI,B2 ifBIB2 = BI 
and B; = A - B I' Again, the proof of the next result is 
straightforward. 

Theorem 4.11: Let (S,A) be a tas and let t/J: S -H be a 
representation. Then L is a complete, atomic, weakly modu­
lar, orthomodular lattice, and the map B-B is an isomor­
phism from L onto the lattice of all closed subspaces of H. 

The last two theorems give a connection between the 
present framework and the operational statistics l4.15 and 
quantum logic approaches9,16-21 to quantum mechanics. 

V. SUMS AND TENSOR PRODUCTS 

Direct sums and tensor products are two important con­
structions in the Hilbert space formulation of quantum me­
chanics. Direct sums are necessary in describing systems 
that have superselection rules while tensor products are used 
in describing combined systems. As we shall see, both of 
these constructions proceed quite naturally in the present 
framework. 

Let (SI,AI) and (S2,A2) be tas's whereSl nS2 = 0. Let 
S = SI US2 and define A: S XS-C by 

A(x,y) = {Aj(X,y) ifx,yeSjO i= 1,2, 
0, otherwise. 

We use the notation S = S I e S2' A = A I e A2, and call 
(SI eS2,AI eA2) the sum of (SI,AI) and (S2,A2)' 

Lemma 5.1: (SI e S2,A I eA2) is a tas and Mf:'..If/A. eA, if 
and only if M = MI UM2, where Mjf:'..lf/A" i = 1,2. 

Proof: Let S = SI e S2 and A = A I e A2. Clearly A (x,x) 
= 1 for all xeS. LetM =MIUM2, where Mjf:'..lf/A , i = 1,2. 

Then ' 

= L A(x,z)A(y,z) + L A(x,z)A(y,z). (5.1) 
%EM. zeM2 

383 J. Math. Phys., Vol. 28, No.2, February 1987 

If x and yare not in the same Sj, then both sums on the right 
side of (5.1) vanish so we obtain 

L A (x,z)A( y,z) = 0 =A(x,y). 
%EM 

If both x andy are in the same S;. then one of the sums on the 
right side of (5.1) vanishes and the other equals Aj (x,y) 
= A (x,y). We conclude that A is a transition amplitude on S 

and thatMI UM2f:'..1f/A' Finally, supposeMf:'..If/A and let M j 
= MnS;. i = 1,2. Then for all x,yeSwe have 

A (x,y) = L A (x,z)A( y,z) + L A (x,z)A( y,z) . 
%EM. zeM2 

(5.2) 

If x,yeSj, i = lor 2, then we obtain from (5.2) 

Aj(x,y) = L Aj(x,z)Aj(y,z). 
%EM, 

Hence Mjf:'..lf/A" i = 1,2, and M = MI UM2. D 
Lemma 5.2: A tas (S,A) is isomorphic to a sum of two 

tas's if and only if there is a proper, nonempty subsetSI of S 
such that A (x,y) = 0 whenever XeSl'~I' 

Proof: Let SI be a proper, nonempty subset of S such that 
A (x,y) = 0 whenever XeSl'~I' Define AI: SIXSI-C by 
Al =A ISlxSI, letS2 = S\SI and defineA2: S2XS2-C by 
A2 =A IS2xS2' We now show that (SI,AI) is a tas [the 
proof for (S2,A2) being similar]. Clearly, AI(x,x) = 1 for 
all xeS l • Let Mf:'..If/A and let MI = MnSI. For X,yeS1 we 
have 

AI(x,y) =A(x,y) = L A (x,z)A(z,y) 
%EM 

= ~. A (x,z)A (z,y) 

= L AI(x,z)AI(z,y) . 
%EM. 

HenceMlf:'..If/s. and (SI,AI) is a tas. We now show that the 
identity map I: S - S I e S2 is an isomorphism from (S,A) to 
(SI eS2,AI eA 2 ). Indeed, if x,yeS;. i = lor 2, then 

A(x,y) =Aj(x,y) =AI eA2(x,y) , 

and otherwise 

A (x,y) =0=A l eA2(x,y). 

Conversely, suppose there is an isomorphism J: 
S-Sl eS2, where (S,A), (Sj,Aj), i= 1,2, are tas's. Then 
J -I (SI) is a proper, nonempty subset of S. Moreover, if 
XEJ-I(SI),yEJ-I(SI) we have 

A (x,y) =A l eA2(Jx,Jy) =0. D 

If SI is a proper, nonempty subset of S satisfying the 
condition in Lemma 5.2, we call (SI,A lSI) a sub-tas of 
(S,A). 

Corollary 5.3: (a) dim(SI eS2,AI eA2) = dim(SI,AI) 
+ dim(S2,A2) . 

(b) If (SI,A lSI) is a sub-tas of (S,A), then dim(S,A) 
= dim(SI,A lSI) + dim(S \SI,A I (S \SI»' 

If HI and H2 are Hilbert spaces, we denote the usual 
Hilbert space direct sum by HI eH2• 

Theorem 5.4: A map t/J: S I e S2 - H is a representation of 
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(SI6)S2.AI6)A2) if and only if there are Hilbert spaces 
HI' H2 such that H = HI 6)H2 and representations <Pi: Si 
-H;. i = 1,2 such that <p(x) = <Pi (x) for all xeSi , i = 1,2. 

Proof' Let <p: S I 6) S2 - H be a representation. If Hi is the 
closed span of <P (Si ), i = 1,2, then Hi is a Hilbert space and 
is a closed subspace of H. IfxeS

"
yeS2, then 

( <p(x), <p( Y» = A (x,y) = 0, 

so H ,1H2. If M6/Y'A' then by Lemma 5.1, M=MIUM2, 
where M i6/Y'A" i = 1,2. Since <p(M) is an orthonormal basis 
for H we have for any fEll, 

f = L (J, <P (z» <p(z) 
ZEM 

= L (J, <p(z» <p(z) + L (J, <p(z» <p(z) . 
zeM, zeM2 

It follows that H = HI 6)H2. Define <Pi: Si -Hi as <Pi 
= <PIS;. i = 1,2. We now show that <Pi is a representation of 
(Si.Ai),i = 1,2. Indeed, Wx,yeS;. then fori = 1 or2 we have 

Ai (x,y) = A (x,y) = ( <p(x), <p( Y» = ( <Pi (x), <Pi (y» . 

If M i6/Y'A' i = 1,2, then by Theorem 5.1, M, UM26/Y'A' 
Since <p(MI UM2)6/Y' H' it follows that <p(Mi )6/Y' Hi' i 
= 1,2. It is clear that <p(x) = <Pi (x) for all xeS;. i = 1,2. 

Conversely, suppose <Pi: Si = Hi' i = 1,2, are represen­
tations and <p: S,6)S2-H,6)H2 satisfies <p(x) = <Pi (x) for 
all xeS;. i = 1,2. If x,yeS;. i = 1 or 2, then 

A (x,y) = Ai (x,y) = ( <Pi (x), <Pi (y» = ( <p(x), <p( y» , 

and otherwise A (x,y) = 0 = ( <p(x), <p( y». If M6/Y'A> 
then by Lemma 5.1, M=MIUM2, M i6/Y'Ai' i = 1,2. Since 
<p(Mi )6/Y' H, i = 1,2, we have <p(M)6/Y' H' 0 

Ifwe define the sum of an arbitrary collection oftas's in 
the natural way, then it is straightforward to generalize the 
above theorems to this situation. Moreover, it is easy to show 
that (SI6)S2.AI6)A2) is strong (ultrastrong) if and only if 
(SI.A I), (S2.A2) are strong (uitrastrong). 

If (SI.A I ) and (S2.A 2) are tas's, define 

SI ®S2 = S IXS2 = {(x l 'x2): xleSl , X2eS2}, 

and define AI ®A2: SI ®S2-C by 

AI ®A2( (X I,X2),( YI,y2») = AI (Xl,yl )A2(X2'Y2) . 

We call (SI ®S2.AI ®A 2 ) the tensor product of (SI.AI) and 
(S2.A2)· 

Lemma 5.5: If (SI.A I), (S2.A2) are tas's then 
(SI ®S2.A I ®A2) is a tas and M6/Y'A,"A, if M =MI XM2, 
where M i6/Y'A.' i = 1,2. 

Proof: Let'S = SI ®S2 and A = AI ®A2. It is clear that 
A (XI,x2)' (X I,X2») = 1. Now let M i6/Y'A.' i = 1,2, and let 
M = M, XM2. Then ' 

L A (X I ,X2),(ZI,z2»)A ( YI'Y2),(ZI,z2») 
(ZI,Z2)eM 

L A I(x l,zI)A2(X2,z2)A( y"z,)A( Y2,Z2) 
(z"zz)eM 

= L A,(x,,z,)A( YI,zI) L A (X2,Z2)A( Y2,z2) 
z,EM, Z ZeM2 
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We conclude that (S.A) is a tas and M, xM26/Y'A' 0 
Corollary 5. 6: 

dim(S, ®S2.A I ®A 2 ) = dim(S,.A,) dim(S2.A2) . 

We denote the usual tensor product of two Hilbert 
spaces HI' H2 by HI ® H 2· 

Theorem 5.7: Let (SI.A I), (S2.A2) be tas's. A map <p: 
SI ®S2-H is a representation of (SI ®S2.A I ®A2) if and 
only if there are Hilbert spaces HI' H2 such that 
H = HI ®H2 and representations <Pi: Si -H;. i = 1,2, such 
that <P(XI,X2) = <PI (XI) ® <P2(X2)· 

Proof: Let <p: SI ®S2-H be a representation. Let Mi 
6/Y'A' i = 1,2, uEM

" 
vEM2 be fixed, let HI ~H be the closed 

span ~f{ <p(xl,v): XleSl} and letH2~H be the closed span 
of {<P(U,x2): X2eS2}. Define the maps <Pi: Si -Hi' i = 1,2, 
by <PI(X I) = <p(xl,v), <P2(X2) = <p(u,x2). We now show 
that <PI is a representation (the prooffor <P2 is similar). For 
xl,yleSl we have 

( <PI (XI)' <PI (YI» = (<p(xl,v), <p( YI'V» 

=A, ®A 2(x l,v),( YI'V») 

=A,(x"y,) . 

Ifz, z'EM
" 

z#z', then <PI (z)l<p, (z') so {<PI (z): zEM,}is an 
orthonormal set in HI' Moreover, for any XleSl, since 
M I XM26/Y's, .. s" we have 

<p(xl,V) = L (<p(xl,v), <p(z,z'»<p(z,z') 
(z.z'lEM, xM, 

L A I(X I,Z)A2(v,z') <p(z,z') 
(z,z')eM, xM2 

= L A,(x,,z) <p(z,v) = L A,(x,,z) <p,(z) . 
zeM, zeM. 

Hence if fEll , satisfies f1 <PI (z) for all zEM" we have 
(J,<p(x"v» = 0 for all x,eS,. Since {<p(x"v): x,eSl} is 
dense in H" we conclude that/=O, and hence <p,(M, ) 
6/Y'H,. Define the unitary transformation U:H-H, ®H2 by 
U<p(Z,,z2) = <PI (z,) ®<P2(Z2), ZiEM;. i = 1,2, and extend by 
linearity and closure. We can thus identify H with HI ® H 2. 
Moreover, for any (x"x2 )eS, ® S2 we have 

U<p(X,x2) = L (<P(X,,x2), <p(z,z'» <PI (z) ® <P2(Z') 
(z,<'lEM, xM, 

L (<p,(x,),<p,(z» 
(z,z')EM,XM, 

= L (<PI (XI)' <p,(z» <p,(z) 
zeM, 

® L (<P2(X2), <P2(Z'» <P2(Z') 
ZEM, 

Conversely, suppose <Pi: Si = H;. i = 1,2, are represen­
tations and <p: S, ®S2-H = H, ®H2 satisfies <p(x"x2 ) 

= tPI(X,) ® tP2(X2)· We now show that <p is a representa-
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tion. For (X I,x2)' (YI,y2)ESI ®S2 we have 

(-tP(X I,X2), tP( YI,y2» 

= (tPI(XI) ® tP2(X2), tPI( YI) ® tP2( Y2» 

= (tPI(XI), tPI( YI»( tP2(X2), tP2( Y2» 

= AI (XI'YI )A2(X2,y2) 

=AI ®A2«XI,x2)'( YI'Y2»' 

Finally, if MjE./Y"A;' i = 1,2, then by Lemma 5.5, MI XM2 
E./Y"A, sA,' For (X I,x2)ESI ® S2 we have 

L I ( tP(X I,X2), tP(z,z'» 12 
(z.z')EM, xM, 

Hence 

tP(X I,x2) = L ( tP(X I,X2), tP(z,z'» tP(z,z') . 
(z,z')EM,XM, 

If/eR satisfies,/ltP(z,z') for all (z,z')eMI xM2, then 
(J, tP(X t ,x2» = o for all (XI,x2)ESt ®S2' Since the elements 
tP(X I,x2) = tPI(XI)® tP2(X2), (xI,x2)ESI®S2aretotalinH 
we conclude that/ = O. Hence, tP(MI XM2)E./Y" Hand tP is a 
representation. 0 

Ifwe define the tensor product of a finite number oftas's 
in the natural way, then it is straightforward to generalize 
the above theorems to this situation. Moreover, it is easy to 
show that (SI ®S2.AI ®A z) is ultrastrong if and only if 
(St.A I ),(S2.AZ ) are ultrastrong. One can give simple exam­
ples which show that the converse of Lemma 5.5 does not 
hold. That is, if ME./Y"A, sA,' then M need not have the form 
M = MI XM2 for MjE./Y"A;' i = 1,2. 
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In this paper, the free motion of a particle on a manifold that consists of a one-dimensional and 
a two-dimensional part connected in one point is discussed. The class of admissible 
Hamiltonians is found using the theory of self-adjoint extensions. Particular attention is paid to 
those Hamiltonians that allow the particle to pass through the point singularity; the reflection 
coefficient and other quantities characterizing scattering on the connection point are 
calculated. A possible application is also discussed. 

I. INTRODUCTION 

The theory of self-adjoint extensions represents a pow­
erful heuristic way to construct Hamiltonians of quantum 
systems in cases when the correspondence principle yields 
only incomplete information. For instance, Hamiltonians 
describing the point-interaction phenomena in quantum me­
chanics are obtained as self-adjoint extensions of the corre­
sponding free Hamiltonians with the interaction points re­
moved. 1.2 

As another illustration, one can consider Schrodinger 
operators with singular potentials.3

,4 When the potential is 
singular enough, the correspondence principle provides us 
with a differential operator that is not essentially self-adjoint 
(e.s.a.). In this case, it is natural to approach the problem by 
constructing all self-adjoint extensions of this operator. 
After that one must select the appropriate one among them; 
it requires, of course, additional physical information. There 
are other quantum-mechanical problems to which the the­
ory of self-adjoint extensions can be applied, e.g., a one-di­
mensional model of three-particle collisioris.5 

Particularly interesting are the situations when a quan­
tum particle moves on a spatial manifold that consists of 
several more simple parts. As an example, let us recall the 
free-electron (or metallic) model of organic molecules in 
which one assumes that the 1T-electrons move only along the 
graph r representing the molecule (cf., e.g., Ref. 6 or Chap. 
6 of Ref. 7 for the one-dimensional case). Suppose that the 
motion along the line rj is described by the Hamiltonian 

If d 2 
H j = ---+ V(x) 

2m dx2 J 

withasuitablychosendomaininL 2(rj , dx) wherethecoor­
dinate x parametrizes rj - [0, 1 j ]. The full Hamiltonian H 
of the model is now obtained as an appropriate self-adjoint 
extension of the operator constructed by "gluing together" 
the line Hamiltonians Hj • 

The distinct parts of such a "configuration space" are 
not necessarily of the same dimension. In the present paper, 
we are going to discuss the most simple situation of this kind, 
where the manifold consists of a half-line attached to a plane, 

a) On leave of absence from Nuclear Physics Institute, Czechoslovak Aca­
demy of Sciences, 25068 Rei near Prague, Czechoslovakia. 

b) On leave of absence from Nuclear Centre, Charles University, V HoleSo­
vickach 2, 18000 Prague 8, Czechoslovakia. 

i.e., the dimensions are 1 and 2, respectively. The motion in 
either part is assumed to be free. Notice that one may regard 
the sketched situation also as a motion in R2 subjected to a 
point interaction with some internal structure (compare to 
Ref. 8). Such an interpretation, however, does not suit to the 
model situation we are going to discusss, for which analysis 
of the motion on the half-line is essential. 

Let us resume briefly contents of the following sections. 
First of all, we construct the class of admissible Hamilto­
nians as self-adjoint extensions of the operator obtained by 
"gluing together" the free Hamiltonians for the motion on 
the half-line and on the plane (Sec. II). Since the direct char­
acterization of these extensions obtained from the von Neu­
mann's theory is not very suitable for practical calculations, 
we deduce in Sec. III an alternative classification of them 
using singular boundary conditions. In Sec. IV we analyze 
scattering on the point singularity, with particular attention 
paid to the reflection coefficient for the particle traveling 
initially along the half-line. In conclusion, we discuss a possi­
ble application ofthe present analysis to modeling the quan­
tum point-contact spectroscopy. 

II. ADMISSIBLE HAMILTONIANS 

Let us consider a particle, an electron for definiteness, 
moving on the manifold G that consists of two parts-the 
plane R2 and the half-line R- = (- 00, O]-which are con­
nected at a point P as sketched in Fig. 2. The state Hilbert 
space of such a system is therefore the orthogonal sum of the 
state spaces referring to the plane and to the half-line. Ifwe 
neglect the possible internal degrees of freedom (spin of the 
electron, for instance), we have 

tW'=L2(G):=L2(R2)alL2(R-). (1) 

Since the electron motion is supposed to be free except at the 
point P, we start the construction of Hamiltonian with the 
operator 

(2) 

FIG. 1. The graph r for an anthra­
cene molecule. 
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FIG. 2. The manifold G. 

p 

where the Ho,} are restrictions of the respective free Hamil­
tonians on the two parts of G, namely, 

d 2 

Ho,1 = - dx2' (3a) 

and 

H O,2 = - 1:1, 

D(HO,2) = CO' (H2
" {p}). 

(3b) 

The symbol CO' (n) denotes conventionally the set of all 
infinitely differentiable functions with a compact support 
contained in n. 

The operator Ho is not self-adjoint. It is well known9 

that the deficiency indices of Ho, I are (1, 1), and the same is 
true for Ho, 2 as we shall show a little later. Consequently, the 
deficiency indices of Ho are (2,2) so there is a four-param­
eter family of self-adjoint extensions. Let us construct them 
explicitly. 

We use the polar coordinates with the center at P and 
decompose the space L 2(H2) in the following way: 

L 2(R2) = L 2(R+, r dr) ®L 2(0,217') 

(4) 
m= - 00 

where the functions 

Ym: Ym(tp) = (21T)-1/2 eim IP, tpE[0,21T), 

form the "trigonometric" orthonormal basis in L 2(0,217'). 
Using the standard procedure (Ref. 9, appendix to Sec. 
X.l ), one obtains the decomposition 

(5) 
m= - 00 

where 

d 2 1 d m2 

hm = - dr --;: dr +7' 
(6) 

D(hm ) = Co(R+" {O}), 

and the domain Dmin consists of all finite linear combina­
tions of the functions tP: tP(r, tp) =/(r)Ym (tp) with 
IED(h m ). The deficiency indices of the operators hm on 
L 2 (R + , r dr) are easily found. The latter are unitarily equi­
valent to 

_ d 2 m2 -1 
h=--+--

m dr r 
on D(hm ) = D(hm ), so we have 

n(ho) = 1, 

n(hm ) = 0, for m#O. 
(7) 

The second relation follows from Theorem X.to of Ref. 9, 
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while the first one is verified directly (a solution to the defi­
ciency equations will be presented below). Relations (5) 
and (7) yield .. 

n(HO,2)< L n(hm ) = 1. (8a) 
m= - 00 

We want to show that the equality holds in the last relation. 
To this end, one has to check that the functions 

tP±: tP± (r,tp) =H&a)( ±Jlr),withaequaltol,2forthe 
plus and minus sign, respectively, which span the deficiency 
subspaces [cf. (11) below], belong to D(H ~ 2)' This can be 
performed in a straightforward manner using integration by 
parts and properties of the Hankel functions. Relation (2) 
then gives 

n(Ho) =n(Ho.d +n(HO• 2) =2. (8b) 

Any self-adjoint extension of Ho is therefore ofthe form 

H = KfIJli, (9a) 

where K is a self-adjoint extension of the operator Ko on 
L 2(R-) fIJ (L 2(R+, r dr) ® {Yo}) defined by 

Ko:=Ho,1 fIJ(ho®f), 

and Ii denotes closure of the operator 

h:= fIJ hm' 
meZ 

m#O 

which is e.s.a. due to (7). 

(9b) 

(9c) 

Now we must choose suitable bases in the deficiency 
subspaces % ± = Ker(K ~ =+= if). It is easy to find that % + 

is spanned by the functions 

tp\+)=(/I'O), tpi+)=(O,h), (10) 

II (x) : = eEx
, E = efri

/
4

, 

12(r) : = (217') 1/2H &1) (Er). 
(11 ) 

In the same way, the functions 

tp \ - ) = ifl' 0), tp i - ) = (0,];) (10') 

form a basis in % _. The self-adjoint extensions of Ko are 
now specified by isometries % + ..... % _, i.e., by 2X2 uni­
tary matrices U. The von Neumann's theory gives a prescrip­
tion how the extensions K u can be constructed for an arbi­
trary U. Its domain D(K u) consists of all functions of the 
form 

1= tP + CI (tp \ + l + ulltp \ -) + u l 2lP i - l) 

+ C2(tp i +) + U21tp \ - l + u22tp i - », (12) 

with t/JeD(Ko) and CI , C2EC, where U}k are elements of U. 
One might write an expression for K ul as a linear combina­
tion of KotP and the deficiency functions. Instead, we are 
going to derive a more transparent expression for the action 
ofKu· 

III. BOUNDARY CONDITIONS 

For practical calculations, it is more convenient to char­
acterize extensions K u by appropriate boundary conditions. 
In this way, we are able to describe Ku completely since 
Ku CK~, and it is easy to see that 
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KY= {_ d
2
rpl, _ d

2
rp2 _ ~ drp2}, (13) 

dX2 dr r dr 

for each/ = {rpl> rp2}from D(K t). The deficiency functions 
rp i ± ) are, however, singular around P, but we can eliminate 
this difficulty by defining the regularized boundary values 10 

. rp(r) 
Lo(rp) : = hm --, 

r_O In r 

LI (rp) : = lim [rp(r) - Lo(rp)ln r], 
r-O 

which will be used together with 

(14) 

rpl(O_): = limrpl(x), rp;(O_):= lim(.!!....-rpl)(X). 
x-O_ x_o_ dx 

In particular, the standard expansion of Hankel functions I I 
yields 

Lo(h) = - L o(12) = 2i/1T, 

LI (h) =! + (2i/1T)(r -In 2), (15) 

L I (12) =! - (2iI1T)(r -In 2), 

where r = 0.577 216 ... is Euler's constant. 
Before proceeding further, we shall split the set of matri-

ces U characterizing the extensions into five disjoint classes. 
Class I contains all U such that 

1 + U 11 - U22 - det U #0. 

Class II contains all nondiagonal U such that 

1 + UI1 - U22 - det U = O. 

Class III consists of the matrices 

( -1 0) 
o eim 

withWE(O, 21T). 

Class IV consists of the matrices 

with WE( - 1T, 1T). 

Class V contains the matrix 

(-1 0) 
o l' 

Now we can formulate the mentioned result. 
Theorem: Every self-adjoint extension of the operator 

Ho is ofthe form H u : = K u ~ ii, where the operator K u is 
specified uniquely by the following boundary conditions. If 
/= {rpl' rp2} belongs toD(Ku ), then we have the following. 

(i) For U of class I, we have 

rp i (0_) = Arpl (0_) + BLo(rp2)' 

LI (rp2) = Crpl (0_) + DLo(rp2)' 
(16a) 

where the coefficients are related to the matrix elements of U 
by 

388 

A = £'(1 - U22 ) + E(UI1 - det U) , 

1 + U 11 - U 22 - det U 

B=~ U21 • 

{i 1 + U I1 - U 22 - det U 
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(16b) 

(16c) 

C- U I2 
- 1 + U 11 - U22 - det U' 

D = r -In 2 +!!... 1 + u l1 + U22 + det U. 
4i 1 + U I1 - U22 - det U 

(ii) If U belongs to class II, then 

L O(rp2) = Erpl (0_), 

L I (rp2) =Frpl(O_) + Grp i (0_), 

where 

E = 2i 1 - U22 = _ 2; UI2 
1T U21 1T 1 + u ll ' 

F= _,_' -{£, + EU ll + i{i(1 - U22 )L I<7;)}, 
{i u21 

G= __ ,_' l+u l1 • 

{i U 21 

(16d) 

(16e) 

(17a) 

(17b) 

(17c) 

(17d) 

(iii) For U of class III, the boundary conditions read 

rpl(O_) = 0, 

LI (rp2) = (1T/4 )(cot (w/2) )LO(rp2)' 

(iv) If Ubelongs to class IV, we have 

rp; (0_) = (l/{i)(1 - tan(w/2) )rpl (0_), 

L O(rp2) = o. 
(v) Finally, if 

(-1 0) 
U= 0 l' 

then 

rpl (0_) = L O(rp2) = o. 

(18) 

(19) 

(20) 

Proof: Suppose first that Ubelongs to class I. We express 
rpl' rpz from (12) and insert it into (16a). It yields the follow­
ing equations: 

£' + EU I1 =A(1 + ul1 ) + BulzLo(];), 

U12E=Au21 +B [Lo(h) + u2zLo(12)], 

u 12L I (];) = C(1 + UI1) + Du lzLo(12)' 

LI(h) + U22L I(];) = CU21 +D [LO(/2) + u2zLo(];)]. 

Now we substitute from (15), then the solution for 
1 + UI1 - U22 - det U #0 is given by (16b)-(16e). In a 
similar way, one obtains relations (17)-(20). 

Next one has to check that the mapping from the set of 
matrices U to the set of boundary conditions is injective. This 
is easy for Classes III-V. Assume further that there are U, U' 
of class II, both leading to conditions (17), i.e., E = E', etc. 
Then we have G /E = G '/E' and F /E = F'/E' so 

(1 + ull )/(1 - U22) = (1 + uil )/(1 - U22 ), 

and 

(£' + E"U I1 )/(1 - U22 ) = (£' + EU;I )/(1 - U22)' 

Now one has to multiply the second equation by£'and sub­
tract it from the first one. It yields U22 = U22 . Substituting 
this back to the first equation, we get U ll = U;I' Finally, the 
relations ujk = U lk for jk = 12, 21 follow from (17b). One 
has to notice that IUjj 1< 1 since U is unitary and nondia­
gonal. 
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The argument is most complicated for class I. Assume 
again that there are U, U' which yield the same values of the 
coefficients (16b)-(16e). Then we have 

Ujk Uik 

1 + Ull - U22 - det U = 1 + Uti - Ui2 - det U,' 
(21) 

forjk = 12 and 21. Moreover, the relations (16e) and (16b) 
after multiplication by € give 

1 + €I ± IU 11 ± U22 + € - I ± I det U 

1 + u ll - U22 - det U 
1+€I±lu11 ±U~2 +€-I±ldetU' 

= 
1 +u1I -Ui2 -det U' 

It further imples 

1 + Ull = a( 1 + u1I ), 

1 - U22 = a (1 - U~2 ), 

where we have denoted 

1 + u ll - U 22 - det U 
a= . 

1 + Uti - Ui2 - det U' 

Relations (21) can be similarly rewritten as 

Hence 

(1 + Ull)( 1 - U22) + UI2U21 

= a 2
[ (1 + ul l )(1- Ui2) + ut2 uil]' 

(22) 

(23) 

(22') 

and combining this relation with (23), we get a2 = a. Since 
a is nonzero by assumption, we obtain a = 1. Then U = U' 
follows from (22). • 

In this way, we have been able to characterize the opera­
tors H u by means of the boundary conditions. The relations 
(16b)-(16e) and (17b)-{17d) do not show explicitly 
which values the coefficients may assume. It becomes more 
clear if one uses a suitable parametrization of the matrix U, 
such as (29) below. 

IV. SCATTERING ON THE SINGULARITY 

Now we are going to discuss the extensions H u, with a 
particular attention paid to scattering on the singular point 
P. We shall distinguish two cases. 

(a) U diagonal: Going through the boundary conditions 
(16), (18)-(20), one finds easily that they separate. We can 
express them in the form 

lP t (O_) = AlPl (0_), 

LI (lP2) = DLo{lP2) ' 

(24a) 

(24b) 

where the coefficients are with the usual license written as 

I I A E + EU Il cass: = , 
1 + U ll 

D I 2 11" 1 + U22 =r- n + 
4i 1 - U22 

[Notice that both A and D are real; this remains true for 
nondiagonal matrices U-cf. (30a) and (30el) below.] 

class III: A = 00, D = (11"/4) cot(w/2); 
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class IV: A = (1/v2)(l/tan(w!2»), D= 00; 

class V: A = D = 00. 

Hence the system separates for a diagonal U into two inde­
pendent subsystems and its Hamiltonian is of the form 

H u = H 6:1 EfJ H 6~i. (25) 

where H6:i is the half-line Hamiltonian (cf. Ref. 9, Sec. 
X.1) specified by the boundary condition (24a) and 
H 6~i. = h 6D

) EfJ h is the two-dimensional point-interaction 
Hamiltonian. 12 Scattering by this point interaction as well as 
reflection on the half-line should be considered separately. 
Passage of the electron between the two parts of the configu­
ration manifold is impossible. 

(b) U nondiagonal: Now the transitions from R- to]R2 
and vice versa become possible. First of all, we shall discuss 
in detail the situation when Ubelongs to class I. Let us con­
sider reflection of the electron moving initially along the 
half-line towards P. Using boundary conditions (16), it is 
easy to see that the functionfu = (lP f, lP f) with 

q; f{x) = eikx + aue-ikx, 

lPf(r) =b"H61)(kr), 

for a given k > 0 belongs locally to D{H u) if 

(26a) 

(26b) 

au = - { (A - ik) [ 1 + : (r - D + In ~)] + : BC} 

X{(A +ik)[1 + ~'(r-D+ln ~)] 

+: BC} -I, 

(27a) 

bu = 2iCk {(A + ik) [ 1 + : (r - D + In ~)] 
2i }-I +-BC . 
11" 

(27b) 

Moreover, it holds that 

( -~- k2)lP f =0, 
dx2 

( - fl- k 2)lP f = 0, 

sofu given by the relations (26) and (27) is a generalized 
eigenvector of H u, and la u 12 is therefore nothing but the 
reflection coefficient at the point singularity. 

Relation (27a) shows that the reflection coefficient de­
pends on the chosen Hamiltonian H u. In particular, 
la u 1 = 1 holds if U becomes diagonal so BC = O. Then the 
electron can be only reflected at P. On the other hand, occur­
rence of the transitions from R - to R2 means 

(28) 

We shall check directly that this inequality holds once U is 
nondiagonal. To this end, we shall use the following explicit 
parametrization of a unitary 2 X 2 matrix: 

. ( e i(a+c5) cosf3 
U=eis . . 

- e,(a-c5) smf3 
ei (c5 - a) sin f3 ) 

e- i(a+c5) cosf3 ' 
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where a, /3,8, S are real parameters (the first three of them 
are nothing but doubled Euler angles). It yields the follow­
ing expressions for the coefficients (16b )-( 16e): 

A=Y/~, 

B = (i12Ji)(ei(a-6) sin/3}/~, 

C = - (ilJi)(ei
(6-a) sin/3)/~, 

D = r -In 2 - (1T14)(1f I~), 

where 

(30a) 

(30b) 

(30e) 

(3Od) 

Y = sin(a + 8 + (1T14») cos/3 - sin(S + (1T14»), 

~ = sin(a + 8)cos /3 - sin S, 
CC = cos(a + 8) cos/3 + cos s. 

Notice that ~ is nonzero for Class I matrices. As we have 
remarked, the relations (30) show that the "diagonal" coef­
ficients A, D are real valued, while the "nondiagonal" ones 
are complex conjugated up to a real multiplicative constant. 
Using these expressions, we find 

au = -{(Y-ik~)[(l+~lnk)~+ ~1f] 

+ _i _ sin2/3 } {( Y + ik~ ) 
2Ji 

X [ ( 1 + ~ In k )~ + ~ ~] + 2~ sin2/3 } - I, 

so after a short calculation we arrive at the relation 

l-lauI2=Ji~2ksin2/3 

X[~2(Y_! ~klnk- ~ CCk r 
+ (1-yCC +~Y~ Ink 

2 1T 

+ ~2k + -- sin2/3 >0, 1 )2] -I 
2Ji 

which proves (28). 

(31 ) 

(28') 

Notice that the squared modulus of (27b) is not the 
transition coefficient, since it is not properly normalized. 

Relation (28') shows that it is bu = (Jilk) '/2bu which ful­
fills lau 12 + Ibu 12 = 1. 

The fact that the singularity is penetrable for a nondia­
gonal U can be seen also when one considers scattering of the 
electron moving in the plane on the point singularity P. The 
corresponding generalized eigenfunction is fu = (t/lf, t/I!f) 
with 

9? f(x) = cue- ikx, 

9? !fer) = Jo(kr) + duH ~')(kr), 

where 

cu=~B{(A+ik)[I+~(r-D+ln ~)] 

+~BCr', 
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(32a) 

(32b) 

(33a) 

[ 
2i( k BC)] -I du = - 1 +- r-D+in-+--.- , 
1T 2 A + lk 

(33b) 

if we requirefu to belong locally to D(Hu )' The asympto­
tics for large r can be found easily, 

t/I!f(r) = (2!1Tkr) 1/2{ei60(k)sin(kr + (1T14) + 80 (k» 

+ O(r-I)}, (34) 

where 80 (k) is given by 

SoCk) = /i6o(k) 

= r-D+ln-+-+--( 
k 1Ti BC) 
2 2 A +ik 

X r-D+ln---+-- . ( 
k 1Ti BC )-' 
2 2 A +ik 

(35a) 

Here 80 (k) represents the s-wave scattering phase shift and 
So (k) is the on-shell s-wave scattering matrix. For the higher 
partial waves, we get 

8m (k) = 0, m = ± 1, ± 2, .... (35b) 

In general, the scattering matrix is not unitary. This is not 
surprising because the electron can continue its motion in 
R - after the scattering, vanishing thus from the plane. In 
order to demonstrate it explicitly, one has to express SoCk) 
using the parametrization (29). A short calculation then 
gives 

1 - ISo(kW = 1 -lau I2, (36) 

where the rhs is given by (28'). Hence S is non unitary iff U is 
nondiagonal. 

Let us turn now to matrices U of class II. In this case, 
too, the electron is able to pass through the singular point. 
The analysis is essentially the same as above. We restrict 
ourselves with presenting the results. For the generalized 
eigenvector (26), we find now 

[ 
2i( F + ikG k)] au = - 1 +-; r- E +lnT 

[ 
2i( F - ikG k)] - I X 1+-; r- E +lnT ' (37a) 

- [2i( F - ikG k)] - 1 bu =2ikG 1 +-; r- E +lnT . (37b) 

On the other hand, for the scattering in the plane corre­
spondingto (32), one can find the coefficients cu, du , which 
give 

SoCk) = e2i6o(k) = (r _ F -~kG + ~i + In ~) 

( 
F - ikG 1Ti + I k ) - 1 X r- -- n- . 

E 2 2 
(38) 

v. A POSSIBLE APPLICATION 

The problem treated in the preceding sections may seem 
somewhat bizarre. Nevertheless, it can have a quite reasona­
ble physical application as a model of the quantum point­
contact spectroscopy. 
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For a metallic contact, one usually expects a linear rela­
tion between the applied voltage and the current according 
to Ohm's law. This is true if the size of the contact is large 
enough. On the other hand, if its linear dimensions becomes 
comparable with mean free path of the electrons in metal, 
then interesting nonlinear effects in the current-voltage 
characteristics can be observed.13 In this case, the electrons 
are scattered at the orifice giving rise to a backward flow, 
which adds a negative and voltage-dependent contribution 
to the current. 

The results of the present analysis can be used for mod­
eling of such a contact whose linear dimension tends to zero. 
In order to calculate the current through the contact, one 
has to know the electron-gas density and the transmission 
coefficient through the singular point. 14 In the simplest case, 
when the electrons are supposed to be free, the latter is given 
by (28') (or an analogous expression for U of class II) . If we 
add a potential to H u which should describe the metallic 
structure of the system (a wire connected to a thin plate), 
then the transmission coefficient must be calculated anew. It 
remains possible, however, to characterize the admissible 
Hamiltonians by the boundary conditions listed in the 
theorem of Sec. III as far as the potential is bounded. 

We are going to discusss the model, which we have 
sketched briefly here, in a subsequent paper. 
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Previous analysis of the Jacobi-matrix method based on the underlying SO (2,1) Lie algebra is 
extended to the Coulomb Hamiltonian in parabolic coordinates. The general solution of the 
generic SO(2, 1) eigenvalue equation is constructed and special cases, which furnish expansions 
of the Coulomb functions "'~ ± ) (r) in a complete set of parabolic Sturmians, are discussed. 

10 INTRODUCTION 

New possibilities for computing the scattering wave 
function are afforded by expansion in a set of square-integra­
ble functions. There are two closely related but complemen­
tary techniques; the first is suitable when the focus is on the 
overall behavior of a cross section over a broad energy range, 
and the second is suitable for bringing out finer detail over a 
narrow range of energy. 

The first technique (Stieltjes imagingl) relies on the fact 
that given any Hamiltonian H [or a functional A (H) ], one 
can recursively generate a basis set {itpv)' v = 0,1,2, ... ,00} of 
square-integrable functions in which the Hamiltonian H is 
tridiagonal. This Jacobi-matrix representation of the Hamil­
tonian immediately permits application of the powerful 
techniques for solving the classical "problem of moments" 
to the problem at hand, usually a direct computation of a 
matrix element for transition to the scattering state. 

The alternative technique, christened the Jacobi-matrix 
method,2 is applicable when the Hamiltonian is of a special 
form, H = Ho + V, where Ho is tridiagonal in a known, ana­
lytically defined, square-integrable basis set and the result­
ing Jacobi matrix can be diagonalized analytically. Further­
more, the potential Vis supposed to have a short range in the 
sense that its matrix representation in this basis set contains, 
at most, a finite nonzero submatrix. Under these conditions, 
the scattering states of H may be constructed by expansion in 
the set {1<Pv)' v=0,1,2, ... ,00}. Problems that commonly 
arise in atomic physics are amenable to this treatment. 

An enumeration of the Hamiltonians Ho and the corre­
spondingbasis sets {1<Pv)' v = 0,1,2, ... ,00} is thus central to 
the practical application of the Jacobi-matrix method. Hell­
er, Yamani, and Fishman2 identified two distinct cases: (i) 
the kinetic energy operator T(r) diagonalized in the set of 
harmonic oscillator functions, and (ii) the Coulomb Hamil­
tonian, H(r) = T(r) - Z fr, diagonalized in a set of Stur­
mian functions. 

The unifying feature of these two seemingly distinct 
cases has been identified in a recent paper.3 It so happens 
that both these basis sets constitute infinite-dimensional, un­
itary, irreducible representations of different realizations of 
the SO(2,1) Lie algebra. Moreover, in both cases, solving 
the Schrodinger equation for scattering states amounts to 
diagonalizing a linear combination of the compact and non­
compact generators of the algebra in a basis in which the 
compact generator is diagonal. 

The analysis of Refs. 2 and 3 was limited to spherical 
geometry, i.e., to instances when L 2 and Lz are simulta­
neously diagonalized. The task of expanding continuum 
functions of a particular symmetry in square-integrable basis 
functions of the same symmetry was accomplished there. 

The analysis of the Coulomb potential, thus begun with­
in the framework of partial-wave expansion, is completed in 
this paper. The final result is a set of coefficients for the 
expansion of the Coulomb functions, 

"'~±)(r) = (21T)-3/2 exp(; ~)r(l=t=iB 

xexp[i ~ (1] - s) ]IFI[ ± i:;I; ± ik (!)], 
(1.1 ) 

in a set of parabolic Sturmian functions,4 

"'v,.v,.m (S,1],<P) 

[ 
t2r(VI + 1)r(v2 + 1) ] 112 (. "") = exp 1m", 

1Tr(V1 + Iml + 1)r(v2 + Iml + 1) 

X [exp( - ~ ts ) (tS) jmj/2 L ~,:,j (ts) ] 

X [exp( - ~ t1]) (t1]) jm
j12L ~7j (t1]) ], ( 1.2) 

where S = r - leor, 1] = r + leor are the two parabolic coordi­
nates, <P is the azimuthal angle, t is a common Sturmian 
exponent, the parabolic quantum numbers VI and V 2 range 
from ° to 00, and m is the magnetic quantum number. This 
basis set is orthonormal with the inner product defined with 
a lIr weight: 

J dr "'~ v m (r)~ "' ••. (r) = ~ .~ '~mm" H 2. r 'V1''V2,m VI '\II '\12'\12 

Of course, only m = ° states appear in the expansion of 
"'~±)(r). 

Central to this expansion is the fact that the parabolic 
bound states of the hydrogen atom are also generated by an 
SO(2,1) Lie algebra. 5 Conversely, the basis functions ofEq. 
(1.2), for a fixed value ofm, constitute a unitary, irreducible 
representation of the SO (2, 1) ® SO (2,1) Lie algebra. 

The generators of this algebra are specified in Sec. II. 
The generic eigenvalue problem for the SO (2,1) algebra that 
arises when the SchrOdinger equation is rewritten in terms of 
these generators (Sec. IV) is solved in Sec. III. Specific solu-
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tions that give the expansion coefficients of tP~ ± ) (c) in the 
Sturmian functions are constructed in Sec. IV and possible 
application to the Stark spectrum of hydrogenic atoms is 
pointed out in the concluding section (Sec. V). 

II. PARABOLIC GENERATORS OF THE HYDROGENIC 
SO(2,1) LIE ALGEBRA 

One may define the following parabolic generators of 
the SO(2,1) Lie algebra: 

and 

NI = !(TI + k·B), N2 = !(T2 - k·n, 

MI = !(T1 - k·B), M2 = !(T2 + k·n, 

M3 = !(T3 - k-A) , 

(2.la) 

(2.1b) 

in terms of the standard generators of the SOC 4,2) noninvar­
iance algebra,5.6 

1 2 1'2 TI =-r(p -~ ), T2 =c·p-i, 2; 
T3 = _1_ r( p2 + ;2), 2; 

I 2 1 ; 
A=2fCP --;P(c'P) -'2 c, 

B 1 2 1 ; 
=2fcp --;P(c'P) +'2 c, 

(2.2a) 

(2.2b) 

(2.2c) 

r =!'p, (2.2d) 

and the unit vector k which may be taken to lie along the z 
axis. The raising and lowering operators are defined, as usu­
al, by N;t = NI ± iN2 and M ± = MI ± iM2• 

It is easily verified from the known commutation rela­
tions of the generators of (2.2) that the generators of (2.1 ) 
do, indeed, satisfy the canonical SOC 2, I) commutation rela­
tions: 

[NI,N21 = - iN3' [N2,N3] = iNiJ [N3.Nd = iN2, 

(2.3a) 

and similarly for M I , M 2, and M 3• It may also be verified that 
the corresponding Casimir invariants are equal for the two 
realizations: 

M 2 =N2 =Ni -Ni -N~ =!(L~ -1), (2.3b) 

where L k is the projection of the angular momentum on the 
vector k. 

The label "parabolic generators" is justified by the ex­
plicit form of the operators of (2.1 ) in parabolic coordinates: 

71=r+k.c and g=r-k.c. (2.4) 

Then, 
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M 2 = -;[71 ~ + !], (2.6b) 

M3 = - .!..[~ (71~) + _1 (~) - ~ 71]. (2.6c) ; a-q a-q 471 Bt/J2 4 
The action of the operators NI to M3 on the basis functions of 
( 1.2) can be deduced from the properties of associated La­
guerre polynomials.7 It may be summarized succinctly by 
replacing the quantum numbers (vl ,v2,m) by the set 
(ql,q2,t), where ql = VI +! + ilml, q2 = 1'2 +! + !Iml, 
and t = -! + !Iml, and relabeling the basis functions, i.e., 
IqI,q2,t > = !vl,v2,m). Then, 

N 2\q}oq2,t) = t(t + 1) \ql,qz,t) (2.7a) 

N3 Iquq2,t) = qllql,q2,t), (2.7b) 

N ± Iql,q2,t) = [(ql =F t) (qi ± t ± I)] 1/2lql ± l,q2,t). 
(2.7c) 

Similarly the action of M 2, M 3, andM ± is given by replacing 
ql-+q2 in Eq. (2.7); i.e., IqI,q2,t) is also an eigenfunction of 
M2 and M3 with eigenvalues t(t + 1) and Q2' respectively, 
and M ± are raising and lowering operators in the index Q2' 

This is, of course, the standard action ofSO(2,1) gener­
ators on the basis functions ofthe 9J + (t) representation. S,6 

Thus the set {IQI,Q2,t), Ql = t + l,t + 2, ... ,oo} constitutes a 
9J + (t) representation of the SO(2,1) Lie algebra [Eq. 
(2.la)]; similarly the set {IQI,Q2,t), Q2 = t + 1,t + 2, ... ,oo} 
constitutes a 9J + (t) representation of another realization of 

the algebra [Eq. (2.1b)]. Taken together, the set {IQI,Q2,t), 
QI,Q2=t + l,t+2, ... ,oo} constitutes a 9J+(t)®9J+(t) 
representation of the corresponding algebra SO(2,1) 
® SO(2,1). 

Transcribing this statement in terms of the original 
quantum numbers, the basis set ofEq. (1.2), for a fixed value 
of the magnetic quantum number m, constitutes a 
9J+( -! + !Imj) ®9J+( -! + !Iml) representation of 
the SO(2, 1) ® SO(2, 1) algebra defined by the generators of 
(2.1). 

III. SOLUTION OF THE BASIC EIGENVALUE EQUATION 

In anticipation of the problem encountered in the next 
section, I will now summarize the relevant solutions of the 
basic eigenvalue problem, 

(TI+71IT3-712)ltP) =0, (3.1) 

where TI and T3 are generators of an SOC 2, 1) Lie algebra, 
- 1 < 711 < 1, and 712 is a complex number. The correspond­

ing problem for real values of 712 was solved in Ref. 3. The 
extension to complex 712 is straightforward, so all proofs will 
be omitted. 

Expansion of I tP) in the basis functions of the 9J + (t) 
representation of the algebra, 

00 

ItP) = L avlt + 1 +v,t), 
v=o 

leads to the following three-term recursion for av : 

[v( 1'+ 2t + 1) Jl/2av _ I 

- 2[ (v + t + 1)cost/J + rsin t/J]av 

+ [(v + 1)(1' + 2t + 2) ]1/2av+ I = 0, (3.2) 

where sin t/J = ~1- 71L cost/J = - 711' o <t/J <1r, and r 
=rl + ir2 = 712/sin t/J. 
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It can be easily verified8 that and 

I() [r(v+ 1)r(v+2t +2)j1/2 ( .. "') 
av Y = exp IV'f' 

rev + t + 2 + iy) 

X 2F I (t + 1 + iy,v + 2t + 2;v + t + 2 + iy;e12
"') 

(3.3a) 
= exp [ - Y I (ifJ - 1T 12)] [2 ( v + t + 1) sin ifJ] - 112 + y, 

(2 sin tP)' + 1/2 

and 

II() [r(v+1)r(v+2t+2)Ji /2 ( '''') a Y = exp -IV'f' 
v rev+t+2-iy) 

X ~I (t + 1 - iy, v + 2t + 2; 

v + t + 2 - iy;e - 12"') (3.3b) 

Xe - iv'" exp[iU + 1 + Y2)(tP - 1T12) 

+ iYI In(2( v + t + 1) sin tPl]. (3.4b) 

The linear combination 

Yv(Y) 

= ru + 1 + ir)[ 1 - exp(i2tP) P' + lej"'a~ (Y) 
are two linearly independent solutions of the recursion 
(3.2). [Here 2FI (a,b;c;z) is the Gauss hypergeometric func­
tion.] The second of these solutions is obtained from the first 
by replacing y ..... - y, ifJ ..... - ifJ. 

One must exercise some care in writing the asymptotic 
forms of these solutions for complex Y=YI + iY2: 

- r(t + 1 - iy)[ 1 - exp( - i2tP) ]2'+ Ie - j"'a~I(y) 

( 3.Sa) 

satisfies the initial condition 
lim a~(y) 

= exp [ Y I (ifJ - 1T 12) ] [2 ( v + t + 1) sin ifJ] - 112 + y, 

(2 sinifJ)'+ 1/2 

~(2t+2)YI(Y) -2[U + 1)costP+ Y sin tP]Yo(Y) =0, 
(3.Sb) 

Xeiv", exp[ - iU + 1 - Y2)(ifJ - 1T12) 

- iYIln(2(v + t + l)sin ifJl], (3.4a) 
and hence defines the regular solution of the recursion. It 
may be written compactly in the following form: 

Y ( ) [C'''' )( '1)](2' ",)2'+1 r(t+ 1 +iy)ru+ l-iy) 
v r = exp ""f' - 1T Y - I 2 Sin 'f' r(2t + 2) 

x[r(v+2t+2) ]1I2ei(v+1)'" F (-vt+ 1 +iY'2t+2'1-e- i2",) 
r( v + 1) 2 I' " , 

which brings out the finite polynomial nature of the solution. Asymptotically, 

lim Yv(Y) = eXP[YI(tP-1T12)](2SintP)'+1I2{rU+ 1 + iy)exP[Hv + 1)tP+iU+Y2)(tP-.!!...) 
v_ 00 [ 2 ( v + t + 1) sin tP] 112 - y, 2 

-iYI ln(2(v+t+ l)Sin tPl] _ ru+ l-iy) 
[2(v+t+ 1)sintP]2Y, 

xexp [ - i(v + 1)tP - iU - Y2)(tP - ;) + iYIln(2(v + t + l)sin tP) ]}. 

One may define another solution of the recursion by the linear combination 

rev(Y) = -irU+ 1 +iy)[l-exp(i2tP)]2'+lei"'a~(y) +iru+ l-iy)[l-exp( -i2tP)]2t+le-j"'a~(y). 

This satisfies the initial condition 

~(2t + 2) re I (Y) - 2[ U + 1) cos tP + Y sin tP] re o(Y) #0, 
and it is therefore an irregular solution of the recursion. It may be written more compactly as 

'1f v(Y) + iYv(y) 

(3.6) 

(3.7) 

r (t + 1 - iy) I . .. 
= -2i [rev+l)r(v+2t+2)] l2e -r(v+l)., F(v+l -t-iy·v+t+2-iy·e- r2",). (3.8) 

r(v+t+2-iy) 2 I " , 

Asymptotically, 

lim rev (y) = - i exp[YI (tP - 1T12) ]52 si~/~ )'+ 112 {ru + 1 + iy)exP[i( v + l)tP + iU + Y2)(tP _.!!...) 
v_ 00 [ 2 ( v + t + 1) Sin tP] - y, 2 

_ iYIln(2(v + t + 1) sin tPl] + r(t + 1 - iy) 
[2(v+t+ l)sintP]2Y2 

(3.9) 
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This irregular solution is defined so that for real Y (Y2 = 0), 
in the asymptotic limit, it has the same amplitude as the 
regular solution and its phase leads that of the regular solu­
tion by tr/2. 

The Wronskian of these solutions, defined by 

W[Y,11]=[(v+ l)(v+2t +2)]112 

X[Yv+l11v-Yv11v+I]' 

may be computed most easily for v = 0: 

W [Y,11] = 2 exp[y(~ - tr)](2 sin cp)2t+ I 

Xr(t+ 1 +iy) r(t+ l-iy). 

IV. SCATTERING STATES OF THE COULOMB 
POTENTIAL 

The Schrodinger equation 

(!p2 _ Zir - E) 11/1) = 0 

(3.10) 

(4.1 ) 

is rewritten in terms of the operators of (2.1) after multiply­
ing on the left by r: 

[(NI + M I ) +'11 (N3 + M 3) -1/2] 11/1) = 0, (4.2) 

where 

1-2Elt2 and = 2ZIt 
111 = 1 +2Elt2 112 1 +2Elt 2 

Note that for scattering states (E> 0), - 1 < 111 < 1. 
Equation (4.2) is solved by expanding 11/1) in the basis 

set {lvI,v2,m), VI,V2 = 0,1,2, ... } of (1.2) and requiring the 
expansion coefficients to be separable in the indices v I and 
V2; 

ao 
11/1)= L av,bv,lvl ,v2,m). (4.3) 

.... b"2=O 

Next introduce separation constants 1I2N and 112M such 
that 1I2N + 112M = 112' (This implies a separation of charge, 
ZM + ZN = Z.) Then (4.2) separates into two equations 

[NI + 1I1N 3 -1I2N] L~o aV,lvI,v2,m)] = 0 (4.4a) 

I 

and 

[MI + 111M 3 -112M] LZo bv,lvl ,v2,m)] = O. (4.4b) 

Note that 1I2N and 112M may be complex and recall that 
t = ~ + ~ I m I (Sec. II). Indeed, in the following special cases, 
which correspond to the Coulomb function I/If (r) solutions 
of the Schrooinger equation, both 1I2N and 112M will be com­
plex. 

A. m=O, ZN=Z+lk/2, ZM = -lk/2 

This choice of the separation constants, being identical 
to the choice made in obtaining I/I~ + ) (r) as a separable solu­
tion of the Schrodinger equation in parabolic coordinates, 
implies that the corresponding coefficients av , bv, in (4.3) 
are the expansion coefficients of I/I~ + ) (r) in the Sturmian set 
of (1.2). Note that in the following, the dependence of av , 

and bv, on the Sturmian exponent t is only through the angle 

cp (0 < cp < tr) defined by sin cp = ~ 1 -1I~ = 2tk I 

(t 2+k 2). The parameter y=1I2/~1-1I~ =Zlk does 
not depend on t. 

Corresponding to the parameters defined in the head­
ing, t =!, YN = Z Ik + i!, and YM = - i!. The corre­
sponding regular solutions of the recursion are 

(4.Sa) 

and 

21/4 (CP) [1 ]. b = -- sin - exp - i -(cp -tr) e-,v,4>. 
v, ~trt 2 2 

(4.Sb) 

Note the close correspondence between the asymptotic form 

!.~~ av, = :;; sin( ~ )( - l)v{exp [ - i(V + ~)(tr - cp) - i ~ In( 2(V + ~ )sin(tr - CP))] 

+ 1 r(1 - iZ Ik) exp[i(V + ~)( tr _ cp) + i Z In(2( v + 1 )sin( tr _ CP))]}, 
i2( v + l/2)sin cp ruz Ik) 2 k 

(4.6a) 

and the asymptotic form of the S component of I/I~ + ) (r), 

lim I/I~+)(S) = 1 {exp [ -i.!!.-S-i Z In(ks)] +_1_ r(1-iZlk) exp[i.!!.-S+i Z In(kS )]}. 
s-ao 21/4..j2ii 2 k ikS rUZlk) 2 k 

(4.6b) 

The normalization of av , and bv, is verified by computing ao and bo by direct integration. 

B. m=O, ZN =lk/2, ZM =Z -lk/2 

For this choice of the separation constants, the coefficientsav, and bv , are the coefficients for expansion ofl/l~ - )(r) in the 
Sturmian basis set. Corresponding to these parameters, t =!, YN = i!, and YM = Z Ik - i!. The corresponding regular 
solutions of the recursion are 

21/4 . (CP) [1 ] . a = -- sm - exp i -(cp - tr) e,v,4> 
v, ~trt 2 2 

(4.7a) 

and 

395 J. Math. Phys., Vol. 28, No.2, February 1987 P.C.Ojha 395 



                                                                                                                                    

bv, = :;; sin( ~ )exp[ - i ~ (1,6 - 1T) ]exp[~ (1,6 - ~) ]r(1 + iZ Ik)exp( - iv21,6) 2FJ ( - v2, - iZ Ik;l;l - e-ilif». 

(4.7b) 

Once again, note the close correspondence between the asymptotic form of bv" 

!,~ bv, = ;; sin(~)( -l)v{exp[;(v+ ~)(1T-I,6) +i ~ In(2(v+ ~)sin(1T-I,6»)] 

_ 1 r(1 + iZ Ik) exp [ _ i(V + ~)(1T _ 1,6) _ i Z In(2(V + ~)sin(1T - 1,6»)]}, 
i2(v+ l/2)sin1,6 r( -iZlk) 2 k 2 

(4.8a) 

and that of the TJ component of t/J~ - ) (r), 

I· .,,<-)() 1 {[.k ,Zl k] 1 r(1+iZlk) [.k .Z ]} 1m 'f'k TJ = exp I - TJ + I - n ( TJ) - - exp - I - TJ - I -In (kTJ) . 
"1- 00 2114jiii 2 k ikTJ r( - iZ Ik) 2 k 

(4.8b) 

As before, the normalization of av, and bv, is verified by direct calculation of ao and boo 

v. CONCLUSIONS 

The preceding parabolic formulation of the Jacobi-ma­
trix method may be used to study the Rydberg spectrum of 
hydrogenic atoms in a Stark field. This problem is of much 
current theoretical as well as experimental interest. 9 Classi­
cally, the motion is bounded in the TJ coordinate; at a given 
electric field 7, and at energies less than a critical energy 
Ec (7), the motion in the 5 coordinate is also bounded. 
However, the quantum-mechanical spectrum is continuous 
at all energies due to tunneling. At energies below the classi­
cal critical energy for field ionization, the effective Stark po­
tential in the 5 coordinate may also be approximated by a 
short-range potential, i.e., its matrix representation in the 
Sturmian basis may be truncated, and the Jacobi-matrix 
method is applicable. The resulting matrices being banded, 
one can use large basis sets and ensure effective complete­
ness. At higher energies, further generalization would be 
necessary. 
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Coherent angular momentum states are defined for the two-dimensional isotropic harmonic 
oscillator. They share many attractive properties with the familiar (Cartesian) coherent states, 
but are in general distinct from those states. The probabilities of obtaining particular values for 
the radial and angular momentum quantum numbers follow independent Poisson distributions 
in the new states, but not in the old. In a quasiclassical description ofthe oscillator, 
corresponding to a given classical trajectory, the uncertainty in the angular momentum of the 
system is smaller if the new states are used rather than the old. The new states are the natural 
analogs of the coherent angular momentum states introduced for the three-dimensional 
oscillator by Bracken and Leemon [A. J. Bracken and H. I. Leemon, J. Math. Phys. 22, 719 
(1981) ]. 

I. INTRODUCTION 

Coherent angular momentum (CAM) states have been 
defined for the three-dimensional isotropic harmonic oscil­
lator in quantum mechanics by Bracken and Leemonl

•
2 

(henceforth referred to as BLl and BL2). Previously such 
states had been defined in various ways by various authors,3 

for systems with purely rotational degrees of freedom. 
The Hamiltonian operator for the r-dimensional oscilla­

tor with mass j.t and angular frequency w is 

H= (p2/2j.t) +!j.tw2x2=Iiw(N+!r), (1.1) 

where 

N = NI + N2 + ... + Nr , 

N; = aia; (i = 1,2, ... ,r, no sum), 

a; = (2p,Iiw)-1/2(ip; +j.tWX;). 

( 1.2) 

(1.3 ) 

(1.4) 

The operators a j and their Hermitian conjugates ai satisfy 
the usual boson relations and so are lowering and raising 
operators for the operators Nil which have non-negative in­
teger eigenvalues n;. For r = 3, it was shown in BL1 that we 
can write, as well as (1.2), 

N=2K +L, ( 1.5) 

where K and L have non-negative integer eigenvalues k and 
I, the radial and total angular momentum quantum 
numbers. Commuting lowering operators v and}.. for K and 
L were introduced, and CAM states defined as their com­
mon eigenvectors (with complex eigenvalues). 

This procedure mirrors that used for the usual Cartesian 
coherent (CC) states which are eigenvectors of the lowering 
operators ail again with complex eigenvalues. The CAM 
states and CC states have many attractive properties in com­
mon, but they form quite distinct sets. A major difference is 
that, in a CAM state, the probabilities of obtaining particu­
lar k and I values follow independent Poisson distributions, 
whereas in a CC state, such a property holds instead for the 
values of n I' n2, and n3• These properties are only shared by 

a) Permanent address: Department of Physics, University ofIfe, IIe-Ife, Ni­
geria. 

both sorts of states in the special cases corresponding to cir­
cular classical orbits, when in fact the CAM states and CC 
states can be identified with one another. 

It was remarked in BL2 that the treatment given there 
should be capable of generalization to r> 3 dimensions. In 
fact it is clear from the solution of the eigenvalue problem for 
H in a spherical basis, that (1.5) holds for all r>2, with K 
and L taking non-negative integral eigenvalues k and I in 
each case. Then k is in each case the radial quantum number 
while, for the r-dimensional oscillator, 1(1 + r - 2) is the 
eigenvalue of the SO(r) Casimir operator !LijLij' where 

Lij = (x;Pj -xjp;)/ft=i(a;aJ -ajai), (1.6) 

are the generators ofSO(r). Thus 

!LijLij=L(L+r-2). (1.7) 

As remarked in BL2, it should be possible to define CAM 
states for r> 3 by identifying suitable commuting lowering 
operators for K andL in much the same way as for r = 3, and 
by then finding their common eigenvectors. 

The case r = 2 is special, and in BL2 it was observed 
that, if CAM states are defined in this case as common eigen­
vectors of the familiar "angular" boson operators4 for the 
two-dimensional oscillator, 

p = 2- 1/2(a l - ia2), 0' = 2- 1/2(a l + ia2), (1.8) 

which are shift operators for the SO(2) generator/invariant 
M( = L 12 ), then the CC states and CAM states can be iden­
tified with each other. The common eigenvectors of p and 0' 

are also eigenvectors of a l and a2, as (1.8) shows. However, 
following the work ofOdundun5 (henceforth referred to as 
OD), it can be seen that the situation is not quite so simple. 

In particular, the operator M has eigenvalues m running 
over all the integers while, as already mentioned, the eigen­
values I of L are non-negative. Indeed M, although an SO (2) 
scalar, is not the analog in two dimensions of the operator L 
when r> 2, since that L is not only an SO(r) scalar but also 
an O(r) scalar, like H, N, and K. In contrast, M is an 0(2) 
pseudoscalar, changing sign when, for example, x I and PI are 
replaced by their negatives. In the two-dimensional case we 
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must in fact define L as an 0(2) scalar by setting 

L=IMI, ( 1.9) 

consistently with (1.7). Then we may ask if it is possible to 
define CAM states for r = 2 which are analogs of those for 
r = 3, as eigenvectors of lowering operators for K and L 
rather than eigenvectors of p and 0', which are shift operators 
forMandN. 

Despite the close relationship betweek K, L, M, and N 
indicated above, and the simple algebraic structure of the 
two-dimensional oscillator, we shall show that CAM states 
can indeed be defined in this way, and that they differ funda­
mentally from the CC states, much as in the three-dimen­
sional case. It is surprising to find new coherent states for so 
well-known and simple a system, and their study is of inter­
est not only because of the importance of the two-dimension­
al oscillator in applications, but also because the simplicity 
of the algebraic structure makes their properties easier to 
appreciate than in higher-dimensional cases. 

Lowering operators v and A for K and L were defined in 
00 for r = 2, with A a two-vector operator. However, the 
algebraic structure is so simple in the two-dimensional case 
that it is convenient in what follows to do away with the 
SO(2) tensor rotation entirely and work always with one 
component entities. 

II. SHIFT OPERATORS FOR K AND L 

For the Hilbert space ~ of the two-dimensional oscilla­
tor, let P +, Po, P _ be projectors onto the mutually orthogo­
nal subspaces ~ +, ~o, ~ _ on whichM has positive, zero, and 
negative eigenvalues, respectively. Evidently these projec­
tors sum to unity and commute with K, L, M, and N. Since 

LPo=MPo=O, 

LP+ = MP+, LP_ = -MP_, 

it follows from (1.9) that 

L=M(P+ -P_), 

and then, from (1.5), that 

K=!N - !M(P+ -P_) 

(2.1 ) 

(2.2) 

= !(N - M)P + + !(N + M)P _ + !NPo' (2.3) 

The operator 0' of ( 1.8) lowers N and raises M by one 
unit, that is to say, 

NO' = u(N - 1), Mu = u(M + 1). (2.4 ) 

It follows from the second of these equations and the defini­
tions of P ± ' Po that 

u(P + + Po) = P +0', uP _ = (Po + P _ )0'. (2.5) 

Similarly, 

p(Po+P_) =P_p, pP+ = (P+ +Po)p. (2.6) 

The relations Hermitian conjugate to these must also hold: 

(P + + Po)ut = utp +, ut (Po + P _) = P _ut, 
t t (2.7) 

(Po+P_)pt=ptp_, P (P+ + Po) =P+p. 

Because 0' lowers N and raises M, and because 
K = ~(N + M) and L = - M on ~ _, it follows that, when 
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applied to vectors in ~_, 0' lowers L by one unit and com­
mutes with K. Therefore 

LuP _ = uP _(L - 1), KuP _ = uP _K, (2.8) 

which can be verified directly from (2.1) and (2.3)-(2.5). 
Similarly, 

LpP+ =pP+(L -1), KpP+ =pP+K. (2.9) 

Noting further than any lowering operator for L must vanish 
on ~o' where L has its least value, we therefore identify 

A. = /(K,L) pP + + g(K,L )uP _ (2.10) 

as the general form of the operator we seek which lowers L 
by one unit while commuting with K. In (2.10), the func­
tions/andg are arbitrary at this stage. The Hermitian conju­
gate operator A. t, which raises L by one unit and commutes 
with K, is then 

A. t = P + p"tj(K,L)t + P _utg(K,L)t 

=/(K,L - 1)t pt(P + + Po) 

+ g(K,L - 1) tu t (Po + P _), (2.11 ) 

using the shifting properties of P + P t and P _ut, and the rela­
tions (2.7). 

The 0(2) scalar (01)2 + (02)2( = 2pu) commutes 
with M (and hence with L) and lowers N by two units; it 
therefore lowers K by one unit, according to ( 1.5). The most 
general operator with these shifting properties for K and L is 
then 

v = h(K,L) Po', (2.12) 

where h is arbitrary. The conjugate operator, which raises K 
by one unit and commutes with L, is 

vt = utpth(K,L)t = h(K - 1,L)t ptut . (2.13) 

We now choose the functions/, g, and h so as to make as 
simple as possible the commutation and other relations 
amongst A., A. t, v, and vt , and arrive at the expressions 

v= (K +L + 1)-1/2pu, vt =ptut(K +L + 1)-1/2, 

A. = [(L + 1 )/(K + L + 1)] 1/2( pP + + uP _), (2.14) 

A. t = (P + pt + P _ut ) [(L + 1 )/(K + L + 1)] 1/2. 

It can be checked that these operators satisfy not only 

Kv = v(K - 1), Kvt = vt(K + 1), 

[L,v] = 0 = [L,vt ], 

LA. =A.(L - 1), LA. t =A. t(L + 1), 

[K,A. ] = 0 = [K,A. t], 

but also 

[V,A.] = [v,A. t] = [vt,A.] = [vt,A. t] =0, 

vtv=K, vvt=K+1, [v,vt] =1, 

A. tA. = L + Q, A.A. t = L + 1 + Po, 

[A.,A. t] = 1 + Po - Q, 

where 

Q= (K + 1)-I(p +ptuP _ + P _ut pP +). 

(2.15 ) 

(2.16) 

(2.17) 

This operator Q is nonzero only on vectors that are eigenvec­
tors of L with I = 1. (It interchanges any vector correspond-

Bracken, McAnally, and Odundun 398 



                                                                                                                                    

ing to m = ± 1 with a vector corresponding to m = + 1.) 
It follows that A and A + satisfy boson relations on that part 
of.\) spanned by eigenvectors of K and L with 1> 1: that they 
do not satisfy such relations on all of.\) is associated with the 
fact that the common eigenvectors of K and L are nondegen­
erate for 1 = 0, but doubly degenerate for 1> O. The expres­
sions (2.14) are determined from (2.10)-(2.13), up to uni­
tary transformations, by the relations (2.16). 

The structure of the operators (2.14) is better appreciat­
ed if one considers their action on a familiar basis for .\), 
provided by the common eigenvectors Ir,s) of the operators 
ptp[ = !(N + M)] and O'tO'[ = !(N - M)]. These vectors 
are given by 

Ir,s) = [r!s!]-I/;!(pt)'(O't)'IO), r,s = 0,1,2, ... , (2.18) 

where 10) is the normalized vector corresponding to the os­
cillator ground state, satisfying 

plO) = 0'10) = o. (2.19) 

The vectors I r,s) with r > s span .\) +, those with r = s 
span .\)0' and those with r < s span .\) _. It follows from the 
definitions given above that, if r > s, 

N Ir,s) = (r + s) Ir,s), K Ir,s) = sir,s), 

L Ir,s) =Mlr,s) = (r-s)lr,s), 

P +Ir,s) = Ir,s), P _Ir,s) = Po I r,s) = 0, 

vlr,s) = sl/21r - 1,s - 1), 

vtlr,s) = (s + 1) 1/21r + 1,s + 1), 

A Ir,s) = (r - s) 1/21r - 1,s), 

A tlr,s) = (r - s + 1) 1/21r + 1,s), 

while, ifr<s, 

(2.20) 

co 

Iz,~) = L Cn Ir,s) 
r.s=O 

(3.2) 

Then, given the action ofv as in (2.20)-(2.22) and the orth­
ogonality of the vectors Ir,s), the first of Eqs. (3.1) yields 

ZCn = (s+ 1)1/2c'+is+i> O";s<r, 

ZCrr = (r+ 1)1/2C'+I'+I' O";r, 

ZC,s = (r + 1) 1/2C,+ Is+ I' O";r<s. 

Similarly, the second of Eqs. (3.1) yields 

~c,s = (r-s+ 1)1/2c'+ls' O";s<r, 

(3.3 ) 

~Crr =C,+I, +Crr + l , O";r, (3.4) 

~crs = (s-r+ 1)1/2Crs+I' O";r<s. 

Equations (3.3) and (3.4) are straightforward to solve and 
give, if ~ =1=0 and Z are any complex numbers 

c,s =az'~'-S[s!(r-s)!]-1/2, O";s<r< 00, 

(3.5) 

C,s = p z,~s- '[r!(s - r)!] -112, O";r<s < 00, 

where a and P may vary arbitrarily with Z and ~, but are 
independent of rand s. The special case ~ = 0 gives, for any 
complexz, 

C,+I,= -crr + 1 =yz'[r!]-I,2, O";r<oo, 

Crr =8z'[r!]-1/2, O";r< 00, 

with y and 8 arbitrary. In this case 

c,s = 0, Ir - sl > 1. 

Thus we have, if ~ =1=0, 

Iz,~) =a L z'~'-S[s!(r-s)!]-1/2Ir,s) 
O<;s<;, 

(3.6) 

(3.7) 

N Ir,s) = (r + s) Ir,s) , K Ir,s) = rlr,s), 

L Ir,s) = - M Ir,s) = (s - r) Ir,s), 

P_lr,s) = Ir,s), P+lr,s) = Po 1 r,s) =0, 

vlr,s) = r l/2 1r - 1,s - 1), (2.21) + P L z'~S-'[r!(s - r)!] -112lr,s), (3.8) 

vtlr,s) = (r+ 1)1/2Ir+ 1,s+ 1), 

Alr,s) = (s-r) 1/2 Ir,s-1), 

A tlr,s) = (s-r+ 1) 1/2 Ir ,s+ 1). 

Finally, if r = s, 

N Ir,r) = 2rlr,r), K Ir,r) = rlr,r), 

L Ir,r) = M Ir,r) = 0, 

Polr,r) = Ir,r), P + Ir,r) = P _Ir,r) = 0, 

vlr,r) = rl/21r - 1,r - 1), 

vtlr,r) = (r+ 1)1I2Ir+ 1,r+ 1), 

Alr,r) = 0, A tlr,r) = Ir + 1,r) + Ir,r + 1). 

(2.22) 

III. EIGENVECTORS OF THE LOWERING OPERATORS 

We now define CAM states as common eigenvectors 
Iz,~ ) of the lowering operators v and A, 

vlz,~) =zlz,~), Alz,~) =~Iz,~), (3.1) 

and we seek each such vector in the form 
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o<;,<;s 

and, if~= 0, 

Iz,O) = y f z'[r!] -1/2( Ir + 1,r) - Ir,r + 1) 
,=0 

+8 f z'[r!]- 1/2 Ir,r). (3.9) 
,=0 

The appearance of two arbitrary constants in the expres­
sion for Iz,~ ), whether or not ~ = 0, indicates that some op­
erator other than v and A can be diagonalized on these vec­
tors in order to complete their specification. Setting first P 
and y, and then a and y, equal to zero we may define 

Iz,~, +) =A L z'~'-S[s!(r-s)!]-1/2Ir,s), 
o<;s<;, 

(3.10) 
Iz,~, - ) = B L z'~s- '[r!(s - r)!] - 1/2 Ir,s), 

o<;,<;s 

whether or not ~ = o. (Then Iz,O, + ) = Iz,O, - ) = Iz,O).) 
It can then be seen from Eqs. (2.20 )-( 2.22) that, in addition 
to Eqs. (3.1), these vectors satisfy 

P:r: Iz,~, ±) = o. (3.11) 
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Despite the fact that no vector of the form (3.9) with r#O 
appears in the set (3.10), we shall see that this set is in fact . 
overcomplete, and that the states Iz,; ± ) have properties 
which justify their identification as the natural CAM states 
for the two-dimensional oscillator. The values of A and B in 
(3.10) are determined (up to unimportant phases) by nor­
malization of Iz,;, ± ) to unit length, as 

A =B=exp[ _!(lzI2+ 1;12)]. (3.12) 

(Aside: As a possible procedure alternative to that lead­
ing from (3.8)-(3.9) to the vectors (3.10), we could have 
first set a = /3 in (3.8) and r = 0 in (3.9), and then 
a = - /3 and 8 = 0, in order to obtain, if; # 0, 

IZ';)even = C L z';'-S[s!(r-s)!]-1/2(lr,s) + Is,r», 
o<;s<;, 

(3.13) 

IZ';)odd =D L z';'-S[s!(r-s)!]-1/2(lr,s) -Is,r», 
o<;s<;, 

and, if;= 0, 

Iz,O)evcn = E f r[r!] - 1/2 Ir,r), 
r=O 

(3.14) 
IZ,O)odd =F f z'[r!]-1/2(lr+ 1,r) -Ir,r+ 0). 

,=0 

These vectors satisfy, in addition to Eqs. (3.1) and whether 
ornot;= 0, 

T Iz,; ) even = Iz,; ) even' 

Tlz,; )odd = -Iz,; )odd' 

where Tis the Hermitian operator, defined by 

T Ir,s) = Is,r), r,s = 0,1,2, ... , 

which interchanges the operators p and 0" of (1.8) 

TpT= 0", T= T- I
, 

and changes the sign of M 

TMT= -M. 

(3.15 ) 

(3.16) 

(3.17) 

(3.18 ) 

[In a treatment of the two-dimensional oscillator using a 
Hilbert space off unctions/ of polar variables (r,e), the oper­
ator T acts as 

T/Cr,e) =/(r, - e). ( 3.19) 

The vectors Iz,; ) even and Iz,; ) odd would then be represent­
ed by functions even and odd, respectively, in e.] The con­
stants C, D, E, and Fin (3.13)-(3.14) can be fixed by nor­
malizing the corresponding vectors, as 

C = [2 exp( IzI2)(expl; 12 + 1)] -112, 

D = [2 exp( IzI2)(expl; 12 - 1)] -112, (3.20) 

E = exp[ - !lz I2] = 21/2F. 

This alternative set of vectors, defined by (3.13), (3.14), and 
(3.20), also has interesting mathematical properties, and 
could also be considered as a set of candidate CAM states. 
However, since the angular momentum operator fzM has 
zero expectation value for all such states, as is easily checked, 
it seems that they could not provide a quasiclassical descrip­
tion of an oscillator with a nonzero angular momentum. We 
do not consider these vectors further.) 
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IV. PROPERTIES OF CAM STATES 

We shall now list some properties of the CAM states 
IZ,;,E)(E= ±) defined by (3.10) and (3.12). They may be 
compared with properties6 of the familiar CC states lu,v) 
defined by 

lu,v) =exp[ _!(luI2+ IvI2)] f u'v'[r!s!]- 1/2 Ir,s), 
r,5=0 

(4.1 ) 

for arbitrary complex u and v. These vectors lu,v) satisfy 

plu,v) = ulu,v), O"lu,v) = vlu,v), (4.2) 

and hence, by (1. 8), 

allu,v) = 2- 1/2(u + iv) lu,v) =zllu,v), 

a2Iu,v) = 2- 1/2(u - iv) lu,v) =z2Iu,v). (4.3) 

Note that the vectors (4.1) and (3.10) are quite distinct, 
except when z = O. In that special case, 

Iz = 0,;, +) = lu = ;,v = 0), 

Iz = 0,;, - ) = I u = O,v = ; ). 
(4.4) 

Because the derivations ofthe properties of the CAM states 
are quite similar to those for the three-dimensional case, as 
given in BL2, we shall omit such details. 

A. Expectation values in the state Iz,;,e) 
(.tl) =;, (.tl t) =; *, (L) = I; 12, (M) = EI; 12, 

(v)=z, (vt)=z*, (K)=lzI2, 

(H) = w(21z1 2 + I; 12 + 1). 

[In the CC state lu,v) we have 

(NI ) = IZl12 =!( lul 2 + Ivl 2 - iuv* + iu*v), 

(N2) = IZ212 = !(luI2 + Ivl 2 + iuv* - iu*v), 

(H) =w(luI2+ Iv12+ 1).] 

B. Poisson distributions 

(4.5) 

(4.6) 

The probability p(k,/) of obtaining simultaneously the 
values k and 1 for K and L in the state IZ,;,E) is given by 

p(k,/) = (lzI2k/k!)e-lzI2(lzI21/1!)e-I~12. (4.7) 

The unconditional probabilities p (k) and p (I) of obtaining 
values k for K or I for L therefore follow independent Pois­
son distributions with means Izl2 and I; 12, respectively. (In 
constrast, for the CC state lu,v), a result analogous to (4.7) 
holds instead for the probability p (n l,n2) of obtaining values 
nl' n2 on measuring NI and N 2, with Zl' Z2 [as in (4.3)] 
replacing z,;, and n I' n2 replacing k,l.) 

C. Minimum uncertainty 

Let 

v=2- 1/2 (a+ib), .tl=2- 1/2(a+i/3), (4.8) 

where a, b, a, and /3 are Hermitian. In a general state, let 
tl.a = «a2) - (a)2) 1/2, etc. Then it follows from (2.16) 
that 

tl.atl.b;;;.!, tl.atl./3;;;'!(1 + (Po) - (Q». C4.9) 

However, in the CAM state IZ,;,E), 
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!::.a!::.b= ~, (4.10) 
!::.a!::.,B=~(1 + (Po) - (Q» [=!(1 +e-I~12)]. 

The CAM states are therefore minimum uncertainty states 
fora, b, a, and,B. The equalities (4.10) do not hold in theCC 
state lu,v), which is therefore not a minimum uncertainty 
state for these variables (unless u = ° or v = 0, when the CC 
state is also a CAM state). [On the other hand, the equalities 

!::.x1!::.Pl = !Ii = !::.x2!::.p2 (4.11) 

hold in a CC state but not (unless z = 0) in a CAM state. 
The latter are not in general minimum uncertainty states for 
the Cartesian variables x and p. ] 

D. Evolution In the SchrOdlnger picture 

If the state vector l.p (t) ) of the oscillator is a CAM state 
at one time, then it is so at all subsequent times t. Thus, if 

1.p(0» = Izo,to,E), (4.12) 

then 
l.p(t) = e - iwt Iz(t),t(t),E), t>o, 

(4.13) 
z(t) = zoe - 2iwt, t(t) = toe - iwt. 

The expectation valuesz(t), t(t) of v, It then follow a trajec­
tory of the corresponding classical variables V, 1 in a "com­
plex phase space" (C X C,E). We can associate a volume of 
uncertainty !::.a!::.b!::.a!::./3 with the representative point in this 
space, subject to inequalities (4.9). When the motion pro­
ceeds through a succession of CAM states as in (4. 13), this 
volume is maintained at a constant minimal value. 

E. Uncertainty in angular momentum 

Consider a typical classical trajectory of the oscillator, 
for which the classical analogs i, p of the operators x and p 
are given by 

i = (A cos mt, B sin mt), 

P = fl-m( - A sin mt, B cos mt), 
(4.14 ) 

"'-
with A, B real and A ;;;.IB I ;;;.0. The angular momentum M 
corresponding to the operator liM) is, for this trajectory, 

M( =X1P2 -X2Pl) =fl-mAB, (4.15) 

and the classical analogs of v and It take the values 

v = ! (fl-m) 1/2(A - IB I)e - 2iwt, 

1 = (fl-mA IB I) 1/2e - iwt. 
(4.16) 

Comparison with (4.5) shows that a quasiclassical descrip­
tion of this motion is given in terms of CAM states if we take 

Zo = !(fl-m/Ii)1/2(A -IB I), to = (fl-mA IB I/Ii) 1/2, 
( 4.17) 

and choose E to match the sign of the angular momentum, or 
equivalently, from (4.15), the sign of B. (If B = 0, we must 
take to = ° and E is then meaningless; recall that 
Iz,O, + ) = Iz,O, - ).) A measure of the (constant) uncer­
tainty in the angular momentum of the quantum oscillator is 
then given by (1i!::.M) 2, and we find that 

(1i!::.M)2 = fq.i,mA IB I. (4.18) 

An alternative quasiclassical description of the motion 
(4.14) using CC states is given in terms of the state vector 
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Ix(t» = eiwt lu (t) ,v(t», 

u(t) = uoe- iwt, v(t) = voe- iwt, (4.19) 

uo =!(fl-m/Ii)I/2(A -B), vo =!(fl-m/Ii)I/2(A +B). 

In this case we find 

(4.20) 

We see that the (squared) uncertainty in the angular mo­
mentum is greater in general for the description using CC 
states than for the one using CAM states, by an amount 
!fq.i,m(A - IB I )2. (In the case ofa circular orbit,A = IB I, the 
CAM states and CC states coincide and the two descriptions 
become one.) 

F. Classical limit 

This can be treated very simply by considering at each 
time tasuccessionofstates Iz,t,E) , with Izl-- 00, It 1-- 00 and 
Ii--O in such a way that (1i)1/2Z and (1i)1/2t remain finite 
[and equal to !(fl-m)I/2(A -IB l)e- 2iwt, 

(pmA IB I) 1/2e - iwt, respectively, for the case of the typical 
orbit described by (4.14) ]. The sign of E must be chosen to 
match that of the classical angular momentum. The case of a 
circular orbit is special and corresponds always to z = 0. It is 
not difficult to check that, as the limit is approached, the 
relative uncertainties in H, K, L, M, a, b, a, and,B all go to 
zero. (In a treatment in terms of CC states, one considers 
instead a succession of states I u,v) with I u 1-- 00, I v 1-- 00, 

Ii--O, and (1i)1/2U, (1i)1/2V finite [and equal to 
! (pm) 1/2(A - B)e - iwt, !(pm) 1/2(A + B)e - iwt for the orbit 
(4.14) ].) 

G. Nonorthogonallty 

The CAM states are not mutually orthogonal. Instead, 

I (z',t ',Elz,t,E) 12 = exp( - Iz' - Zl2 - It' - t 1
2), 

( 4.21) 

I (z',t', - Elz,t,EW = exp( -Iz' _Z12 -It'12 -It 12), 

so that orthogonality is approached as Iz' - zl and It' - t I 
become large. [Similarly, for the CC states, 

l(u',v'lu,v)1 2 = exp( -Iu' - ul 2 -Iv' - vI 2).] (4.22) 

H. Overcompleteness 

The CAM states are overcomplete in S). Completeness is 
most conveniently expressed in terms of the nonunit vectors 

Iz,t,E) = exp(!lzI2 + !It 12) Iz*,t *,E), (4.23) 

as 

J (Iz,t, + ) (z,t, + I + Iz,t, - ) (z,t, - I 

- Iz,O) (z,OI )dp(z,t) = [, 
where [is the unit operator, 

dp(z,t) = (l/r) exp( - Izl2 - It 12)d 2Z d 2t, 

(4.24) 

(4.25) 

and the integrals run over all complex values of z and t. 
Let 11,6) be an arbitrary vector in S), with expansion in 

terms ofthe vectors Ir,s) of (2.18) as 
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00 

11,6) = L ¢rs Ir,s). (4.26) 
r.s=O 

Then, let 

¢(+>(z,t) = (z,t, + 11,6) = L ¢rs[s!(r-s)!]-1/2Z st r - s, 
O<;s<;r 

¢(->(Z,t) = (Z,t, - 11,6) (4.27) 

= L ¢rs[r!(s-r)!]-1/2zrt s- r, 
O.;;r.;;s 

and note that 

¢(+>(z,O) = ¢H(z,O) = ¢o(z). (4.28) 

The function ¢(E) (z,t) is entire on C X C, and satisfies 

WE) (z,t) I..;; «1,611,6» 1/2 exp!( Izl2 + It 12), (4.29) 

and 

J WE>(z,t)1 2dp< 00. (4.30) 

Furthermore, 

(1,611,6) = J (I¢(+>(z,t) 12 + I¢H(z,t) 12 - I¢o(z) 12)dp, 

(4.31) 

and 

11,6) = J (1,6(+> (z,t) Iz,t, + ) 

+ ¢(->(z,t) Iz,t, - ) - ¢o(z) Iz,O»)dp. (4.32) 

Conversely, given any pair of entire functions 
¢(E)(Z,t), € = ±, which satisfy (4.28)-(4.30), we can de­
fine a vector 11,6) inS) by (4.32), check that its squared length 
is given by (4.31), and that 

¢(E) (z,t) = (z,t,€I¢). (4.33) 

I. Reproducing kernel Hilbert space 

Equations (4.27)-(4.32) establish a 1-1 correspon­
dence between vectors in S) and pairs of functions ¢(E) (z,t). 
Accordingly, a realization of S) is provided by taking the pair 
<I>(z,t) = {¢(+>(z,t),¢(->(z,t)} as the representative of the 
abstract vector 11,6), and identifying the scalar product of two 
pairs <1>, '11 as 

(<1>,'11) = f (¢(+>(z,t)*1//+>(z,t) + ¢(->(z,t)*t/J(->(z,t) 

- ¢o(z)*t/Jo(z»)dp (4.34) 

(equal in fact to (¢It/J». In this realization of S), we find 

a a v=-, vt=z K=z-az ' az' 
(4.35) 
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This realization of S) has a reproducing kernel 

K(z',t ';z,t) = {k(z',t ';z,t),k(z',t ';z,t)}, 

k(z',t ';z,t) = exp(z'·z + t '·t), 
(4.37) 

since 

(K(z',t ,;.,. ),1,6) = 1,6 (z',t '). (4.38 ) 

v. CONCLUDING REMARKS 

We have identified CAM states for the two-dimensional 
oscillator. They have many properties in common with the 
familiar CC states, but are quite distinct from those states in 
general. The expressions (3.10) and (3.12) for the CAM 
states are of a simplicity comparable with that for the CC 
states, as in (4.1). Perhaps the most important distinguish­
ing features of the CAM states, vis-a-vis the CC states, are 
those described in IV B and IV E. We can summarize by 
saying that CAM states have special properties in relation to 
the radial and angular momentum operators K and L for the 
oscillator while CC states have similar properties in relation 
to the number operators NI and N 2• 

The CAM states could also have been called 0(2) co­
herent states for the oscillator, in that they are eigenvectors 
of a lowering operator for the 0(2) invariant L. [In con­
trast, the CC states could be called SO(2) coherent states, 
being eigenvectors of a lowering operator for the SO (2) in­
variant M.] However, the names "0(2) coherent states" 
and "CAM states" are both deficient to the extent that they 
do not reflect the fact that a lowering operator for the radial 
quantum number K is also diagonalized on these states. This 
is an important feature, associated with the fact that the two­
dimensional oscillator has a radial as well as a rotational 
degree of freedom. Even in the two-dimensional case it is not 
a trivial matter to find suitable commuting lowering opera­
tors for the radial and angular momentum quantum 
numbers k and I, as in Sec. II. If this feature is overlooked, 
then the CAM states defined here (and those for the three­
dimensional oscillator, defined in BL2) can easily be con­
fused with those defined by many others3 for systems, such 
as the rigid rotor, which do have only rotational degrees of 
freedom. This potential for confusion is compounded by the 
fact that the Schwinger boson calculus is often used to pro­
vide a convenient realization of the SO(2) < SO(3) group 
for such systems. 

Bhaumik et al. 7 have defined "charged" coherent states, 
also different from CC states, for the two-dimensional oscil­
lator. Their states are, however, also quite distinct from the 
CAM states defined here. In our notation (with their a and b 
replaced by our p and 0'), their states are eigenvectors of M 
andpO' ( = [K + L + 1] 1/2V ). They are therefore labeled by 
a definite charge q (an integer, equal to our m) and a com­
plex number S (essentially) equivalent to our z in (3.1) and 
(3.10), whereas a CAM state is labeled by two complex 
numbers. From the point of view of Ref. 7, a CAM state does 
not have a definite charge (though it does have a definite 
charge sign); rather, the probability of obtaining a given 
charge in such a state follows a Poisson distribution. 
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An alternative method to get exact solutions of the single-band time-dependent Schrodinger 
equation for an electron in a spatially periodic one-dimensional potential in the presence of a 
uniform electric field is presented. 

I. INTRODUCTION 
In a recent paper Luban 1 has presented an exact solution 

for a single-band time-dependent Schrodinger equation for 
an electron in a one-dimensional periodic solid in the pres­
ence of a constant uniform electric field. The technique of 
solution used by this author consists of mapping the Schro­
dinger equation of the problem to the exact solvable prob­
lem, in the eikonal approximation, of a quantum planar ro­
tor subject to an arbitrary periodic time-dependent external 
potential. 

In this paper we will propose an alternative method by 
treating the problem in a more direct way. In fact, in Ref. 1 it 
has been shown that the time-dependent Schrodinger equa­
tion of the relevant problem can be reduced to a differential 
difference equation. We will use a solution technique pro­
posed by us in Ref. 2 to give an exact solution in terms of a 
combination of Bessel functions. 

The Hamiltonian considered in Ref. 1 is 
A A 

H(x,t) = Ho(x,t) + esx, (1) 

where Ho is an Hermitian operator, spatially periodic with 
period a(Ho(x + a,t) = Ho(x,t»). The electron charge is e 
and S is the magnitude of the electric field. The wave func­
tion can be expanded in terms of orthonormal Wannier func­
tions; according to Ref. 1 we write '" in the single band ap­
proximation as 

"" ",(x,t) = L In (t) (xln,l), (2) 
n= - 00 

where lis the band index and (xln,l) = rp/ (x - na) is a set of 
Wannier functions satisfying the condition 

L+",,"" dx rpr(x - na)rp/(x - n'a) = o/,/,on,n" (3) 

In the single-band approximation we replace the Hamilto­
nian Eq. (1) with the new operator 

r:::::' + 00 A 

H/ = L (n,lIH In',l)In,l) (n',l I· (4) 
n.n' = - 00 

All the temporal behavior of the ",-function is contained in 
the time-dependent coefficients In (t) which have been 
shown to satisfy the following set of coupled homogeneous 
equations (see Ref. 1 for further comments): 

. din "" 
1 - = nln + L {VnIn + n' + V _ nIn _ n' }, (5) 

dr n'=1 

0) Pennanent address: Quantum Institute, University of California, Santa 
Barbara, California 93106, 

b) Pennanent address: Instituto Nazionale di Fisica Nucleare, Napoli, Italy 
and Dipartimento di Fisica, Universita di Salerno, Salerno, Italy, 

where 
A 

r = t /To, ro = fzl(eas) , Vn, = (OIH In')rolfz. (6) 

II. GENERAL PROCEDURES 

We will deal with Eq. (5) following a rather direct 
method which is an immediate generalization of the tech­
nique developed in Ref. 2. 

As a first step, it is convenient to introduce the new 
function Cn (r) = In (r)e - inT thus getting 

dC "" 
i __ n = L (.o.n'Cn+n, +.o._n'Cn_ n,), (7) 

dr n'=1 

with .o.n' = Vn,e-in'T. 
The solution ofEq. (7) can be found straightforwardly. 

We introduce the "Hamiltonian" operator 

Tcr) = f [.o.n' (E-)n' +.o._n,(E+)n'], (8) 
n'= 1 

where (E ± )n' is a shifting operator defined as 
(E ± )n'ln) = In ± n'). The time evolution of the states 
driven by Eq. (8) can be found by solving the equation for 
the evolution operator, namely 

A 

. dU A A A A 

1-= T(r)U, U(O) = 1. 
dr 

Finally, Cn (r) can be easily obtained as 

Cn(r) = (nIUIO). 

(9) 

( 10) 

The solution of Eq. (9) can be immediately obtained since 
the operators E ± are commuting and therefore there is no 
problem with time ordering. We find 

U(r) = IT e-iLn,(T)(E-ln'e-iL_n,(Tl(E+ln' (11) 
n'= 1 

where L n, (r) = f~dr'Vn' (r')e-in'T'. The evaluation of the 
scalar product in Eq. (10) is straightforward, indeed we 
easily get 

"" "" "" L r
, LS , 

Cn(r) = II L L (-i)'+s-~-~on,n'(S_rl' 
n'=ls=Or=O r. s. 

(12) 

We can now writeln (r) in a closed form, recalling the series 
expansion of the Bessel function of first kind, i.e., 

(
x)n "" (_ )k(xI2)2k 

In(x) = - L, " 
2 k=O k.(n+k). 

(13) 

thus we get 
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(14) 

We must note that Eq. (14) is relevant to the initial condi­
tions!.. (0) = 6n•o• For the more general casein (0) we find 

+ 00 _ 

In(r) = L /;(0)!.._1(7")· (15) 
1= - 00 

If the Hamiltonian Eq. (1) only contains near-neighbors 
interaction,3 then 

(16) 

We easily get for In 

In(r) = (_i)ne-in"'1I2Jn(2Vl([sin(7"/2)]I~». (17) 

In this paper we have presented an alternative method to get 
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exact solutions of the single-band time-dependent Schro­
dinger equation in the presence of a uniform electric field. 
The method is based on the technique developed by the auth­
ors to get solutions of the Raman-Nath-type equations.2 
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Stationary, rotating Kaluza-Klein black hole solutions are studied in the case of vanishing 
electric charge. It is shown that in this case the field equations decouple and consist of the 
vacuum Ernst equations and the Laplace equation for the scalar (dilaton) field. The regular, 
electrically neutral, rotating Kaluza-Klein black hole is described uniquely by the trivial 
embedding of the Kerr metric in the five-dimensional space-time. 

I. INTRODUCTION 

The five-dimensional Einstein gravity according to Ka­
luza and Klein l leads to a unified theory of gravity, electro­
magnetism, and a scalar field when the compact extra di­
mension representing the U ( 1) gauge group is not visible. 
The vacuum four-dimensional Einstein and Einstein-Max­
well equations possess a number of physically important so­
lutions like the stationary, rotating Kerr and Kerr-Newman 
black holes which were proved to be the unique stationary 
equilibrium states of black holes.2

•
3 In the Kaluza-Klein the­

ory new solutions are arising like the topologically nontrivial 
Kaluza-Klein magnetic monopoles4

•5 corresponding to the 
twisted U ( 1) bundles representing five-dimensional space­
times. One should expect therefore that the presence of a 
scalar field will modify the four-dimensional black hole solu­
tions. Black hole solutions for the Kaluza-Klein theory are 
known only for the spherically symmetric case.6-1O It seems 
interesting to explore the stationary, rotating Kaluza-Klein 
black hole solutions. One may also ask if the no-hair conjec­
ture is true for the Kaluza-Klein black holes. One should 
expect that the Kaluza-Klein black holes are characterized 
completely by four parameters, the mass M, the angular mo­
mentum J, the electric charge Q, and the scalar charge ~, 
which seems not to be independent from the other three pa­
rameters. 1O Before attempting to prove the uniqueness 
theorem (or no-hair lemma) for Kaluza-Klein black holes 
one should first study the exact solutions describing them. 

We will study the uncharged black holes, i.e., Q = 0 
case, where the electromagnetic field Aa is assumed to be 
zero. The five-dimensional metric is "static" with respect to 
the Killing vector a I ax5 = a I at/!. It is also a stationary met­
ric. The stationary Einstein-Maxwell equations possess a 
hidden symmetry group3 which is represented nonlinearly 
and is isomorphic to the pseudounitary group SU (2,1). As it 
is well known, this property of the field equations is related 
to the fact that the Einstein-Maxwell action for stationary 
fields can be dimensionally reduced to the action describing 
three-dimensional gravity coupled to the nonlinear sigma 
model on the hyperbolic Kiihler symmetric space 
SU(2,1)/S(U(2) xU(1») (see Ref. 3). The fact that the di­
mensionally reduced action contains a part describing a sig­
ma model turned out to be crucial in proving black hole 
uniqueness theorems.3 Of course, this is the case because 
during dimensional reduction of the Einstein-Hilbert La­
grangian the sigma model Lagrangian emerges as a rule, 

with the scalar fields parametrizing a coset symmetric 
space. II The scalar fields correspond to degrees of freedom 
related to invisible extra dimensions (forming a torus). The 
hidden symmetry group of the dimensionally reduced action 
is a noncompact one and the coset space is always hyperbo­
lic. Maisonl2 has shown that the stationary Kaluza-Klein 
fields possess the hidden symmetry group SL(3,R). The 
field equations in this case are equivalent to a sigma model 
on the hyperbolic symmetric space SL(3,R)/SO(3). The 
five scalar fields parametrizing the SL(3,R)/SO(3) coset 
space correspond to two complex Ernst potentials, the gravi­
tational and the electromagnetic ones, and to a real scalar 
field. Looking for the Kaluza-Klein black hole solutions we 
will use the sigma model form of the field equations. 

In Sec. II of this paper we will discuss the Geroch for­
mulation of the field equations for the stationary Kaluza­
Klein theory. We will show that the field equations in the 
case when the electromagnetic field vanishes decouple and 
they consist of the vacuum Ernst equations and the Laplace 
equation for the scalar field. This fact considerably simplifies 
the analysis and allows one to find the rotating Kaluza­
Klein black hole solution. In Sec. III we will construct the 
metric describing the rotating Kaluza-Klein black hole so­
lution. We will show that the solution is nonsingular only 
when the scalar charge vanishes. This result could be antici­
pated on the basis of the fact that black holes cannot have 
scalar "hair." The regular, electrically neutral, rotating Ka­
luza-Klein black hole is described by the trivial embedding 
of the four-dimensional Kerr solution in the five-dimension­
al space-time, i.e., it is a trivial product metric of a circle with 
the Kerr space-time. Using this observation it is easy to show 
that this is the unique electrically neutral, rotating Kaluza­
Klein black hole. 

II. STATIONARY KALUZA-KLEIN FIELDS 

In this section we shall present the Geroch formula­
tion I2

•
13 of the stationary Kaluza-Klein theory. We will also 

discuss the axisymmetric fields. We will assume that the 
metric gab' a,b = 1, ... ,5 of signature ( -, +, +, +, + ) 
satisfies the five-dimensional Einstein equations and admits 
two commuting Killing vectors 5~' A = 1,2: 51 =alat, 
52 = a lax5 = a lat/!, and that the projection from the five­
dimensional space-time manifold M onto the space S of or­
bits of the Killing vectors induces a smooth manifold struc­
ture on S. This is always true unless the isometry group has 
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fixed points. Introducing the matrix A. AB defined by 

A.AB =gabS~S~' (2.1 ) 

and its inverse A. AB, we can define the projection operator on 
the tangent space to S, 

h a
b = {jab _A.ABS~SBb' 

and the metric on S, 

hab = ha chb dgcd ' 

(2.2) 

(2.3) 

The metric gab is described completely by the geometrical 
objects on S: h ab ,). AB and the "twists" W Aa 

(2.4 ) 

which are curl-free V[aWAb 1 = o because of the vacuum Ein­
stein's equations Rab = 0, and can be locally expressed as 
W Aa = Va W A . One can show that Rab = 0 is equivalent to the 
following equations on S (Ref. 12): 

(3)R ab (Y) = iTr(A. -IDaA.A. -IDbA.) 

+ ir-2Da rDb r + !r-IDaWTA. -IDbw, (2.5) 

DaDaA. = DaA.A. -IDaA. - r-IDawDawT, (2.6) 

DaDaw = DaA.A. -IDaw + r-IDarDaw, (2.7) 

where A. is the 2X2 matriXA.AB with nonvanishing determi­
nant r = det A. and w is a column two-vector w = (w A ). The 
covariant derivative operator Dais the one compatible with 
the conformaHy rescaled three-metric Yab = rhab' Equa­
tions (2.6) and (2.7) can be written as the sigma model 
equations for a 3 X 3 matrix X (Ref. 12), 

( 
r-I - r-IwT ) 

X= -r-Iw A.+r-IwwT ' 

with the properties 

XT = X, det X = 1. 

The equations for a sigma model are 

DaJa = 0, 

where 

Ja = DaXX- I. 

(2.8) 

(2.9) 

(2.10) 

From conditions (2.8) and (2.9) we can see that X trans­
forms as a covariant, second-rank tensor under SL(3,R). 
Moreover a matrix satisfying (2.9) can be decomposed as 

X =A TA, detA = 1, AESL(3,R). (2.11) 

It is easy to see that the left SL(3,R) translationA ....... A' = hA 
leaves X unchanged if h Th = I, or hESO( 3). In other words 
there is a one-to-one correspondence beteween X and ele­
ments of the coset symmetric space SL (3,R) /SO( 3 ). Equa­
tion (2.10) describes the nonlinear sigma model on the sym­
metric space SL(3,R)/SO(3). 

In the case of the vanishing electromagnetic field 
W2 = 0, so we set WI = wand the field equations (2.6) and 
(2.7) simplify considerably. The five-dimensional metric 
can be written then in the form 

dr = e4> dt/l + A.(dt - w d¢)2 

- A. -Ie - 4> [e4-t, dx~ + e4-t' dX; + p2 diP]. (2.12) 

From the form (2.12) of the five-dimensional metric we 
have A. 11 = A., ..1.22 = e4>,A.12 = 0, and the matriXA.AB isdiag-
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onal. In the axisymmetric case a / a¢ is a Killing vector and 
- p2 is the determinant of the matrix of scalar products of 
the three Killing vectors (a / aJ/J,a / at,a / a¢ ). It can be seen 
from (2.5) thatp satisfies the Laplace equation on the two­
dimensional space of orbits of three Killing vectors. Equa­
tions (2.6) and (2.7) reduce to 

A.DaDaA. = D aA.DaA. - e - 4>DawDaw, 

A.DaDaw = 2D aA.Daw +A.D a<1>Daw, 

DaDa<1> =0. 

(2.13 ) 

(2.14 ) 

(2.15) 

These equations are similar to the vacuum Ernst equations 14 

for which we know many solutions. It turns out that by re­
scalingA. one can reduce (2.13) and (2.14) to theform of the 
Ernst equations. Let A. = Ff, where F is a solution of 

(2.16) 

At this point we observe that F' = PFa is also a solution of 
(2.16) for arbitrary a,/3 =1= 0: this corresponds to the symme­
try of the Laplace equation satisfied by In F: In F -a In F 
+ Inp. Using (2.16) we get from (2.13) and (2.14) 

F 2(fD aDJ-D"/DJ) = - e-4>D awDaw, (2.17) 

F(fDaDaw - W"/Daw) = F(2F- ID aF + Da<1»Daw. 

(2.18 ) 

One can easily see that when F = e - 4>/2 thenl and w satisfy 
the Ernst equation for a complex potential E = 1 + iw, 

(2.19) 

Now we observe that when <1> = 0, or F = 1, then the 
field equations reduce to the vacuum four-dimensional Ein­
stein equations. Equation (2.19) has a very simple solution 
describing the Kerr black hole. Therefore if we take for E the 
Ernst potential of the Kerr solution and for <1> the simplest 
monopole solution of the Laplace equation then we will au­
tomatically obtain a Kaluza-Klein solution which in the 
limit of vanishing scalar charge describes the vacuum Kerr 
black hole. We expect this solution to describe a genuine 
rotating Kaluza-Klein black hole. 

The five-dimensional metric can be written in a new 
form, 

ds2 = e4> difi + e - 4>12 [f(dt - w d¢)2 

_ 1 - I (e21-" dx~ + e2l-" dx~ + p2 d¢2] 

= e4> dt/i + e - 4>12 (4)ga{3 dxa dx/3, (2.20) 

where the four-dimensional metric (4)ga{3 is regular on and 
outside the event horizon of a black hole solution. In order to 
reconstruct the metric (2.20) from the Ernst potential E and 
the scalar field <1> one has to solve Eq. (2.5), which in the 
present case has the form 

(3)R ab (y) =!/-2(J,al.b +W,aW.b) +i<1>,a<1>,b' (2.21) 

We also need the relation between the twist wand the metric 
coefficient w: 

W,2 =p-IeI-" -1-',..1. 2e4>w.3, (2.22a) 

W,3 = -p- IeI-',-I-"A. 2e4>w,2' (2.22b) 

which after rescaling A. = e - 4>/21 has the same form as in the 
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4-D vacuum case, 

(d,2 = P -lei" - I"'f2W,3' 

(d = -p- IeI',-I",1'2W • 
,3 J ,2 

(2.23a) 

(2.23b) 

When we take the Ernst potential E of the Kerr solution then 
W will be the same as in the Kerr metric. The presence of the 
scalar field <I> has the effect of changing the four-dimensional 
metric (4)gaP only through the change in J-L 2J.L3 with respect to 
their vacuum form. 

III. ROTATING KALUZA-KLEIN BLACK HOLE 
SOLUTION 

We are looking for the axisymmetric black hole solution 
to Eqs, (2.15), (2.19), and (2.21), where we define the Ka­
luza-Klein black hole solution in the standard way, i.e., we 
assume that the metric (4)gaP has a regular event horizon and 
symmetry axis, and it is asymptotically flat. We assume that 
the event horizon is the Killing horizon spanned by the Kill­
ing vectors a latanda la,p. The event horizon is a null hyper­
surface given by the equation IS 

N(X2,x3) =0, (4)gaPN,aN,p=0. (3.1) 

This leads to the condition on N 

e2(I",-I"')(N,,)2+ (N,(J)2=0, (3.2) 

wherex2 = r,x3 = e. FromEq. (3.2) we obtain the equation 
of the event horizon 

e2(I",-I",) = a(r) = O. (3.3) 

Thefunctionpvanisheson the event horizon!lt"whena = 0 
because the horizon is a fixed set for the vector field 
a lat + fiHa la,p, where fiH is the angular velocity of the 
horizon. We may put 

p = a l
/
2H(e). (3.4) 

Then the Laplace equation for p gives 

!a,rr +H-IH.(J() =0, (3.5) 

with the solution 

a(r) = r - 2mr + a2
, H(e) = sin e, (3.6) 

for some constants m and a. The harmonic conjugate func­
tions z and p have the form 

p = a l
/

2sin e, z = (r - m)cos e. (3.7) 

It is convenient to introduce the ellipsoidal coordinates 1], J-L 
because the solutions describing black holes have a very sim­
ple form in terms of these coordinates 

1] = K-1(r - m), J-L = cos e, ~ = m2 - a2. (3.8) 

The coordinate range for 1] and J-L is 1]E [ 1, 00 ], J-LE [ - 1, 1 ]. In 
this coordinate system, a, p, and z have the form 

a = ~(1]2 - I), p = K(1]2 - 1)1/2(1_ J-L2)1/2, 

z = K1]J-L. (3.9) 

The horizon position is now at 1] = 1, the axis at 
J-L = ± 1, and spatial infinity at 1] = 00. In ellipsodial co­
ordinates, the field equations become 

/ [( (1]2 - I)E,'1 l,'1 + ((1 - J-L2)E,I" l,I"] 

= ('Tl- 1)~'1 + (1-J-L2)~I'" (3.10) 
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(3.11 ) 

The boundary condition on E as 1]- 00 is E- - 1, which 
corresponds to asymptotic flatness of the metric. This sug­
gests the change of variables 

5 = (1 - E)/(1 + E), E = (1- 5)/(1 + 5), (3.12) 

where 5 satisfies the equation 

(3.13) 

The Kerr solution to the Ernst equation (3.13) has a surpris­
ingly simple form 

5=P1]+iqJ-L, (3.14) 

where p2 + q2 = 1. 
Now we have to find an appropriate solution for the 

Kaluza-Klein scalar field <I> with the boundary condition 
<I> - 0 as 1] - 00 • If <I> depends only on one arbitrary constant, 
i.e., the scalar charge l:, then <I> must be a function of1] only. 
The solution ofEq. (3.11) with the correct boundary condi­
tion has the form 

(3.15 ) 

Then <I> has the asymptotic form as r- 00, <I>-cKlr, where 
CK is proportional to the scalar charge l:. The presence of the 
scalar field <I> will have only an effect on the two-metric on 
the space of orbits of the Killing vectors a I at and a I a,p. In 
order to calculate the two-metric on the space of orbits of the 
Killing vectors it is convenient to work in a "conformal 
gauge" 

ds(~) =e2"'dx~ +e21"'dx~ =e2Y(dp2+dr). (3.16) 

The remaining field equations (2.21) simplify considerably 
in the conformal gauge 

r,p =p(Gpp -Gzz )' 

r,z = 2pRpz' 

where 

G - G = 1/-2(/2 _/2 + (d2 _ (d2 ) pp zz2 ,p ,z ,p,z 

(3.17a) 

(3.17b) 

+ i(<I>~ - <I>~), (3.18a) 

Rpz =!/-2(/,p/z + (d,p(d,z) +i<l>,p<l>,z' (3.18b) 

Using Eqs. (3.12), (3.14), (3.15), (3.17), and (3.18) one 
obtains 

(3.19) 

From Eqs. (2.23a) and (2.23b) one can also calculate (d, 

W = 2Kqp-1 (1 - J-L2)(pJ-L + 1 )(p21]2 + q2J-L2 - I) -I. 
(3.20) 

Observing that the constraint p2 + q2 = 1 is easily solved by 
P = Kim, q = aim one has Kqp-I = a. The four-dimension­
al metric (4)gap looks like the slightly modified Kerr metric. 
The only difference is that the scale factor e

2y of the two­
dimensional metric on the space of orbits of a I at and a I a,p is 
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modified by the presence of the scalar field 

,rr = ., e r\ 
( 

')')2 _ 1 )3C>/16 2 

",2 _ J.t2 
(3.21) 

where irk stand for a scale factor of the Kerr metric. The 
multiplicative factor vanishes on the event horizon when the 
scalar charge is nonvanishing. The effect of the scalar charge 
is to produce a curvature singularity on the even horizon K. 
The regularity of the event horizon K and the boundedness 
of 4> on K implies that the scalar charge l: (or c) must 
vanish identically. We conclude therefore that the only ac­
ceptable regular electrically neutral Kaluza-Klein black 
hole is the trivially embedded Kerr black hole in five dimen­
sions. The metric describing such a black hole is a product 
metric on SiX M k' where M k is the Kerr space-time. It is 
quite easy to extend the standard argument of uniqueness 
(and no hair) theorems to the case of electrically neutral 
Kaluza-Klein black holes, and show that the product metric 
of the Kerr metric with the metric on the circle is the unique 
electrically neutral rotating Kaluza-Klein black hole solu­
tion. The regular Kaluza-Klein black hole solution with 
nonzero scalar charge is necessarily electrically charged. 
The proof of uniqueness, once the boundary conditions for 
the fields 4>, J, and w on the space of orbits of the Killing 
vectors are given, uses the ordinary Green's identity to show 
that 4>=0 is the only possible solution for the scalar field, 
and the generalized Green's identity3 to show uniqueness for 
f and w, which in fact reduces to the analogous question for 
ordinary four-dimensional general relativity. Details of the 
proof and a generalization to charged rotating black holes 
will be given elsewhere. 16 

To conclude, we will remark that all our arguments can 
be trivially extended to a particular class of higher-dimen­
sional Kaluza-Klein theories, where the internal manifold is 
a d-dimensional torus Td. Ifwe assume again the presence of 
a stationary Killing vector S 1 = a fat and a Killing vector 
Sa = a fat/? for each of the internal dimensions, and the 
metric ansatz 

d 

dr= L e$(al(dt/?)2+ A(dt- wdfP)2 
a=l 
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(where for simplicity we are taking a unit radius for all inter­
nal dimensions, but this does not affect our conclusions), 
then each scalar field 4> (a) will satisfy an uncoupled Laplace 
equation and, rescaling A = FJ, with 

d 
F= II e-$(al

12, 

a=l 

E = f +;w will satisfy the Ernst equation (2.19). The re­
maining equations for J.t2 and J.t3' solved in the conformal 
gauge, again tell us that, to get a regular solution on the 
horizon, we must impose that all scalar charges associated 
with the extra dimensions vanish, and the only solutions we 
obtain are trivial metric products of Kerr space-time with a 
d-dimensional torus Td. 
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Imperfect fluid sources to the Schwarzschild exterior solution are studied under the 
assumption that the metric coefficients goo and gIl of the interior solution satisfy the relation 
goo gil = - 1. It was found that the core of such a distribution is gravitationally repulsive 
provided the energy density is positive. 

I. INTRODUCTION 

The coefficients goo and gIl of the Schwarzschild exteri­
or solution have the interesting property that in curvature 
coordinates they satisfy the relation goo gIl = - 1. This fact 
motivates one to study the assumption that this relation also 
is valid within the matter distribution. Tiwari, Rao, and 
Kanakamedala I showed (among other things) that in the 
case in which the interior is filled with perfect fluid, this 
assumption leads to the vanishing of the density and pressure 
identically, i.e., there exists no interior solution. This means 
that the assumption goo gIl = - 1 is incompatible with the 
assumption of perfect fluid. 

In this work we investigate the relation in the case in 
which the interior is filled with imperfect fluid. First, we will 
show that in this case there exist sources to the Schwarzs­
child exterior metric. Second, we will prove that the gravita­
tional mass is negative in the central region of such sources. 
Third, we will exhibit a specific model which illustrates the 
results. 

II. THEORY 

Let us then consider a static and spherically symmetric 
gravitational field. In curvature coordinates, the associated 
line element reads 

ds2 = eV dt 2 - e< dr2 - r2(d(} 2 + sin2 
() dfji) , (1) 

where v and A are functions of r only. 
The Einstein field equations corresponding to this line 

element can be written as 

dTl v' 0 I 2 2 I 
--=- (To - T I ) +- (T2 - T I ), 
dr 2 r 

(2) 

(3) 

(4) 

(5) 

The gravitational mass inside a sphere of "radius" r is 
given by the Tolman-Whittaker formula, viz., 

Ma(r) = 417' f (Tg - Tl - n - T~ )r2e(v+Il)/2 dr. 

(6) 

a) Postal address: Apartado 2816. Caracas IOWA. Venezuela. 

We assume that the matter distribution extends to radius roo 
Hence the exterior space-time is described by the Schwarzs­
child metric 

ds2 = (1 - 2M /r)dt 2 - (1 - 2M /r) -I dr2 

(7) 

where M is the total gravitational mass inside the sphere, 
viz., M = Ma(ro). 

Necessary and sufficient conditions for matching the 
metrics (1) and (7) are given by the continuity of the first 
and second fundamental form across ro, viz., 

eV(ro ) = e-A(ro) = 1 - 2M /r
o

, 

rov' (ro) = (2M /ro)( 1 - 2M /ro) - 1, 

Eq. (3) then shows that on the boundary T: = O. 

(8) 

(9) 

We now assume the relation goo gil = - e(v+ll) = - 1 
to be valid within the distribution. Then from Eqs. (3) and 
(4) we find 

Tg=T:. (10) 

The converse is also true, viz., if Tg = T 1 then from Eqs. 
(3), (4), (8), (9) it follows that goo gIl = - 1. 

Now substituting Eq. (10) into Eq. (2) and using the 
boundary conditions we find 

l
ro (TI - T2) 

T o _ 2 1 2 d 
0- r. 

r r 
(11) 

This equation shows that if a specific relation between the 
stresses is given a priori, then the source will be fully deter­
mined. In particular, the energy momentum tensor vanishes 
everywhere only when Tl = n (perfect fluid). This equa­
tion also indicates that the energy density Tg will decrease 
monotonically outward provided Tg > Ti. 

For the configurations under study the gravitational 
mass inside r, as given by Eq. (6), is 

(12) 

Since at the center of the distribution all physical quantities 
must be finite, it follows from Eq. (11) that (T 1 - T i ) 
should vanish at least as rapidly as r when r--.O. Hence 
Tg = T: ;::::;;Ti near the center. Equation (12) then shows 
that if Tg > 0 then the gravitational mass is negative in the 
central region. Consequently, for Tg > 0 the core of the 
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sphere is gravitationally repulsive in the sense that a free 
particle will be accelerated away from this region. 2 

Let us now give an explicit solution to the set of Eqs. 
(2 )-( 5), (10), and (11). With this aim we assume the fol­
lowing relation between the stresses: 

Tl-n=K 2r(1-rlro), (13) 

where K 2 is a constant. Using the field equations and the 
boundary conditions we obtain the solution as follows: 

eV = e- A = 1 - (E/4)v2(35 + 15v4 
- 42v2

), (14) 

Tg = T: = (105EI321Tro) (1 - V
2

)2, (15) 

(16) 

where v=.rlro and E=.M Iro. 
The above solution has the following properties. 
(i) The energy density Tg is positive and decreases 

monotonically outward. Furthermore, Tg = T: and 
Tg;;;.n = T~. 

(ii) The metric coefficients eV and e" are positive 
throughout the matter for MS, 0.438ro. 

(iii) Atthe center Tg = T: = n = n > 0, and at the 
boundary Tg = T: = Ti = n = O. 

(iv) The red shift (from a point in the sphere to infinity) 
is maximum at r;:::::0.792ro rather than at the center. 

(v) The gravitational mass inside r 

MG(r) = (M/4)v3 (84v2 -45v4 -35), (17) 

is negative for r S, 0.792r o. 

(vi) The mass function m (r) defined by Eq. (4) is posi­
tive at all points within the distribution. 

III. CONCLUSION 

We conclude from this work that (a) the necessary and 
sufficient condition for googll = - 1 is T: = Tg; (b) if 
T: = Tg, then all physical quantities depend on the "degree 
of imperfection" of the fluid and vanish for perfect fluid; (c) 
if T: = Tg and Tg > 0, then the central region of the sphere 
is gravitationally repulsive. 

Concerning the solution presented here it could serve as 
initial (or final) configuration in the evolution scenario and 
it could be interesting to investigate the time evolution of 
such models where there exist gravitational repulsion. 

We would like to finish with the following remarks. 
( 1) The energy momentum tensor of a viscous fluid sat-
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isfies the relation googll = - 1 (and consequently 
Tg = Tl ). In fact, for a viscous fluid 

(18) 

where p and p are the density and pressure of the fluid, re­
spectively, uP is the four velocity (upup = 1),1] is the coeffi­
cient of viscosity, and u~ is the shear tensor which satisfies 

(19) 

fromEqs. (18) and (19) and using T~ = T~ = Oweobtain 
(we recall that u l #0 otherwise upv = 0) 

Tg = T: =p. (20) 

Thus we see that the central region of any viscous static fluid 
sphere which satisfies the regularity conditions is gravita­
tionally repulsive. 

(2) The relation googll = - 1 has already been used 
for perfect fluid spheres with charge, and it was shown by 
Gr0n2 and Gautreau3 that such spheres also give rise to gra­
vitational repulsion. 

(3) The gravitational repulsion in these models 1-3 is a 
consequence of the violation of the "strong energy condi­
tion" [(Tpv - gpvT 12) Wpwv;;;.O where WI' is any time­
like vector] which requires that gravity is always an attrac­
tive force (for details see Hawking and Ellis4

). As it is 
known, this condition is violated in a number of situations 
(see, for example, Refs. 5-10). 

IR. N. Tiwari, J. R. Rao, and R. R. Kanakamedala, Phys. Rev. D 30, 489 
(1984). 

20. Gr0n, Phys. Rev. D 31,2129 (1985). 
lR. Gautreau, Phys. Rev. D 31, 1860 (1985). 
4S. W. Hawking and G. F. R. Ellis, The Large Scale Structure o/Spacetime 
(Cambridge U. P., London, 1973). 

sG. L. Murphy, Phys. Rev. D 8, 4231 (1973). 
6p. N. Baaklini, Phys. Lett. A 66,357 (1978). 
7L. Parker and S. A. Fulling, Phys. Rev. D 7, 2357 (1973). 
"F. J. Tipler, Phys. Rev. D 17, 2521 (1978). 
9yu. A. Be1etsky, Preprint ITP-83-148E of Academy of Sciences of the 
Ukrainian S. S. R., Institute for Theoretical Physics, 1983. 

I<>yU. A. Be1etsky, Preprint ITF-84-7P, Academy of Sciences of the Ukrai­
nian S. S. R., Institute for Theoretical Physics 1984 (in Russian). 

J. Ponce de LeOn 411 



                                                                                                                                    

The Green's function of a slab of a diatomic Montroll-Potts crystal 
Paul Mazur 
Rutgers University, Camden, New Jersey 08102 

Robert H. Barron 
Stockton State College, Pomona, New Jersey 08240 

(Received 18 June 1986; accepted for publication 15 October 1986) 

Using the Dyson equation repeatedly, starting with the Green's function for the infinite 
medium, the Green's function for the semi-infinite medium and finally the Green's function for 
a slab of a diatomic NaCI-type crystal using the Montroll-Potts model of nearest-neighbor 
central and noncentral forces are obtained. 

I. INTRODUCTION 

The model of a crystal popularized by Montroll and 
Potts1 has had a long and useful history. There seem to be 
prevalent philosophies among theoretical physicists when 
solving real physical problems. One view is that one should 
start with the exact equations of motion and then make ap­
proximations as required as one works analytically towards 
the final solution. One disadvantage of this method is that 
the character of the solution may be related very intimately, 
but in an unknown manner, to the approximations made in 
the course of arriving at the solution. The other view is that 
one tries to approximately model the real problem in the 
beginning in such a way that the analysis carries all the way 
through without any further approximations. The solution 
may then reveal characteristics one might deduce must carry 
over to the solution of the real problem and, thereby, open up 
new vistas. This second attitude or philosophy seemed to be 
the one that guided Montroll throughout his illustrious sci­
entific career. An outstanding example of this attitude was 
Montroll's exact calculation of the frequency distribution 
for a simple model of a two-dimensional harmonic lattice, 
for which he obtained log singularities.2 van Hove3 later 
showed that the log singularities were not due to the special 
model that Montroll had chosen but were due to the fact that 
the frequency versus wave vector relationship had math­
ematical critical points which, in turn, were due to the fact 
that the frequency was a periodic function of the wave vector 
K. 

The model, now called the Montroll-Potts model, 
seems to be still alive. Recently, Dobrzynski et al. 4 have used 
it to calculate the exact Green's function for a superlattice. 

One knows that the model is not useful for the calcula­
tion of some properties of interest. For example, the model 
does not yield Rayleigh (surface) waves. 

Our plan is to first calculate the Green's function for the 
infinite lattice and then use the Dyson equation twice to 
eventually obtain the slab Green's function. A detailed de­
scription of the model will be found in Sec. II. 

In Sec. II, as an application of the infinite lattice Green's 
function to the calculation of the mean-square displace­
ments of each of the two kinds of atoms in an NaCl-type 
lattice, we show that both mean-square displacements ap­
proach the same value as the temperature increases. To show 
this we had to use a symmetry property of the frequency 
distribution function for our particular mode. But it is gener­
ally known that the high-temperature limit is the classical 
limit and in this limit two different atoms, irrespective of 

their masses, will have the same mean-square displacements 
if the potential energy functions connecting each atom to its 
neighbors are identical. It is a little peculiar that we had to 
use a symmetry property of the distribution function to 
prove this. In the Appendix, we show this classical limit in 
the case of a two-atom crystal as an example. 

II. CALCULATION 

To establish notation we first determine the Green's 
function for the infinite lattice. Our crystal is diatomic of the 
NaCI-type structure and we assume central and noncentral 
forces between nearest neighbors only. The central and non­
central force constants are taken to be equal ( = {3). The 
atomic positions are designated by three integers, I, m, and n. 
The atoms of mass Ml are located at the positions where the 
sum 1+ m + n is even. Atoms of mass M2 are located at 
positions where this sum is odd. 

The equations of motion of the two kinds of atoms are 
given by 

M1uI,m,n = {3 [uI,m,n + 1 + UI,m,n - I + UI,m + I,n 

+ UI,m-I,n + UI+ I,m,n + uI-I,m,n 

- 6u I,m,n ] , I + m + n even, ( 1 ) 

M 2uI,m,n = {3 [UI,m,n + I + UI,m,n - I + uI,m + I,n 

+ UI,m-I,n + UI+ I,m,n + uI-I,m,n 

- 6Ul,m,n]' 1+ m + n odd. (2) 

The quantities uI,m,n are the displacements of the 
I,m,nth atoms in the x direction from their equilibrium posi­
tions. There are similar sets of equations for displacements in 
they andz directions. The matrix whose eigenvalues are the 
frequencies can be made Hermitian if we renormalize the 
displacements right at the beginning. 

We set 

uI,m,n = VI,m,n/~MI for 1+ m + n even, (3) 

and 

UI,m,n = VI,m,nl..[jl; for 1+ m + n odd. (4) 

To obtain the frequencies of vibration of the lattice we 
assume the following form for VI,m,n: 

V -A iwt i,p/ i,pkm i"'", 
I,m,n - e e e e , I+m +n even, (5) 

= Beiwtei,p/ ei,pkm/",,,,, 1+ m + n odd. (6) 

Here A and B are constants to be determined. 
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Substituting Eqs. (3 )-(6) into (1) and (2), we obtain, 
after a slight simplification, two equations for A, B, and (Ji: 

The solutions of (7) and (8) are 

= 3P(_1 +_1 ) ±N(_1 __ 1 )2 
MI M2 MI M2 

+ ~ (cos l/Jj + cos l/Jk + cos l/JI )2, 
MIM2 

= 2{3(cos l/Jj + cos l/Jk + cos l/J/) B. 

~MIM2 ( + W2± - 6{3IM1) 

For convenience, we can set B = 1. 

(9) 

Our normalized eigenvectors for the infinite lattice can 
now be written as 

{V± (I,+)} = ITN23 1 {a± (I,+)e,l''''}. (10) 
\j N 3 Jl + C 2

± 

where 

1= (l,m,n), += (l/Jj,l/Jk,l/J/)' 
and 

a ± (1,+) = 1, if 1+ m + n is odd, 

2{3(cos l/Jj + cos l/Jk + cos l/J/) 
= C ± = ----'--------

~MIMz[ - w2± + (6rIMI)] 

if 1 + m + n is even. 
We now form the sum 

G1,1'(E) = L V(I,+) V*(I',+) . 
'" E - w

2
± (+) 

(11 ) 

The sum in Eq. ( 11) takes different forms depending on 
whether 1,1' refer toMI or M2 atoms. We write out explicitly 
the three possible cases. 

Case I: (I and I' both refer to MI atoms; 1+ m + n, 
I' + m' + n' both even) 

(12) 

Case II: (I and l' both refer to M2 atoms; 1 + m + n, 
l' + m' + n' both odd) 

Case IlL' (I corresponds to MI atom, l' to M2 atom) 

G1,I' _ GM,M, __ ~ +e 2 
{ 

C ;(1- n·", 

o - 0 - N 3 i- -(-I-+~C--'-2+-)(-E---w~2+-) 

+ -C ei(l-I'l-+ } 

(1 + C 2_ )(E - w2_) • 
(14) 

Let us rewrite the sums again using the following nota­
tions: 

a
2 

= 3p (_1 __ 1 ), 
Ml M2 

b1 = 2{3 (cos l/Jj + cos l/Jk + cos l/JI), 
~MIM2 

a
l 
= E _ 3P (_1_ + _1_) , 

MI M2 

S=Ja~+bf. 

In the above notations, the three sums in Eqs. (12)-(14) 
simplify to 

Gt!,M, = ~ ~ ei""(I-n{ b1 } , (15) 
N 3 i- -af +a~ +bi 

GM,M2=~ ~ ei+-(I-n{ a1 +a2 } (16) 
o N3.£. 2 2 2' 

'" al -a2 -b 1 

GM'M2=~~ei+-(I-n{ a1 -a2 }. (17) 
o N3.£. 2 2 b2 '" a l -a2 - 1 

As a check on these Green's functions, we have used Eq. 
(8.6.49) in the book by Maradudin et al.5 to calculate the 
mean square displacement of an Ml and M2 atom. The re­
sults are 

2 Ii [i g(W2) [M2w
2 - 6{3 ]dw2 

(u x
) M, = 2(N + 1 )3 0 [M1M2w

2 - 3P(M1 + M2)]w tanh ( /iw/2kn ' 
(18) 

and 

(u2 = Ii [i g(W2) [M1w
2 - 6{3 ]dw2 

x) M, 2(N + 1)3 0 [M1M 2w
2 - 3P(M1 + M2)]w tanh(/iw/2kT) . 

(19) 
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InEqs. (18) and (19),g(a?)da?isthenumberofnor­
mal modes between (ji and w2 + dw2. Equations (18) and 
( 19) were first derived by Mazur.6 In the classical limit 
(T -+ 00 ), we should have that 

(U;)M, = (U;)M,. (20) 

Explicitly, we have for T -+ 00 inEqs. (18) and (19) that 

kT (,"i g(W2) [M w2 - 6{3 ]dw2 

(u;) M, ~ (N + 1 )3 Jo [M
1
M2w

2 _ ;P(M
1 
+ M2) ]w2 ' 

(21 ) 

and 

kT [i g(W2) [M w2 - 6{3 ]dw2 
(u2) _ 2. 

x M, - (N + 1)3 0 [M1M2w
2 _ 3P(M1 + M2) ]w2 

(22) 

It is not obvious by inspection that the integrals in Eqs. 
(21) and (22) are equal to each other. However, by using a 
symmetry property of g( ( 2

), we can demonstrate the equa­
lity of the two expressions. It is well known that the normal 
modes of a diatomic crystal separate themselves into two 
groups or bands separated by a gap. [It is easy to show in our 
case thatg(w2

) is (symmetrical about the middle of the gap 
when) plotted as a function of w2

.] We now subtract Eq. 
(21) from Eq. (22) to obtain 

(U;)M, - (U;)M, 

= kT g(w )(M2 - I) w . (23) l "'i 2 Md 2 

(N + 1)3 0 [MzM2W2 - 3P(M2 + M 1)] 

Since also the widths of the acoustical and optical bands 
are equal in units of w2

, we have that 

(24) 

where W L is the highest frequency in the optical band. 
Changing the variable of integration from w 2 to (w') 2 = wi 
- w2

, Eq. (23) becomes 

- (a l +a2) 

2~ai - a~p 

with 

and 

a + = P i[P( cos ¢k + cos ¢s) - ~~ - a~ ] , 

a_ =Pi[P(COS¢k +cos¢s) +~ai -a~]. 
It is clearfrom Eqs. (16) and (17) that 

GM,M, = (a 1 - a2) GM,M,. 
a l +a2 

(U;)M, - (U;)M, 
kT 

(N + 1)3 

£ g(wi - (W')2)( - d(W')2)(M2 - M 1 ) 

X 2 2 • 
"'i [MzMI(WL - (w') )-3P(M2+M1)] 

(25) 
Using Eq. (24) and the fact that wi = 6P( lIM1 + 11M2), 
Eq. (25) becomes 

(U;)M, - (U;)M, 
+kT 

(N + 1)3 

X ro g(W2)( - d(2)(M2 - M 1) 

Li [ - MzM1W2 + 3P (M2 + M 1)] 
kT 

(N + 1)3 

xIi g(w2)dw2(M2 -M1) 
(26) 

o [M2M1W2 - 3P(M2 + M 1)] . 

Comparing Eq. (26) with Eq. (23), we see immediately 
that 

(U;)M, - (U;)M, =0. (27) 
The three-dimensional sums in Eqs. (15 )-( 17) can be 

replaced by 3-D integrals and one of the integrations can be 
carried out explicitly. We now do this for each of the sums. 
First, we note that cf> = (21TjIN, 21Tk IN, 21TsIN). Any two 
of the I, m, and n can be taken to go from 1 to N. The other 
goes from 1 to N 12. Each band contains N 3/2 frequencies 
and both bands together contain N 3 frequencies, which is 
correct. Eventually we want to consider a slab with I num­
bering the layers. Weletjgofrom 1 toN 12. We sum overjin 
Eqs. (15)-(17). We let () = 21Tj1N and () goes from 0 to 1T 
and .l:J"~~ = (N /21T)f;{ d(). First we calculate GM,M" 

GM,M, = -N~ L i Pk(m-m'l/4>,(n-n'lgM,M'(¢k'¢s)' 
1T k,s 

(28) 
with 

(29) 

(30) 

Note that when M1 = M2, we have a2 = 0 and we obtain the obvious result. 
Finally, for GM,M, , we have 
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G M M '" it/>k(m - m') it/>,(n - n') 1 111' blei8(1- /')d() 
, '=--£...e e 

1TN2 k,s 0 - ai + a~ + b i 

=_I_ Leit/>k(m-m')it/>,(n-n') [d()ei8(1-I') [ 1 + 1 ] 

21TN2 k,s 0 b l + ~ai - a~ b l - ~ai - a~ 

__ 1_ '" it/>k(m - m') it/>,(n - n'),.M,M,(A. A.) 
- 2£...e e 5 'f'k''f's' 

21TN k,s 
(31) 

with 

gM,M,(tPk'tPs) = [ a+1T (~ 1 - a
2
+ - 1 )1

1

_

1

'1 + a_1T (~ 1 - a
2
_ 

~1-a~ a+ ~1-a~ a_ 
-1 Y-l'] . 

It is not immediately clear that G M,M, = G M,M, when 
MI = M 2• In fact, it is not true. To see this, note that 
1+ m + n is even and I' + m' + n' is odd in GM,M>, while 
these sums are both even or both odd for G M,M, and G M,M>, 
respectively. Now 1 and l' appear in the G 's through the com­
binations I-I', m - m', and n - n'. But these quantities in 
G M,M, can never have the same values of these quantities 
when they occur in the expressions for G M,M, and G M,M,. SO 
simply setting M2 = MI in G M,M, does not give G M,M,. 

We now proceed to obtain the Green's functions for the 
semi-infinite medium. The equations of motion, (1) and 
(2), can be written in terms of the reduced displacements, 
V(i,m,n), as a matrix equation: 

L Do(i,m,n,I',m',n')v(/'m'n') = 0, 
[',m'.n' 

with 

Do(/,m,n,I'm'n') 

= (: - {U2)811,8mm,8nn' - f3 (81+ 1,1'8mm.8nn, 
I ~MIM2 

+ 81_1,I,8mm·8nn· + 811 ·8m+ l,m,8nn· 

+ 811 , 8m -1,m· 8nn· + 811 ,8mm·8m + I,m' 

+ 81/'8mm,8n -I,n')' 1+ m + n even. (32) 

SubstituteMI for M2 andM2 for MI inEq. (32) to obtain the 
matrix Do, for I + m + n odd. 

We now break the bonds between the layers labeled 
n = 0 and n = l. The new dynamical matrix, Os, is given by 

Ds (/,m,n,/ ',m',n') 

= Do(/m,n,I',m',n') + Vs(/m,n,I',m',n'), (33) 

Gs (/,m,n,I'm'n') 

= Go(/,m,n,I',m',n') -

["'m-n'" 

/" + m" even 

j 

where 

Vs (l,m,n,I',m',n') 

and 

Vs (/,m,n,I',m',n') 

f3 f3 = - -Ol/,Omm,OOnOOn' - -oU,Dmm,OtnOln' 
M2 MI 

f3 + {8118mm,8In80n' 
~MIM2 

+ 811,8mm,80n8In'}' 1+ m is odd. (35) 

The Green's function for our semi-infinite medium, Gs ' 

is now determined through Dysons' equation, 

Gs = Go - GoVsGs' (36) 

Writing out Eq. (36) explicitly, we obtain 

Gs (i,m,n,I' ,m' ,n') 

= Go(i,m,n,I',m',n') - L Go(i,m,n,I"m"n") 
["m"n" 

/"'m"'n'" 

x Vs (i "m"n" Imn)Gs (imnl'm'n'). (37) 

The form of Vs changes depending on whether I" + m" 
is even or odd. Substituting for Vs its two forms we expand 
Eq.(37) to obtain 

+ f3 {81"1~8m"m~8In"80n- +81"1-8m"m~80n"8In~}]Gs(lmnl'm'n')} 
~MIM2 

L Go(/,m,n,l",m",n") [ - f3 81"1~8m"m-80n"80n~ - L81"1~8m"m-8In"8In-
I"m"n" M2 MI 
["'m"'n-

I"+m"odd 

(38) 
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In Eq. (38), we can sum over I"', mIll, nIH, and n" immediately to give 

Gs(/,m,n,I',m',n') = Go(l,m,n,l,m',n') 

I~" [Go(/,m,n,1 ",m",O)Gs(/ ",m",O,I',m',n') (-;t) 
/" + mIt even 

-(!J Go(/,m,n,l ",m" ,n" ,1)Gs (l" ,m",l,I'm'n') 

+ f3 {Go(/,m,n,l " ,n", 1)Gs (/" ,m" ,0,1 ',m',n') + Go(/,m,n,1 ",m" ,0)Gs (/" ,m", 1,1 ',m',n')}] 
~MIM2 

L [ - L Go(/,m,n,1 ",m",O)Gs (/ ",m",O',m',n') 
I"m" M2 

I" +m" odd 

- L GO(/,m,n,1 ",m",l)Gs (/ ",m",l,I',m',n') + f3 {GO(/,m,n,1 ",m",l)Gs(/ ",m",O,I',m',n') 
Ml ~~~ 

+ GO(/,m,n,l " ,m" ,0)Gs (/" ,m",l,I',m',n')}] . (39) 

The Go's appearing in Eq. (39) are either G M,M" G M2M2, or G M,M2 depending on the oddness or evenness of 1+ m + nand 
I' + m' + n'. First, we take I + m + nandi' + m' + n'botheven. Since we still have periodicity in thex andy directions after 
breaking ofthe bond we can Fourier analyze Gs (l,m,n,1 ',m',n'). Let 
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G (I I"') 1 ~ i¢>x(/-I') i¢>y(m-m'),.MM(", '" 'E) s ,m,n, ,m,n = -2 £., e e ISs' , '!'x''!'y,n,n, , 
N ¢>x'Py 

G (I I"') 1 ~ i¢>x(/-I') i¢>y(m-m'),.M,M,(", '" 'E) o ,m,n, ,m,n = -2 £.,e e ISo '!'x',!,y,n,n, . 
N ¢>x¢>y 

We also need the following factors which appear in Eq. (39), with I" + m": 

Go (/,m,n,1 ",m",O) = ~2 L i¢>x(/-I')ei¢>y(m-m')~,M'(n,O), 
¢>x</'y 

G (I" m" 01' m' n') =_1_ ~ ei¢>x(/"-I)ei¢>y(m"-m'),.M,M'(On') 
s , "" N 2 ~ 5s' , 

¢>x,¢>y 

Go (/,m,n,1 ",m",l) = ~2 L ei¢>x(/-I")i¢>y(m-m")~,M2(n,1), 
¢>x,¢>y 

G (I" m" 11' m' n') =_1_ ~ ei¢>x(/"-I')ei¢>y!m"-m'),.M2M'(1 n') 
s , "" N 2 ~ 5s . , . 

¢>x'¢>Y 
Substituting Eqs, (40) and (41a)-( 41d) into Eq. (39), we obtain 

[ 
i"(/-I') i"(m-m") i"'(/"-I') i"'(m"-m') e 'Yx e 'Yy e 'Yx e 'Yy 

I" + mIt even 

X 0 s + 0 s _ ~,M2(n,1)~,M'(0,n') { ~'M'(n,Q)~'M'(O,n') ~,M'(n,1)~2M'(1,n') 1 

Ml ~ ~Ml~ 

-~ ~'M'(n,O)~,M'(1,n')}] + :4 L [i¢>x(/-I')i¢>y(m-m")i¢>~(/" -I')ei¢>;(m" -m') 
M)M2 ¢>x'¢>y 

~~,<P; 
I",m" 

I" +m"odd 
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We now show that the sums over I" and m" demand that t/Jx = t/J~ and t/Jy = t/J;. We must show that 

f.: eil
" (tPx - tP~) = 0 unless t/Jx = t/J~. 

I" + mIt is even 

Note that as we do the sum over I ", m" is considered to be a constant (odd integer or even integer). If we choose m" as an odd 
integer, then I " must go over the odd integers from 1 toN. On the other hand, if we choose m" as an even integer, then I" goes 
over the even integers from 1 to N. 

First, let N be even and m" be even. Then 
N /2 ei411j/N _ ei(41rj/N)(N /2 + \) L e 121rjl "/N = L el21rJ2n/N = = 0, 

I" even n = 1 1 _ ei41r
j/N 

Neven 

unlessj = 0 or t/Jx = t/J~. Since ~f= 1 e,21r
j
l"/N = 0, when I" goes over all integers from 1 to Nwe can conclude that 

L e,211j1"/N = 0 also unless t/Jx = t/J~. 
I" odd 
Neven 

Setting t/Jx = t/J~ and t/Jy = t/J; and equating Fourier coefficients on both sides of Eq. (42), we get 

~,M'(n,n') =gf/,M'(n,n') +! ~ gf/,M'(n,O)~,M'(O,n') 
1 

+! ~ gf/,M2(n,1)~2M'(1,n') - k gf/,M2(n,1)~,M'(O,n') 
2 2 M1M2 

k gf/,M, (n,0)~2M, (l,n') + ! ¥'M2(n,0)~2M' (O,n') 
2 M1M2 2 

+! ~ gf/,M'(n,l)~,M'(1,n') - k gf/,M'(n,I)~2M'(O,n') 
1 2 M1M2 

f3 gf/,M2(n,0)~,M'(1,n'). 
2~M1M2 

(43) 

In gs' we want both nand n' to be greater than or equal to 1. Because of this criterion, four terms in the above equation are 
dropped. The above equation, therefore, simplifies to 

~,M'(n,n') =gf/,M'(n,n') + !2 gf/,M2(n,I)~2M'(1,n') + 2~1 gf/,M'(n,I)~,M'(1,n') 

f3 gf/,M'(n,Q)~2M'(1,n') _ f3 gf/,M2(n,0)~,M'(1,n'). (44) 
2~M1M2 2~M1M2 

Remember, n,n' can be any integers greater than or equal to 1. What we would like to do is to find G ~,M, (n,n') in terms of 
the Go's. But we need other equations similar to Eq.(42). We now derive the equation for G~2M'(n,n'). We start out with 
GsU,m,n,I',m',n') with I + m + n oddand/' + m' + n' even. We start with Eq. (38) again. We need to Fourier analyze the 
Green's functions again. 
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For I + m + n odd and I' + m' + n' even, we get 

GsU,m,n,I',m',n') = ~2 L eitPx(l-I')/tPy(m-m')~2M'(n,n'), 
tPxtPy 

Go{l,m,n,I",m",O) = ~2 L /tPx(l-I")eitPy(m-m")gf/2M'(n,0), fori" +m" even, 
tPxtPy 

GoU,m,n,1 ",m",O) = ~2 L eitPx(l-I")/tPy(m-m")gf/2M'(n,0), for I" + m" odd, 
tPxtPy 

Gs{l",m",O,I',m',n') = ~2 L eitPx(l"-I')eitPy(m"-m')~,M'(O,n'), fori" +m" even, 
tPxtPy 

Gs{l",m",O,I',m',n') = ~2 L eitPx(l"-I')/tPy(m"-m')~2M'(O,n'), fori" +m" odd, 
tPxtPy 

Go{l,m,n,I",m",I) = ~2 L eitPx(l-I")eitPy(m-m")gf/,M2(n,I), fori" +m" even, 
tPxtPy 
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Go(/,m,n,I",m",I) = ~2 L ei.px(l-I·)ei.py(m-m·)~,M'(n,l), fori" +m" odd, 
.p~y 

Gs(/",m",I,I',m',n') = ~2 L i.px(l·-I')i.py(m·-m')~,M'(1,n'), fori" +m" even, 
.p~y 

GsU",m",I,/',m',n') = ~2 L ei.px(l·-/')ei.py(m"-m')~,M'(1,n'), fori" +m" odd, 
.px.py 

GoU,m,n,I",m",I) = ~2 L i.px(l-I·)i.py(m-m")~,M'(n,l), fori" +m" even, 
.p~y 

Go(/,m,n,1 ",m",l) = ~2 L ei.px(l-I")ei.py(m- m·)~,M'(n,l), for I" + m"odd . 
.px.py 

Substituting the above expressions into Eq. (39), we get an equation similar to Eq. (42) and then Eq. (43), 

~,M'(n,n') =~,M'(n,n') + 2~1 ~2M'(n,D)~,M'(O,n') + 2~2 ~2M2(n,l)~2M'(1,n') 

/3 ~2M2(n,1)~2M'(O,n') _ /3 ~2M'(n,O)~2M'(1,n') 
~MIM2 2~MIM2 

+ ~ ,.M2M2(n O),.M,M, (O n') + ~ ,.M,M'(n 1),.M,M,( 1 n') 
2M2 50 , 5s , 2MI 50 , 5s , 

(45g) 

(45h) 

( 45i) 

( 45j) 

k {ggI2M'(n,l)~2M'(O,n') +~2M2(n,O)~,M'(1,n')}. (46) 
2 MIM2 

Again, since Gs is zero unless n,n'>I, we strike out four terms [Eq. (46)] and obtain 

~2M'(n,n') =~2M'(n,n') + 2~2 ~2M2(n,1)~2M'(1,n') + !I ~2M'(n,1)~,M'(1,n') 
/3 ~2M'(n,O)~2M'(1,n') _ /3 ~2M2(n,O)~,M'(1,n'). 

2~MIM2 2~MIM2 
(47) 

In Eqs.(44) and (47), we can haven = 1. When we do this we get two equations that we have to solve simultaneously for 
~2M'(1,n') and~,M'(1,n'). The equations are 

(1-~~'M'(1,I) + /3 ~'M2(1,D»)~'M'(1,n') 
2M1 2~MIM2 

+(- 2~ ~,M2(1,1) + k~'M'(1,O»)~2M'(1,n') =~,M'(1,n'), (48a) 
2 2 MIM2 

( -! ~2M'(1,1) + k ~2M2(1,O»)~'M'(1,n') 
I 2 MIM2 

+ (1- ! ~2M2(1,I) + k ~2M'(1,O)\~'M'(1,n') =~2M'(1,n'). (48b) 
2 2 MIM2 fS 

One can solve Eqs. (48) simultaneously for ~,M'(1,n') and~,M'(1,n') and substitute back into Eqs. (44) and (47). 
WhenMI =M2 =M, both Eqs. (48) give 

(1 ') go(1,n') (49) 
gs ,n = 1- (/3IM){go(1,l) -go(l,O)}' 

which is the monatomic case. 
We now repeat the arguments leading to Eqs. (48) to find determining equations for ~2M2 (n,n'). We again start with Eq. 

(39) but for the case that both I + m + n and I' + m' + n' are odd. In this case, the Fourier transformed Green's functions 
needed are the following. 

For I" + m" even, 

Gs(/,m,n,I',m',n') _~2M'(n,n'), Go(/,m,n,l ",m",O) _~2M'(n,O), 

G (I" m" 0 I'm' n') ,.M,M2(O n') 
S , '" , --+ iSs " 

Gs (/" ,m" ,1,I',m',n') _~2M,( l,n'). 
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For I" + m" odd, 

Gs(/,m,n,I'm',n') --+~2M2(n,n'), Go(/,m,n,l ",m",O) --+~2M2(n,0), 

Gs (/" ,m",O,1 ',m',n') --+~2M2(n,0), Go(/,m,n,l" ,m",1) --+~2M'(n,I), 

Gs (/" ,m" ,1,1 ',m',n') --+~IM2( l,n'). 

Equation (39) then gives, after simplification, 

~2M2(n,n') = ~2M2(n,n') + !I ~2MI(n,0)~IM2(0,n') + !2 ~2M2(n,1)~2M2(1,n') 
k ~2M2(n,I)~2M2(0,n') - k ~2M'(n,0)~2M2(I,n') + ! ~2M2(n,0)~2M2(n,0) 

2 MIM2 2 MIM2 2 

+ ! ~2M'(n,I)~,M2(1,n') - k ~2MI(n,1)~2M2(n,0) +~2M2(n,0)~,M'(1,n')}. (50) 
I 2 MIM2 

After eliminating the four terms which connect gs with the other layer we get 

~2M2(n,n') =~2M2(n,n') + 2~2 ~2M2(n,1)~2M2(1,n') + 2~1 ~2M'(n,I)~,M2(1,n') 

k ~2MI(n,0)~2M2( l,n') + ~2M2(n,0)~IM2( l,n')}. 
2 MIM2 

(51) 

We now do the case for I + m + n even and I' + m' + n' odd to obtain a second equation which can be solved simulta­
neously withEq. (51). We now give the Green's functions needed. 

For I" + m" even, 

Gs (/,m,n,1 ',m',n') --+~IM2(n,n'), Go (/,m,n,1 ",m",O) --+~,M'(n,O), 

G (I " m" 0 I'm' n') ...MIM2(0 n') 
s , '" , --+ lSs " 

Gs (/" ,m" ,1,1 ',m',n') --+~2M2( l,n). 

For I" + m" odd, 

Gs (/,m,n,I',m',n') --+~IM2(n,n'), Go (/,m,n,1 "m",O) --+~IM2(n,0), 

Gs (/" ,m" ,0,1 ',m',n') --+~2M2(n,0), Go(/,m,n,l" ,m",I) --+~,M'(n,I), 

Gs (/" ,m" ,1,1 ',m',n') --+~IM2( l,n'). 

Equation (39) then gives, after simplification, 

...MIM2(n n') = ...MIM2(n n') + L ...M,M'(n 0)...MIM2(0 n') + L...M,M'(n 1)...M2M2(1 n') 5s , 50 , 2MI 50 , 5s , 2M2 50 , 5s , 

k ~IM2(n,1)~IM2(0,n') +~,M'(n,0)~2M2(I,n')} + 2~ ~IM2(n,0)~2M2(0,n') 
2~~ 2 

k ~,M'(n,1)~2M2(n,0) + ~IM2(n,0)~IM2(1,n')} + ! ~,M'(n,I)~,M2(1,n'), (52) 
2~~ I 

and after striking out terms like gs (O,n') we obtain 

~IM2(n,n') =~IM2(n,n') + ! ~,M2(n,I)~2M2(1,n') + 2~ ~,M'(n,I)~,M2(1,n') 
2 I 

(53) 

By letting n = 1 in Eqs.(51) and (53), we can solve them simultaneously for ~IM2(1,n') and~2M2( l,n'). Rearranging 
terms we rewrite (51) and (53) as follows (after setting n = 1): 

[ 1-~ ~2M2(1,I) + k ~2M'(1,0)]~2M2(I,n') 
2 2 MIM2 

+ [-! ~2MI(1,1) + k~'M2(1,0)] ~IM2(1,n') =~2M2(1,n'), (54) 
I 2 MIM2 
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[
_L,.M,M'(II) + /3 ,.M,M'(1 0)] ,.M,M'(1 n') 

2M 
SO , f""II"II So's. , 

2 2VM)M2 

+ [1- 2~ ~,M'(1,1) + k~'M'(1,O)] ~,M'(I,n') =~,M'(I,n'). 
) 2 M)M2 

(55) 

If we let M) = M2 in Eqs. (52) and (53), either of the equations give 

(1 ') _ go(1,n') & ~ - , 
1 - (/3IM)go(1,1) + (/3IM)go(1,D) 

which is correct. We now have effectively all of the Green's functions for the semi-infinite medium written in terms of the go's. 
To finally form the slab we break the bonds between theL th layer and theL + 1st layer and use the Dyson equation again. 

As in the semi-infinite medium case, we obtain four equations relating the semi-infinite Green's functions to the slab Green's 
functions, 

(56) 

(57) 

(58) 

(59) 

InEqs. (56)-(59) we have that l<;n,n'<;L. 
UM,M'(L,n'), UM,M'(L,n'), UM,M'(L,n'), and UM,M, (L,n') on the right-hand sideofEqs. (56)-(59) are determined by 

setting n = L in the same equations. We obtain 

{ 1_L~'M'(L,L) + /3 ~,M'(L,L + 1)} UM,M'(L,n') 
2M) 2~M)M2 

+ { /3 ~,M'(L,L + 1) - ! ~'M'(L,L)} UM,M'(L,n') =~,M'(L,n'), (60) 
2~M)M2 2 

{ I_L~'M'(L,L) + /3 ~,M'(L,L + 1)} UM,M'(L,n') 
2M2 2~M)M2 

+ { k ~,M'(L,L + 1) - ! ~'M'(L'L)} UM,M'(L,n') =~,M'(L,n'), (61) 
2 M)M2 ) 

{ I _ L~,M'(L,L) + /3 ~,M'(L,L + 1)}uM,M'(L,n') 
2M2 2~M)M2 

+ { k ~,M'(L,L + 1) - 2~ ~'M'(L'L)} UM,M'(L,n') =~,M'(L,n'), (62) 
2 M)M2 ) 

{
I + /3 ~,M'(L,L + 1) _L~'M'(L,L)} UM,M'(L,n') 

2~M)M2 2M) 

+ { k ~,M'(L,L + 1) -! ~'M'(L'L)} UM,M'(L,n') =~,M'(L,n'). (63) 
2 M)M2 2 

Equations (60) and (61) can be solved simultaneously for UM,M'(L,n') and UM,M'(L,n') while Eqs.(62) and (63) can 
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be solved for U M,M, (L,n') and U M,M, (L,n'). Since all of the U 's are now known in terms of the gs 's and the gs 's are known in 
terms of the go's, we have in hand explicit expressions for the slab Green's functions. 

Solving Eqs. (60) and (61) we obtain 

UM,M'(L,n') =AIFI-DIEI ; UM,M'(L,n') = CIEI-BIFI , 
AICI - BIDI AICI - BIDI 

where 
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AI = 1-L~,M'(L,L) + (3 ~,M'(L,L + 1), 
2MI 2~MIM2 

BI = P ~,M'(L,L + 1) _L~,M'(L,L), 
2~MIM2 2M2 

C I = l-y,M'(L,L) + (3 ~,M'(L,L + 1), 
2M2 2~MIM2 

D I = P ~,M'(L,L+l)_L~,M'(L,L), 
2~MIM2 2MI 

EI = ~,M2(L.n'), 
FI = ~,M'(L,n'). 

We need the followingg;s: 

,.M,M'(L L) = ,.M,M, (L,L) + L ,.M,M2(L 1),.M2M'(1,L) + L ,.M,M'(L 1),.M,M'(1,L) 
SS ,SO 2M2 SO ,Ss 2MI SO ,Ss 

P ~,M'(L,O)~,M'(1,L) - P ~,M'(L,O)~,M'(1,L), 
2~MIM2 2~MIM2 

~,M'(L,L + 1) =~,M'(L,L + 1) - 2MP ~,M'(L,I)~,M'(1,L + 1) - ! ~,M'(L,l)~,M'(1,L + 1) 
2 I 

+ P ~,M'(L,O)~2M'(1,L + 1) + P ~,M2(L,O)~,M'(1,L + 1), 
2~MIM2 2~MIM2 

~,M'(L,L + 1) =~,M2(L,L + 1) - 2M{3 ~,M'(L,I)~2M'(1,L + 1) - ! ~,M'(L,I)~,M2(1,L + 1) 
2 I 

+ k ~,M'(L,O)~,M'(1,L) +~,M'(L,O)~2M2(1,L + I)}, 
2 MIM2 

~,M'(L,L) =~,M2(L,L) + 2~ ~,M'(L,1)~,M'(L,1) + 2M{3 ~,M'(L,I)~,M2(1,L) 
2 I 

k ~,M2(L,o)~,M'(I,L) +~,M'(L,O)~2M2(I,L)}, 
2 MIM2 

~,M'(L,L) =~,M2(L,L) + 2~2 ~2M'(L,1)~2M2(1,L) + !I ~2M'(L,1)~,M2(1,L) 
k ~2M'(L,O)~,M'(1,L) + ~,M2(L,O)~,M2(1,L)}, 

2 MIM2 

~,M2(L,L + 1) =~2M2(L,L + 1) - !2 ~2M'(L,1)~2M'(1,L + I) - !I ~,M'(L,I)~,M'(1,L + 1) 

+ k ~2M'(L,O)~,M2(1,L + 1) +~,M'(L,O)~,M2(1,L + I)}, 
2 MIM2 

~,M'(L,L) =~2M'(L,L) - 2~ ~2M'(L,1)~,M'(1,L) - 2MP ~,M'(L,1)~,M'(1,L) 
2 I 

+ k ~,M'(L.O)~2M'(1,L) +~2M'(L,O)~,M'(1,L)}, 
2 MIM2 

~,M'(L,L + 1) =~2M'(L,L + 1) + 2MP ~,M2(L,1)~,M'(l,L + 1) + ! ~,M'(L,1)~,M'(1,L + 1) 
2 I k ~,M'(L,O)~2M'(I,L) +~,M2(L,O)~,M'(I,L)}. 

2 MIM2 
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Solving Eqs. (62) and (63) for UM,M, (L,n') and 
UM,M'(L,n'), we obtain 

(64) 

(65) 

with 

A = l_L,.M,M'(LL) + /3 ,.M,M'(LL + 1) 4 2M ISs , fiII"I ISs , , 
2 2vMJM2 

B = /3 ,.M,M'(LL+ 1) _L,.M,M'(LL) 
4 fiII"I ISs' 2M ISs " 

2vMJM2 J 

C = /3 ,.M,M'(LL + 1) _L,.M,M'(LL) 
4 fiII"IlSs, 2M ISs " 

2vMJM2 2 

D = 1 + /3 ,.M,M'(L L + 1) - L ,.M,M'(L L) 
4 fiII"I ISs' 2M ISs " 

2vMJM2 J 

E4 =~,M'(L,n'), 

F4 = ~,M'(L,n'). 

We now have in hand explicitly all of the infinite lattice 
and semi-infinite lattice Green's functions to determine our 
slab Green's functions, U. Mazur and Maradudin 7 calculat­
ed analytically the root-mean square displacement of atoms 
in a slab for the monatomic case in the high-temperature 
limit. The mass dependence disappears in this limit so noth­
ing new would be obtained using the present diatomic 
Green's function. Mazur3 calculated analytically the low­
temperature specific heat for the monatomic slab. Our inten­
tion is to use a computer to calculate the low-temperature 
specific heat of a diatomic slab and (as a by-product when 
M J = M 2 ) compare also the numerical calculation with Ma­
zur's analytic result. 

APPENDIX: AN EXAMPLE OF QUANTUM TO 
CLASSICAL LIMIT PERTINENT TO EQ. (27) 

We present an elementary example illustrating a general 
principle of quantum mechanics that quantum mechanical 
results, such as, for example, the averages of dynamical 
quantities, must go to well-known classical results in certain 
limits. In the context of this paper we are thinking, in parti­
cular, of the mean-square displacements of atoms from their 
equilibrium positions in a crystal lattice. Classically, the 
mean-square displacement Xi of the ith atom from its equi­
librium position in the X direction is given by 

fxf exp [ - E(XOPi )/kT] dXJ dX2' . 'dxN dpJ dp2" 'dpN 
(xf) = ----~----------~------------~---­

Sexp[ - E(XOPi )/kT ]dxJ dx2" 'dxN dpJ dp2" 'dpN 
(AI) 

where T is the absolute temperature, Xi = (XiOYi,zi), Pi 
= (PxiOPyi,Pzi)' and E is the total energy of the lattice.The 

corresponding quantum mechanical average should become 
equal to the above classical result when T becomes large. 
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Further, if the potential energy part of E is invariant to an 
exchange of two particular atoms, then the mean-square dis­
placements of these two atoms are the same, independent of 
their individual masses. This can be seen immediately from 
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Eq. (A 1) if the potential energy part of E does not contain 
the masses, which is the case for the most useful forms of the 
crystal potential. Our model consists of two atoms 

y y y 

-vv~~ 

m M 
connected by a spring. Each atom is also anchored by a simi­
lar spring to a fixed point as seen in the diagram. Each spring 
has the same force constant y. Let u and v be the displace­
ments from equilibrium of the two masses, m and M, respec­
tively. The Lagrangian for the system is 

L = !mu2 + !M1J2 - !yu2 - !yv2 - !y(u - V)2. (A2) 

_ If hi a 2tPi + ~.ft tPl = EltPI; 
2 M 2 

E.n = (n + ~)~, tP.n (YI), 

_ If h2 a 2tP2 + a2 Yi tP2 = E2tP2 = E2tP2' 
2 aYi 2 ' 

E2n = (n + ~ )~, tP2n (Y2) . 

(A14) 

(A15) 

Our complete eigenfunctions and energies for our sys­
tem are given by 

tPmn = tP.m (YI)tP2n (Y2); Emn =E.m +E2n · (A16) 

The mean-square displacement of the m atom is given 
This Lagrangian yields the following equations of motion: by 

mu= -yu+y(u-v), (A3) 

Mli = - yv + y(u - v), (A4) 

Transforming coordinates, the Lagrangian becomes 

with u = x1{iii and v = X21{KT. 
Letting x I = A exp (imt) and X 2 = B exp (imt) , the 

equations of motion from Eq. (A5) are 

~A --y-B=m2A, 
m ~Mm 

(A6) 

---=.LA + 2y B = m2B. 
~Mm M 

(A7) 

Equations (A6) and (A7) yield two solutions form2
, which 

are 

m2+ = (yIMm){M + m + ~M2 + m2 -Mm}>O, (A8) 

m2_ = (yIMm){M+m-~M2+m2-Mm}>O, (A9) 

with 

A+ = yl..[Miii B· A = yl..[Miii B_. (AlO) 
2ylm - m2+ +, - 2ylm - m2_ 

Set B + = B _ = 1 and transforms to a new set of coordi­
nates, 

X I = A+y. + 
A_Y2 (All) 

~A 2+ + 1 ~A 2_ + 1 

X 2= YI + Y2 (A12) 
~A 2+ + 1 ~A 2_ + 1 

In these new coordinates, the Schrodinger Hamiltonian op­
erator becomes 

H= _ If{h a
2

tP +h a 2tP } + alyi + a2yi (A13) 
2 layi 2aYi 2 2' 

where ai' hi, a2, and h2 are functions of m, M, and y. The 
SchrOdinger equation gives two harmonic oscillator-type 
equations, 

423 J. Math. Phys., Vol. 28, No.2, February 1987 

(xi )mn = f f dYI dY2 tPtm (YI)t/1'n (Y2)xitP.m (Y.)tP2n (Y2) 

=A
2
+(Tt)m+ (Yi)n, 

A2++1 A2_+1 
(A17) 

with 

(A18) 

(A19) 

with 

~ ~ 
a1=-,;r-; a 2=--r-' 

As the temperature, T, goes to infinity the mean-square dis­
placement becomes 

«xi» r _ '" _ [ 2 A 2+ + 
(A + + 1)a l 

- kT, A2 ] 
(A 2_ + 1)a2 

(A20) 

with 

a
1
=L A2+ + L 1 __ y_ A+ , 

m A 2+ + 1 M A 2+ + 1 ~Mm A 2+ + 1 

A 2 1 A 
a - y - + L _ -y- -

2 - m A 2_ + 1 M A 2_ + 1 ..[Miii A 2_ + 1 ' 

A+ = [~Mm {~ _ ~_ ~M2+~-Mm}] -I, 

A_=[~Mm{~ _ ~+ ~M2+;~-Mm}]-1 
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We then have that 

- «u» = + . I 2 [ A 2+ A ~ ] 
kT (A 2+ + l)a1m (A 2_ + l)a2m 

(A2l) 

The bracket in Eq. (A21) can be shown to be equal to 4/3r 
which is independent of m and M, which is the result we 
wanted to show. 
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Physical condition for elimination of ambiguity in conditionally convergent 
lattice sums 
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Department of Physics, The Chinese University of Hong Kong, Hong Kong 

(Received 25 March 1986; accepted for pUblication 24 September 1986) 

The conditional convergence of the lattice sum defining the Madelung constant gives rise to an 
ambiguity in its value. It is shown that this ambiguity is related, through a simple and 
universal integral, to the average charge density on the crystal surface. The physically correct 
value is obtained by setting the charge density to zero. A simple and universally applicable 
formula for the Madelung constant is derived as a consequence. It consists of adding up 
dipole-dipole energies together with a nontrivial correction term. 

I. INTRODUCTION 

It is well known that the lattice sum defining the Made­
lung constant 1.2 is conditionally convergent, so that its value 
is not mathematically unique. Recently an unambiguous de­
finition has been provided using analytic continuation3 in 
which the Coulomb potential r- 1 is replaced by r - S and the 
corresponding lattice sum is investigated in the complex s 
plane, giving mathematical precision lacking in earlier 
works using direct summation.4 

The selection of one out of infinitely many possible val­
ues must correspond to some physical assumption about the 
crystal and our purpose is to complement the work on ana­
lytic continuation by addressing the question in a physical 
manner. The first observation is that real crystals are large 
but finite, so the conditional convergence for the infinite sum 
translates into the possible dependence of the corresponding 
finite sum on the shape (and size) of the crystal. We shall 
show that the shape dependence can be isolated into a simple 
integral lover the surface of the crystal. More importantly, 
the integral is universal, being independent of the details of 
the crystal structure and macroscopic, being determined only 
by the averaged surface charge density. The analysis clarifies 
not only the question of convergence (which is widely dis­
cussed in the literature 1-5 ) but also the question of conver­
gence to the physically correct value (which is quite distinct 
and in general ignored). In fact much of the early work,l-9 
done in days oflimited computational power, was concerned 
with rate of convergence, which is now increasingly irrele­
vant. In contrast, the algorithm developed here is extremely 
simple to implement. 

II. FORMALISM 

Consider a finite crystal made up of ions with charges 
± q at positions r i . The energy required to remove the ion i 

is, in units of q2, 

a = L s(i,j) , (1) 
i#i rij 

whererij = Iri -ril ands(i,j) = -l( + 1) ifthecharges 
i andj have the same (opposite) charge. 

In general it will be possible to organize the charges into 
pairs forming dipoles with separation d between the opposite 

charges. The case of NaCl-type crystals is shown in Fig. 1. 
Now 

a = lid +/3/2, (2) 

where /3 is the energy required to remove one dipole from the 
crystal. Choose the center of one dipole as the origin and let r 
be the center of another dipole. The attractive energy 
between the pair is 

U(r) = -2 +_1_+_1_. (3) 
r Ir - dl Ir + dl 

Then 

/3= L U(r) . (4) 

Next choose some R» 1 and break /3 into 
/3=/3I(R) +/32(R), where the two terms correspond to 
the sum in (4) being restricted to r < R and r> R, respective­
ly. The first sum presents no problem and in the second sum 
we expand Ir ± dl- I in powers of r- I to get 

/32(R) = 2 L SI (R) , 

where 

1#0 
I even 

l::J+l::J 

c)(+[8 
Al:JA 

(5) 

(6) 

FIG. 1. Dipole pairs in NaCI. 
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and (J is the polar angle of r, and d is assumed to be along 
+ z. Each sum in (6) is finite, since r is restricted to within 

the surface of the crystal. However for 1;;;;.4, the sum (6) is 
absolutely convergent so the upper limit may be extended to 
infinity. Moreover, S(R) = OCR - 1 + 2 ), so the sum in (5) 

is rapidly convergent. 
Any problem then lies in S2 (R). To evaluate it first con­

sider the sum between the surface r = R and another spheri­
cal surface inside the crystal at r = R " where R ' is of macro­
scopic dimensions (Fig. 2). This sum will, in general, be zero 
by symmetry of the crystal and the region of summation 
(e.g., C4 symmetry for a cubic crystal). Therefore the sum 
for S2 may start at the macroscopic distance R " and hence 
equals the following integral between r = R ' and ~: 

S2(R) =pd 2 f dV P2(C~S (J) , (7) 

where p is the average density of dipoles. The average (i.e., 
coarse-grained) value p may be used because fluctuations in 
p give a contribution proportional to the gradient of the inte­
grand, which is of order r-4, integrating to O( 1/R '), where 
R ' is macroscopic. Use the identity 

P2(COS (J) = ~(i.)2~ 
,J 2 az r 

to convert (7) to surface integrals 

1 d2 i dS A a 1 S2(R) = --p on3 --
2 R' az r 

1 d2 idS A a 1 +-p on3 --, 
2 1: az r 

(8) 

where d S in each case points away from the origin. The first 
term is readily evaluated to be (211'/3) pd 2 and we denote the 
second term as II' However, it is not strictly true (as we have 
assumed so far) that all changes can be organized into di­
poles. There are "leftover" charges at the surface (Fig. 3), 
with surface charge density q' (which consists of two-di­
mensional /5-functions representing point charges). They 
contribute an extra electric field E ' at the origin: 

FIG. 2. The mathematical surfaces Rand R ' inside the crystal surface 1:. 
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+ 

A-A A 
FIG. 3. Leftover single ions at the surface. 

E; = f dSq'i.~. 
J1: az r 

This then contributes to the potential energy /3 of the dipole 
at the origin a term/3 = E ;d. Thus a contains an extra term 
12 = !E ;d, and 

1 1 
a(~) =-+- L U(r) 

d 2 r<R 

+ LS/(R)+211'pd2+/(~), (9) 
1=4.6.... 3 

where 

I(~) =/1 +/2 

=!!.. f dS(pdon +o')i.~, 
2 J1: az r 

(10) 

in which n is the normal to ~, and we emphasize that 1 and 
hence a may depend on the shape of the crystal. 

First, q' can be replaced by its average (q') over several 
lattice distances along the surface, since the difference (due 
to fluctuations in q') contributes a term proportional to 

f dSaaap~, J1: r 
which is negligible since dS-L 2 and aaap (1/r) -L -3, 

where L» I is the size of the crystal. Second, pd 0 n is the 
average surface density of (positive) dipole ends on ~, while 
(q') is the average surface density of "leftover" charge. 
Their sum is the average surface charge q on ~. Therefore 

I(~) =!!.. f dSqi.~. (11) 
2 J1: az r 

Thus 1 depends only on the macroscopic property of the crys­
tal. Moreover, 1 is universal in that it does not depend on the 
crystal structure. 

Finally, 1 is unchanged if ~ is scaled up keeping q con­
stant. In other words 1 is independent of size; it is at most 
dependent on shape. 

The removal of the shape-dependent ambiguity is now 
achieved by the physical assumption that q = O. Incidentally 
this condition would not hold if the crystal is polarized. 

In evaluating (9), any choice of R > 1 may be used, and 
some choice of R will optimize computational efficiency. But 
since computational time is now hardly a problem, we may 
as well take R -+ 00 to obtain the extremely simple algorithm 
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1 1 ~ 2ff 
a=-+- ~ U(r) +_pd 2 

d 2 ~ 3' 
(12) 

where the infinite sum is to be performed by expanding 
spheres of radii R-+oo. Note that U(r)ex:.r- 4 at large r, 
therefore the sum is clearly convergent. Incidentally this jus­
tifies extending the sum to infinity. The rate of convergence 
is controlled by the firstremainderS4 = O(R -2). Theprac­
tical advantage of (12) is its extremely simple form and its 
universal applicability to all crystal types. 

Physically this algorithm corresponds to adding up the 
dipole-dipole interaction energies. What we have demon­
strated are two features that are nonintuitive: (a) this sum, 
which is nominally logarithmic divergent by power count­
ing, is actually convergent; and (b) however, a correction 
term (2ff/3) pd 2 is necessary. Note the difference between 
(12) and (4): the sum in (4) is afinite sum, whereas the one 
in (12) is an infinite sum performed by expanding spheres. 
The correction term is the difference between the two. Inci­
dentally, this illustrates the difference between convergence 
[ e.g., (12) without the correction term] and convergence to 
the correct value. 

As a check, we have evaluated (12) for CsCI-type crys­
tals, for which p = j, d = (1,1, I), and r = (x,y,z), where 
x,y,z are even integers (not all zero). We find 
l:U(r) = - 0.69013, so that a = 1.0177 = 1.7627/d, in 
agreement with the known value. 2 

III. DISCUSSION 

We first make explicit the connection between shape 
dependence of the finite sum and the conditional conver­
gence of the infinite sum. Consider an infinite crystal and 
perform the sum by the method of expanding l: shapes,3 i.e., 
evaluate a as 

a = a~ == lim a(kl:) , 
k_~ 

where kl: denotes the shape l: scaled up k times. Different 
choices of l: correspond to different ordering of terms, so a ~ 
is dependent on the ordering of terms if and only if a (l:) is 
dependent on l:. 

The above analysis shows that in the method of expand­
ing shapes, only those l: with u = 0 will converge to the 
correct physical value. Thus for a NaCl-type crystal, the na­
ive use of expanding spheres is inappropriate, since the aver­
age charge density on a spherical surface is nonzero. [How­
ever, the situation is salvaged if we count dipoles and include 
the correction term as in (12).] On the other hand, expand-
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ing cubes will give the correct value, since the average charge 
density on a plane is zero. 

The comparison between different expanding shapes 
has been emphasized,3 but there is one slight difference in 
detail in the present treatment. We use dipoles as units so u 
interacts with the central dipole through the electric field 
E ex:. u/r and the surface contribution is finite as L-+ 00 but 
possibly nonunique. If we use single ions as units,3 u inter­
acts with the central charge through the potential <I> ex:. l/r. 
The surface contribution therefore scales as L and would 
diverge unless u = O. 

An obvious method of direct summation is to group the 
ions into cells in such a way as to remove the leading multi­
poles.4,s In this context it has been emphasized (at least for 
CsCI-type crystals) that cells must have surface neutrality in 
order to guarantee convergence,s which is of course closely 
related to the surface neutrality of the crystal emphasized 
here. 

Another method of evaluating such lattice sums is to use 
a Fourier series,6 assuming that the potential has the same 
periodicity as the lattice-which would not be true ifthere is 
any surface charge. Thus the correct value is always based on 
the same physical condition. 

For lattice sums in two dimensions involving r- I , the 
analog of S2 would be absolutely convergent and there is no 
shape dependence. However, if the two-dimensional Cou­
lomb potential In r is used instead, then the situation would 
be essentially the same as that discussed here. 

In conclusion we have shown how the ambiguity due to 
the conditional convergence is related to the macroscopic 
boundary condition on the crystal surface and emphasized 
how the latter singles out the correct value for such lattice 
sums. A simple and universal algorithm based on adding up 
dipole-dipole interaction energies-but with a nontrivial 
correction term-has been derived. 

'von E. Madelung, Phys. Z. 19, 524 (1918). 
2Elementary accounts may be found in, e.g., C. Kittel, Introduction to Solid 
State Physics (Wiley, New York, 1953). 

3D. Borwein, J. M. Borwein, and K. F. Taylor, J. Math. Phys. 26, 2999 
(1985). 

4H. Evjen, Phys. Rev. 39, 675 (1932). 
~S. K. Roy, Can. J. Phys. 32, 509 (1954). 
6p. P. Ewald, Ann. Phys. (Leipzig) 64, 253 (1921). 
7H. Kornfield, Z. Phys. 22, 27 (1924). 
8F. C. Frank, Philos. Mag. 41, 1287 (1950). 
9J. Kanamorl, T. Morlys, K. Matizuki, and T. Nagamiya, J. Phys. Soc. Jpn. 
10,93 (1955). 
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Yang-Mills theory and the Batalin-Fradkin-Vilkovisky formalism 
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In this paper a generalized dynamical description of classical Yang-Mills theory will be 
presented. As a consequence of this work, a firm dynamical underpinning to the Batalin­
Fradkin-Vilkovisky (BFV) formalism will emerge. This in tum will supply a precise 
geometric characterization of the ghost and conjugate ghost fields. 

I. INTRODUCTION 

Local gauge invariance is used to great effect in the at­
tempts to build realistic models of the (nongravitational) 
interactions observed in nature. However, there is a techni­
cal price to pay for the usefulness of these theories since a 
consequence of the gauge invariance is that the dynamical 
content is obscured. Thus, care must be taken in both the 
classical and quantum description of such theories. 

In order to construct a covariant, unitary path integral 
for these theories, one has to use an effective Lagrangian 1 

composed of the original Yang-Mills Lagrangian, a covar­
iant gauge fixing part, and a term containing ghost and an­
tighost fields (scalar fields with fermionic statistics). The 
validity of this construction can be shown in perturbation 
theory2.3 and hence, from a pragmatic point of view, Yang­
Mills theory is well understood. 

It was noticed4
•
5 that the effective action possessed a 

new global symmetry, called Becchi-Rouet-Stora-Tyutin 
(BRST) invariance, under which the ghost field had a very 
definite transformation property. This lead many people6--13 
to speculate on the possibility of a nonperturbative under­
standing of this construction. Over the last few years, two 
well developed descriptions of the ghost fields have emerged. 
In one,8-11 the ghosts are identified with Maurer-Cartan 
forms on a suitable group, whereas in the other ap­
proach,12.13 a superspace formalism is developed in which 
the ghost field is related to a special connection on a super 
principle bundle. The usefulness of these interpretations de­
pends very much on the type of problem one wishes to solve. 
In particular, the superspace approach is the closest in spirit 
to the way ghosts are introduced into the path integral, 
whereas the Maurer-Cartan form interpretation leads to a 
powerful cohomology construction, 7.11 which in tum throws 
some light on the geometric origins of chiral anomalies (see 
also, Refs. 14 and 15). However, both approaches suffer 
from the drawbacks that they provide no greater under­
standing of the dynamical role ghosts play in Yang-Mills 
theory. Indeed, these constructions are carried out in a pure­
ly classical framework and yet they do not appear to have 
any role in our understanding of classical Yang-Mills the­
ory. Also, both approaches have difficulty incorporating the 
antighosts in a natural way. 

The classical dynamics of Yang-Mills theory is best de­
scribed within the Hamiltonian formulation. One finds that 
the local gauge invariance introduces constraints into the 
phase space and hence a generalized dynamics l6.17 must be 

a) Present address: Department of Physics and Astronomy. The University. 
Glasgow GI2 8QQ. United Kingdom. 

implemented. 
Using phase space methods, Batalin, Fradkin, and Vil­

koviskyl8.19 (BFV) developed a formalism whereby the ef­
fective Lagrangian for Yang-Mills theory could be derived 
from an effective Hamiltonian construction on a super phase 
space. There are many intriguing aspects to this work, not 
the least of which is the claim that it can be applied to theor­
ies like gravity, where the constraints are not related to any 
group action on the phase space. 

The aim of this paper is to understand the BFV con­
struction for Yang-Mills theory in terms of the generalized 
dynamics formalism developed by Dirac. 16 Thus a fully clas­
sical understanding of the phase space ghosts and conjugate 
ghosts will emerge and, as a consequence of this construc­
tion, they will automatically be supplied with both a super 
space and geometric interpretation. The precise relationship 
between these constructions and the fields in the effective 
Lagrangian will be presented in a later paper. 

The classical observables on the Yang-Mills configura­
tion space correspond to the gauge invariant function, thus 
one can use homological methods in a trivial way to describe 
them. However, lifting this construction to the phase space is 
complicated by the fact that the constraints have the effect of 
imposing only weak equations among the smooth functions. 
Thus a weak cohomology theory must be developed and we 
shall find that this construction supplies the homological 
interpretation for the phase space version of the BRST trans­
formation. 

The motivation for this work is twofold: First, we want 
to understand the content of the BFV construction when 
applied to gravity. In this theory it is well known20.21 that the 
general coordinate transformations of the space-time have a 
complicated relationship with the symmetries generated in 
the phase space. Thus, it is important to understand the anal­
ogous problem of relating the phase space BRST invariance 
with that constructed from the Hilbert action for gravity, 
especially in the light of the nontrivial measures occurring in 
the BFV approach. Obviously it is a good idea to start with 
the simpler problem found in Yang-Mills theory. Second, 
the BRST charge has been used by several authors to give 
useful insights into the quantization of constrained sys­
tems. 22.23 However, these discussions have been heuristic in 
nature and a more detailed analysis is called for. Hence the 
full content of the classical construction must be made clear. 
In particular, the weak homological interpretation seems 
well suited to the recent work on the deformation approach 
to quantization24 and the global, nonlinear quantization 
scheme.25 

The plan of this paper is as follows: In Sec. II we shall 
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present the main ideal of constrained dynamics as it applies 
to Yang-Mills theory. This will be followed, in Sec. III, with 
the weak homology construction alluded to above where the 
associated superphase space structure will be made clear. In 
the final section the dynamical content of this construction is 
presented along with various general ideas on constrained 
systems. 
II. YANG-MILLS THEORY AS A CONSTRAINED 
DYNAMICAL SYSTEM 

Let M be a given space-time with a compact spacelike 
Cauchy surface ~ and G a compact, semisimple Lie group 
with (dual) Lie algebra 9 (g*). Then the Yang-Mills fields 
on M, with structure group G, are conveniently described26 

as the space of connections associated with a principle G 
bundle over M. For the sake of simplicity, we shall only 
consider the trivial principle bundle. 

The Hamiltonian description of Yang-Mills theory is 
achieved by using the Cauchy surface ~ to foliate M. Then 
the space-time fields are projected onto this foliation in order 
to separate the dynamical quantities from the kinematical. 
As is well known, the resulting phase space description has 
constraints and a generalized dynamics is needed. 

If we are given manifolds D and B, we denote by 
or (D,B) the space of B-valued r forms on D. Then, in this 
canonical approach to Yang-Mills theory, the configuration 
space is identified with Ol(~,g), which we denote as d. 
Thus, locally AEd can be written asA = A ~ ea dXi where Xi 
are local coordinates on ~ (i = 1,2,3) and ea are a basis of 9 
(a = 1, ... ,k = dim G). 

Let [1 = OO(~,G), then this is a Lie group with Lie 
algebraE: = OO(~,g). Thereisa [1 action on d whichgen­
erates the spatial gauge transformations. Thus we have a Lie 
algebra morphism 

r: E -> Vect d (Vector fields on d) 

A-+r(A) 

such that acting on AEd 

r(A)(A) = (ViA a)ea dxi = (A ~ + C~c A r A C)ea dxi , 

(2.1) 

where A = A a(x)ea and [ea,eb] = C~b ec with C~b the 
structure constants of g. 

Since [1 acts as a gauge group on d, we known that the 
true configuration space must be identified with the space of 
orbits d = d I [1. In order for d to be a manifold one has 
to be careful about the choice offunctional spaces d and [1 
belong t026.27 and also (due to the compactness of ~) one 
needs to restrict d to the irreducible connections and re­
move the center of [1. 27 We shall assume that all these tech­
nical constructions have been carried out. Thus, [1 is taken 
to have free action on d and d is a smooth Hilbert mani­
fold. 

The true phase space is thus T * d and, in principle, the 
dynamics of Yang-Mills theory takes place on this space. 
There are, however, drawbacks to this construction since d 
is an infinite-dimensional manifold and hence T * d is not 
uniquely defined. Also d, and hence T* d, is topologically 
nontrivial27 and is thus impossible to parametrize with any 
physically relevant coordinates. These problems have limit-
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ed the usefulness of this approach. 
The most common description of constrained systems 

takes place on the phase space associated with the extended 
configuration space. So for Yang-Mills theory, we need a 
generalized dynamics on T* d. Again, since d is infinite 
dimensional, the construction of T * d is not unique. How­
ever, now there is a natural choice of cotangent bundle since 
we require the associated Cauchy problem to be well 
posed.28 This leads to the use of theL2 dual.29 Thus, we 
define (oP(~,g»)*: = OP·(~,g*) as the L2 dual of OP(~,g). 
So Ol.(~,g) is the space of smooth g*-valued vector densi­
ties on ~. The L 2-cotangent bundle of d is then 
T * d ::::: d X 'iff, where 'iff: = 0 1* (~,g*) can be regarded as 
the space of generalized electric fields. Locally 1T'E'iff can be 
written as 1T = ~ ea(a laxi) , where ea is the basis of g* dual 
toea' Here T* d comes equipped with a (weak) symplectic 
form,28 and we shall regard it as the extended phase space for 
Yang-Mills theory. 

Using standard phase techniques,30 the action of [1 on 
d can be lifted to a symplectic action on T* d, where now 
the lift of r is a map of y such that y: E -> Ham ( T * d), where 
Ham ( T * d) denotes the Hamiltonian vector fields on 
T * d. Since the [1 action on T * d is the lift of an action on 
d, an equivariant momentum mapping <I> can be construct­
ed.30 We recall that <l>EOo(T*d,E*), whereE*: 
= OO(~,g*) is the L2 dual of E, is such that given Al and 

A2EEwe have that (<I>.AI)EOo( T* d) generates the Hamil­
tonian vector field y(A I ) and 

{(<I>.AI),(<I>.A2)}P"" = (<I>,[AI.A2])' 

where 

OO(T*d): = OO(T*d,R), 

{ , }T*"" is the Poisson bracket on T* d, ( , ) denotes the 
L2 pairing between E * and E, and [ , ] is the Lie bracket on 
E. Locally we have that 

(<I>(A,1T).A) = 1 <l>aA a, 

where 

<l>a (A,1T) = ~Ii + C~b A J 1T! . (2.2) 

The momentum map <I> is central to the description of 
the constrained dynamics on T* d. The physically allowed 
dynamics is restricted to <1>-1(0) which (with the restric­
tions on d and [1 discussed above) is a first class30 subman­
ifold of T* d. The true degrees of freedom can thus be for­
mally identified with <I> -I (0) I [1. As before, this reduction 
formalism has limited use and thus we must construct a gen­
eralized dynamics on T* d that faithfully describes the true 
dynamics on <1>-1 (0)1 [1. 

On the extended configuration space d, the observables 
correspond to the gauge invariant functions. This is because 
such functions are compatible with the reduction procedure 
to the true configuration space d. Likewise, the observables 
on T * d are identified with the functions compatible with 
the projection to <I> -I (0) 1[1, i.e., those functions that are 
gauge invariant when restricted to <I> - I (0) I [1. It is tradi­
tional to call such functions weakly gauge invariant. 16 We 
consider this characterization of observables as the minimal 
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conditions compatible with the constraint formalism. The 
physical imput will often impose a richer structure on the 
observables. 

As it stands, the concept of weak invariance is too nebu­
lous to be of any practical use in developing a generalized 
dynamics on T * d. We need a more concrete realization of 
it. 

Let us consider a finite-dimensional analogy of the sym­
plectic structure associated with Yang-Mills theory. So let P 
be a finite-dimensional phase space and F a Lie group with a 
free symplectic action on P, with momentum map J. Then 
J-I(O)IFis the analogy of the Yang-Mills true degrees of 
freedom. We can write J = t/>Ja, where fa is a basis of 
!l" (F) * (the dual to the Lie algebra of F) and t/>a eno(p) are 
the constraint functions. 

The constraints impose an equivalence class structure 
on no(p) via equality when restricted to t/>a = 0, so if 
g,heno(p), then g-h(g weakly equivalent to h) if 
(g - h) I~a = ° = O. In this finite dimension situation we have 
the following result: if g - h then there exists vaen° (P) such 
that g = h + vat/> a [sketch proof: F has free action on P~ 0 
is a regular value of J - I (see Ref. 30) ~ the constraints are a 
regular sequence (see Ref. 31) in the ring Oo(P) ~they gen­
erate the ideal of functions vanishing on J - I (0) (see Ref. 
32) ]. Hence if g is weakly invariant then we can write 
{t/>a,g} = ~ t/>p, for some ~eOo(p). 

This description of weak equivalence in terms of the 
constraints is central to the Dirac analysis of constrained 
systems. For the Yang-Mills case it is not known whether 
one can always replace a weak equality with the constraints, 
due to the infinite dimensions involved. However, it is al­
ways assumed to be the case 16. 17 and thus we shall require the 
observable to be those Hen° ( T * d) such that 

{<I>a (x),H} T.-"" = V: <l>b (x) , 

for some V: eOo( T* d). (2.3) 

If HI and H2 are weakly invariant then {HI,H2} T.-"" is 
also weakly invariant and thus we have an algebra of obser­
vables. This algebra projects down to the Poisson algebra on 
<I>-I(O)/~ . 

It must be kept in mind that we are trying to develop a 
generalized dynamics on T * d and hence we do not actually 
want to implement the reduction to <I>-I(O)/~. So the de­
finition of observable is only useful if it can be made compati­
ble with the dynamical description on T*d. In particular, 
we need to understand the allowed values an observable can 
have, that is, we must specify the states of the system. We 
shall return to a discussion of the states and how they effect 
the definition of observables in the final part of this paper. 

III. OBSERVABLES AND COHOMOLOGY 

A. The construction 

We shall now develop an alternative description of the 
observables in Yang-Mills theory. We start by characteriz­
ing the gauge invariant functions on d. 

Let us first introduce some notation: Given a vector 
space V and a smooth manifold W, we define r P 

( V, W) as 
the space of p-linear, continuous, skew mappings from 
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V~~V to OO(W). We write r'(V,W) = l:prp(V,W). 
-pflDl-e8 

Consider r- (E,d), we can define an operator 
8': rp(E,d)_rP+I(E,d) by 

(8'W)(A I, ... ,A.p+ I) 

+ L( - 1 );+jw([ A;,A.j ]AI, ... ,A;. ... ,Aj"",A.p+ I) , 
i<i 

(3.1) 

where werP(E,d), AI ... ,A.p+ leE and A; indicates omission 
of A;. 

It is straightforward to show that 8'2 = 0 and thus 
(r' (E,d),8') is a complex. The associated cohomology 
groups H' (E,d) can be identified with the Lie algebra co­
homology of E taking values on OO(d).33 

The gauge invariant functions can now be identified 
with HO(E,d) and we see that we have developed a coho­
mological description of the observables on d. This is a 
rather trivial use of cohomology since the rest of the complex 
has no obvious dynamical significance (at least in the classi­
cal theory). However, let us push on and try to extend this 
analysis to the phase space observables. 

The naive thing to do would be to replace d by T * d 
and r by r in the above construction. Thus we shall end up 
with H' (E,T* d), the cohomology of E taking values in 
OO(T*d). However, HO(E,T*d) only characterizes the 
invariant functions on T * d and thus misses the full set of 
phase space observables. 

How should one lift this configuration space cohomo­
logy so as to get a useful construction on the phase space? We 
know that ifthere is a vector field on a manifold, then it can 
be lifted to a Hamiltonian vector field on the cotangent bun­
dle. In other words, given a derivation on the ring of func­
tions on a manifold, we can lift it to a derivation on the 
Poisson algebra of functions on the cotangent bundle. This 
construction is very simple to implement: Let x a be local 
coordinates on our manifold and consider the vector field 
X: = x a a Ixa. Then xaPa is a function on the cotangent 
bundle (with Pa the conjugate momentum to x a

) whose 
Hamiltonian vector field generates the lift of X. We shall 
now show that it is possible to view 8' as a derivation in this 
sense and hence lift its action to a suitable phase space in a 
nontrivial way. 

Given wlerp (E,d) and W2erQ (E,d), we can define 
WI'W2erp + q (E,d) by using the wedge product on A E * 
and the ring structure on OO(d). In particular, if we take 
the casep = 1, then wI 'w2erQ + \(E,d) with 

(W\'W2) (AI, ... ,A.q + \ ) 

q+\ A 

= L (-l);+\W\(A;)·Wz(A\,. .. ,A.jJ' .. ,A.q+\)' (3.2) 
;=1 

Thus r'(E,d) can be given the structure of a Grassman 
algebra over E * with n° (d) coefficients. Note that formula 
(3.2) also makes sense if WI (A;) is an element of Vect d. 

If reA k E * ® E, then we can define a derivation 
iT: P (E,d) _ P + k - \ (E,d) (p> 0) as the composition 
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of the normal inner product between E and E * plus the prod­
uct structure on r' (E, d). In particular, if TEA 2 E * ® E, 
then iT: rp(E,d) --P+ I(E,d) is given by 

(iTW )(AI,···,Ap + I ) 

= L (-l);+jw(r(A;,Aj),Aw .. ,1;, ... ,1j, ... ,Ap+t!· 
;<j (3.3) 

Formulas (3.2) and (3.3) suggest that we can construct 
the mapping 8' if we can choose an wleE * ® Vect d and a 
TEA2E* ®Esuch that 

(i) WI (A) = r(A) for all AeE , 

(ii) r(A;,Aj) = [A;,Aj] for all A;,AjeE . 

Such objects are uniquely constructed by using the Maurer­
Cartan form () on f§. 

Recall, ()eE * ® E is defined as the identity homomor­
phism from E to E, thus ()(A) = A for all AeE. Let us define 
r: E*®E--E*®Vectd by r'P(A) =r({3(A»), where 
PeE * ®E and AeE. Thus if we put WI = r'(), then 
WI (A) = r' ()(A) = y(()(A») = r(A) as required. 

The Lie algebra structure on E is such that 

[ , ]:APE* ®E xAqE* ®E--Ap+qE* ®E. 

Therefore [(),()]eA2E* ®E and we have the result that 
H(),()](A;,Aj) = [A;,Aj]. Thus we take r = H(),()]. 

This analysis shows that we can consider 8' as a deriva­
tion on the Grassman algebra r- (E,d) where 8' is repre­
sented by 

8' = r() + i![8,8 J • (3.4) 

It is useful to introduce a basis for E and E *. Since E 
represents the space of all mappings from ~ (three-dimen­
sional manifold) to f§ (k-dimensional vector space), we 
write a basis of Easpa (x) (a = l, ... ,k·,xe~). From Ref. 26, 
we know that the Lie algebra structure of E is pointwise that 
of g, thus we define Lie brackets by 

[Pa (X),pb (x')] = C~b Pc (x)8(x,x') . 

The L2-dual basis of E * is written ",a (x), where 

(",a(X),pb(X'» =8~8(x,x'). 

(3.5) 

(3.6) 

In terms of this basis, we can write 8' in the suggestive form 

(3.7) 

where a / a",c is defined symbolically by its action on E and 
hence A E * via 

(3.9) 

Although we shall not use this basis in the construction 
of the homological description of the Yang-Mills dynamics, 
it will be found useful for motivating some of the analysis. 
Also the connection with the BFV formalism is easiest when 
using a basis. We call ",a the ghost field and, for reasons that 
will become apparent later, Pa the conjugate ghost field. 

Before we get too engrossed in the homological algebra, 
let us again recall the motivation for this description of 8'. 
We wanted to analyze the action of 8' on the (Grassmann) 
algebra off unctions r- (E ,d) in order to construct an asso­
ciated (graded) Poisson algebra and hence to lift the 8' ac­
tion. So what is the Poisson algebra related to r- (E,d)? 
Normally, if we are given a ring of functions which we could 
identify with n° (N), for some manifold N, then the Poisson 
algebrawouldbe(no(T*N),{, }),where{, }isthePois­
son bracket defined by the canonical symplectic form on 
T * N. However, in our case we need to take into account the 
Grassmann structure to r' (E,d) and hence, the standard 
phase space methods do not, at first sight, seem appropriate. 

We now present an algebraic construction of the re­
quired Poisson algebra. The symplectic underpinning to this 
will be discussed later in this paper. 

The algebra r- (E, d) is modeled on the exterior alge­
bra of E with n° (d) coefficients. Thus, using the L2-duality 
philosophy we expect the associated Poisson algebra to be 
based on r' ( T * E, T * d), the Grassmann algebra modeled 
on the exterior algebra over T * E with n° ( T * d) coeffi­
cients. As usual, we can decompose this into homogeneous 
partsasr- (T*E,T* d) = ~rrr( T*E,T* d) withmultipli­
cation defined by the wedge product. However, under the 
identification T * E:::::E X E *, we can induce a finerdecompo­
sition of r (T*E,T* d) via 

P( T*E,T* d)::::: rr(E XE *,T* d) 

E!) rM(E,E *;T* d) , 
p+q~r 

where rM(E,E *;T* d) is the space of (p + q)-linear, con­

tinuous, skew mappings from E ~E XE * X '-' ~ XE * 
ptlmes ~ 

tono( T* d). We shall often write rMfor P,q (E,E *;T* d). 
Given wlerp"q, and W2erpz,qz we define the product 

WI'W2erp, + Pz,q, + qz as that derived from the product struc­
ture on r- (T*E,T* d). Thus, given A;eE and p/eE * we 
have 

( ............. )(1 1 liP, + I IIP,+q, 1 1 IIP ,+Pz+q,+1 IIP ,+Pz+q,+qz) 
'-'VI UoI'2 /l..H···""PJ,,-t ""''- ,,"'p,+q,+l'···" .... P.+P2+ql',.- ""'r-

= ~ (sgnu) ...... (1 1 II U (P, + 1) lI u (p,+q,» 
£... <UI Au(1) """'"u(p,) >r- ""'r-

OE ..YPI +1'2 + q. +ql 

where Y p, + pz + q, + qz is the subset of the permutation group 
f§ p, + pz + q, + qz consisting of those permutations which leave 
invariant the sets 
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(3.11 ) {PI + 1"",PI + ql,PI + P2 + ql + 1"",PI + P2 + ql + q2} , 

and are such that as expected from the product structure on r· (T * E,T * .If). 
u(1) < ... <U(PI) , If WIErl,o and W2Ero,I , then we define WI J W2Ero,O by 

'" '" WI JW2:=WI (Wz)=(WI( ),W2( ». (3.12) U(PI + ql + 1) < ... <U(PI + ql + h) , 

U(PI + 1) < ... <U(PI + ql) , 

U(PI + P2 + ql + 1) < ... <U(PI + P2 + ql + q2) . 
Then WI J W 2 = W 2 J WI' We now extend this construction: 

From this definition one can easily show that 
Given WIErp"q, and W2Erp"q, (withpI,P2,ql>q2 not equal to 
zero) we define WI J W2Erp, + p, - I,q, + q, - I via 

( J ) ( 1 1 ~/J.P' + I /J.P' + q, 1 1 ~/J.P' + p, + q, ~/J.P' + p, + q, + q, - 2) 
WI W2 /l,1,···Y'-PI"'" ""'r Y'-p, + q, + I ""Y'-p, + p, + q, - I"... , ..• "... 

'" () ( ( 1 1 u(p, + I) u(p, + q,) "') 
~ sgn U WI /l,u(1) ""Y'-u(p, - I),p, , ... ,p, " 

oeYCP,_I) +p,+q, + (q2- 1 ) 

(3.13) 

If PI or q2 is zero, then there is only the second term and similarly if P2 or ql is zero then only the first term survives. 

One can derive the following properties of J : Consider WiE~I,ql and define ri = Pi + qi' then 

(i) WI J W2 = - (- 1)"r'w2 J WI' 

(ii) (WI + (2) J W3 = WI J W3 + W2 J W3 , 

(iii) (W I 'W2) J W3 = WI (w2 J ( 3 ) + ( - 1 )"r, (WI J (3) 'W2 , 

(iv) (_I)r,r'w I J (W2JW3) + (-I)',r'w2 J (W3 JW I) + (-I)',r'w3 J (W I JW2 ) =0. 

This last relation is called the super Jacobi identity. The proof of these results are not very illuminating and will be omitted. In 
terms of the basis 'Tt(x),pa (x) introduced above, we see that the fundamental relation is 1t(X) J Ph (x') 

= Ph (x') J 'Tt(x) = £5b£5(x,x'), and all other expressions can be built up from repeated use of the properties (i) to (iv) stated 
above. 

It is clear that J imposes a graded-Poisson algebra on r (T*E,T* .If). However, it is only responding to the duality 
properties of E and E *, and is trivial on the n° (T * .If) coefficients. But on n° (T * .If) we already have a Poisson bracket 
{ , } r*.9f derived from the symplectic structure on T * .If. This bracket can easily be extended to r ( T * E, T * .If). Thus we 
define 

{ w w} Erp , + p"q, + q, 
I' 2 r*.9f ' 

with 

{WI,W2} r*.9f = - ( - 1 )',r,{W2,WI} r*.9f ' 

via 

{ } (
1 1 p,+1 p,+q, 1 1 ~/J.p,+p,+q,+1 ~/J.p,+p,+q,+q,) 

WI,W2 r*.9f /l,1""Y'-p,,p, , •.• ,/L r'"p, + I + q, ""Y'-p, + p, + q,"'" , ••• "... 

L (sgn u) {WI (A,u(1»'''.A.U(P,) ,/Lu(P, + I) , ••• ,p,U(P, + q,», 

oe Y p1 +112 + q, + 92 

(
1 1 u(p,+p,+q,+1) /J.u(P,+p,+q,+q,»} 

W2 /l,u(p, + I + q,) """"a(p, + p, + q,),/L '···'r r*.9f . 

I 
Combining { } r*.9f and J , we define a graded Poisson 

bracket{ , } on r(T*E,T*.If) via 

'" (~ [(},()] J W)(A,1.A.2) = (w,H(},()]( .A.1.A.2» 

(3.15 ) 

We now consider some examples of this bracket action. 
The Maurer-Cartan form () is an element of rl,l and 

thus [(},()] Er2,1 . With our conventions we find that 

= H (},()] (A,1.A.2,W) 

- (W,[A,1.A.2]) by (3.16) 

Similarly, if WEP'o 

(H(},()] J w)(A,I"".A.p + 1) 

(3.14) 

(3.16) = L ( - 1)i+
j
W ([A,;.A.j ].A.I, ... ,1j> ... ,1j"".A.p + 1) • 

Let us investigate ~ [(},()] J w, where WEr l•o , 
i<i 

(3.17) 
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Acting on werO.1 we have 

(HO,O] JW)(A,p) = (HO,O]w(A,p;",>,w) 

= -! [0,0] (A,W,p) 

= (p, [A,W ] ) 

= w(ad!IL) . (3.18) 

We note that {HO,O], } T-"" = O. So, acting on werp.q, 
{! [0,0] ,w} = ! [0,0] J weP + l.q. . 

From the definition of the momentum mappmg ct>, we 
see that it is an element of r 1.O. So given werp

•
q we have 

{ct>,w} = {ct>,w} T-..,. + ct> J werp + I.q + rp·q - 1 , 

where 

{ct>,w} T-"" (A 1,···,Ap + l,p I,.,·IL
q
) 

p+1 
=L(_1)i+1 

i= 1 

p+1 

= L (-I)i+IY(Ai ) 
i=1 

and 
(ct> J w) (A 1, ••• ,Ap,p\"',ILq- l

) 

= (ct>,w( ,Al, ... ,Ap,lLl, ... ,pq-I» 

= w(ct>,AI, ... ,Ap,p.l, ... ,p.q- I) . 

Thus we can define 8werp + I.q + rp·q - 1 via 

8w: = {ct> + HO,O ],w}. 

(3.19) 

(3.20) 

(3.21) 

From this definition we see that 8 can be decomposed into 
80 + 81, where 80: p.q ..... p.q-I is given by (3.20) and 8 1: 

p.q ..... p + I.q is given by {ct>,w} T-"" +! [0,0] J w. 
We claim that 8 is the desired lift of 8' to 

r (T * E, T * d). Indeed, 8 induces (odd) symplectic trans­
formations on r(T*E,T*d) with generator ct> + HO,O]. 
Written in terms of the basis 'flex) andpb (x') we see that 
this generator can be written as 

ct> + HO,O] = L [ct>u 7t - ! C~b 7Ju7Jbpc ] . (3.22) 

This is as expected from (3.7) if we interpret Pc as the conju­
gate variable to 7Jc. Acting on p.o, we see from (3.17) and 
(3.19) that 8 incorporates the natural extension of 8', (3.1), 
with y replacing y. However, to be acceptable we must be 
able to develop a cohomology theory from 8, and hence it 
must be nilpotent. From the super Jacobi identity we see that 
it is sufficient to check the following: 

{ct> + HO,O ],ct> + HO,O]} = o. 
Now 
{cI>, + HO,O ],cI> + HO,O]} 

= {cI>,cI>} T_..,.er2.O 

+ cI> J [0,0 ]er2.O 

+ HO,O] J HO,O ]er3
•
1

, 
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(3.23 ) 

where we note from (3.20) that ct> J ct> = 0, i.e., 8~ = 0; 

(HO,O] J HO,O]) (A 1,A2,A3,p) 

= (p,[A 1,[A2,A31l + [A 2,[A3,Al1l + [A3,[A 1,A2]]) 

= 0 by the Jacobi identity on E; 

{ct>,ct>} T-"" (A I,A2) = 2{ ct>(A I ),ct>(A2 )} 

= 2c1>([A 1,A2]) , 

by equivariance of ct>; 
A 

(ct>J [O,0])(A 1,A2) = (cI>,[O,O]( ,Al,A2» 

= [O,O](A 1,A2'ct» 

(3.24) 

= - 2ct>( [A 1,A2]) from (3.16). 

Combining these results we find that 82 = O. In terms of 80 
and 8 1 this is 

8~ =0, 

8081 + 8180 = 0 , 

8i =0. 

(3.25a) 

(3.25b) 

(3.25c) 

In order to discuss the cohomology associated with 8 we 
need to construct the complex upon which it acts. Define the 
p-ghost number cochain P as 

(3.26) 
r-s=p 

then 8: rp 
..... rp + 1 and hence we can define cohomology 

groups in the normal fashion. In the next section we shall 
analyze these objects and relate them to a dynamical descrip­
tion of Yang-Mills theory. We conclude this section with a 
brief discussion about the geometry of this construction. 

The arguments leading up to formula (3.21) comprise a 
liberal use of the L 2-duality philosophy in conjunction with 
various ideas from a graded version of symplectic geometry. 
Thus one would like to know whether it is actually possible 
to give this construction a firm geometric underpinning by 
using the graded (or super) manifold techniques from the 
start. There are several reasons for doing this: First, we are 
ultimately going to want to quantize this classical system 
and in this context we expect the homological arguments to 
take a secondary role to the (super) phase space ones. Sec­
ond, we will want to apply this type of analysis of con­
strained systems whose constraints are not related to the 
action of any group (e.g., gravity, supergravity, strings, ... ). 
In these cases the geometric input to the homological con­
struction may be lost, yet we can still hope for a (super) 
manifold analysis. 

There are various ways of extending the standard mani­
fold theory to include graded elements, for a good review see 
Ref. 34. By far the most attractive approach is that of Rog­
ers,3S since it is closest in spirit to the familiar Banach mani­
fold techniques and yet allows for the possibility of nontri­
vial structure in the odd directions. However, direct 
application of her construction to the case at hand is prob­
lematic. There are two reasons for this: (i) Our manifolds 
are infinite dimensional and thus one needs to extend the 
model space B n.m to some suitable graded version of the 
model space for T * d and E. It has proven to be difficult to 
achieve this and retain a G 00 structure as one would like. (ii) 
Even if one considers finite-dimensional situations, as we did 
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above, then one must ensure that the supermanifold version 
of the homology theory (as constructed by an odd vector 
field) is equivalent to the standard Lie algebra cohomology 
theory. There is a standard way of comparing such struc­
tures (introduce GoD chain maps, chain homotopies, etc.) 
but again, one finds that the full GoD structure can obstruct 
such constructions. 

The conclusion of this is that one must use a much more 
restrictive class of supermanifolds, namely the Batchelor36 

supermanifolds. This might almost be expected since we 
know34 that any such Batchelor supermanifold can be relat­
ed to a Kostant37 graded manifold, which in tum can be 
related to the sheaf of sections of an exterior vector bundle 
over a normal manifold. Their analysis can be extended to 
the situation found in this paper and we find that r (E,d) 
can be given a graded manifold structure. The L2-cotangent 
bundle is then precisely the graded manifold based on 
r ( T * E, T * d) with the Poisson bracket given by (3.15).37 

Thus, our construction can be given a graded manifold 
structure. However, it is of a trivial nature and thus does not 
warrant any separate development, at least for the classical 
Yang-Mills situation. 

B. Weak cohomology and the BFV formalism 

In the previous subsection we developed a method for 
extending the Lie algebra cohomology theory into a phase 
space situation. We now show how this construction can be 
used in a generalized dynamics and thus in what sense it can 
be viewed as a weak cohomology theory. 

Cohomology groups are notoriously difficult to calcu­
late, especially when infinite-dimensional spaces are being 
used. Thus all we can hope to do in this section is point out 
various aspects of this theory and motivate some of the as­
sumptions needed. We start by analyzing the 1>0 map intro­
duced via Eq. (3.20). 

From its definition, 1>0: p.q -+ P,q - I and, without loss 
of generality, let us putp = O. Now rO,q::::;:Oo(T*d) ® AqE, 
and thus we have a complex 

-+Oo(T*d) ®AqE-+{joOO(T*d) ®Aq-IE-+{jo ... 

-+{joOo(T*d) ®E-+{joOo(T*d) . (3.27) 

We recognize this as the Koszul complex31 associated with 
the momentum map CP: T*d -+E*. Let us investigate the 
final term in this complex: 

OO(T*d) ®E-+{joOo(T*d) , 

~(cp,llJ) . 
(3.28) 

So if 

r va th 1: r va.... VaenO(T*...f) . llJ = J~ Pa' en uollJ = J~ '¥a' .u .Jd!' 

Thus we see that the image of 1>0 is precisely those functions 
which we have assumed as weakly equivalent to the zero 
function. 

Let us return to the finite-dimensional model intro­
duced in the first section. Using the momentum map J: 
P-+$'(F)* one can construct a Koszul complex as in (3.7) 
and there we have the following result: Ifwe know that h-O 
implies that h = V«ifJ«, for some vaeoO(p), then the Kos­
zul complex is a resolution of 0° (p) / -. That is, all the ho­
mology groups are zero (see Ref. 38). So if F acts freely on P 
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then we have the result that the Koszul complex is a resolu­
tion. 

How this result can be extended to the infinite-dimen­
sional situation is not clear. One would like to be able to say 
that our original assumption that in Yang-Mills theory 
weak equivalence can be described in terms of the momen­
tum map, ensures the resolution property of (3.7). How­
ever, until such a result can be shown we shall have to take it 
as an additional assumption on the class of observables we 
are allowing. Let us now investigate the consequences of this 
assumption. 

Acting on Fero,o, I>F=I>IFecpl,o is given by (3.19), 
i.e., (I>IF)(A.) = {cp(A.),F}r""",' Thus we can characterize 
the weakly invariant functions, (2.3), as those Fero,o such 
that there exists an llJIErl,1 with 

(3.29) 

Suppose now that I>lllJI = O. Then .7: = F + llJlero [i.e., 
has zero ghost number, cf. (3.26)] and 1>.7 = O. So in this 
situation we have been able to relate a I>-closed zero ghost 
number function with the weakly invariant function F. What 
happens when I>lllJ I #O? From (3.25) we know that 
l>ol>lllJ I = - I>ll>ollJI = I>i F = 0 and hence from our as­
sumption above, there exists llJzerz,z such that 
I>lllJ I + l>ollJz = O. If I>lllJZ = 0, then we can relate F with 
.7' = F + llJ I + llJ2ero such that 1>.7' = O. If I>IllJ2 #0, then 
repeating the argument will produce an llJ3er3

,3 , etc. 
Thus the ability to accommodate weakly invariant func­

tions into the homology structure of I> requires that (3.27) be 
a resolution of 0° (T * d) / -. When this is the case we shall 
describe I> as producing a weak cohomology for the Lie alge­
bra E acting on T* d. 

It is important not to get too carried away with the gen­
eral mathematical formalism at the expense of physical ne­
cessity. Indeed for the observables known in Yang-Mills 
theory (essentially just the Hamiltonian) one has that 
I> lllJ I = 0, and the Koszul complex (3.27) is not used. This 
may not be the situation for all useful observables; however, 
it does point out that we will always use a much richer struc­
ture for the observables than simply being elements of 
OO(T*d). 

SupposeFleOo(T*d) is weakly invariant and.71 the 
corresponding I>-closed element of ro. If FzeOo ( T * d) is 
such that F I-F2, then Fz is weakly invariant and one can 
construct an .72ero as above. Now it is easy to show that 
there exists Xer-I such that.71 =.72 + I>X. Hence, if we 
require that .7 I and .72 describe the same observables, then 
we must identify the observables with 

HO(I»: = kerl>: r°-+rl . 
image 1>: r- I-+ rO 

By using the resolution property of (3.27) one can see that 
each nontrivial element of HO(I» is constructed from a 
weakly gauge invariant function on T * d. 

This relationship between weak invariance and I>-closed 
zero ghost number functions is the basis of the BFV formal­
ism. In their approach to the construction of the S matrix for 
Yang-Mills theory they first had to build an odd, Abelian 
function Q out of the constraints and fermionic degrees of 
freedom. The weakly invariant Hamiltonian is then used to 
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construct a zero ghost number function K, which is invar­
iant under the (nilpotent) transformations generated by Q. 
They then consider the S matrix constructed from the effec­
tive Hamiltonian H x defined by 

Hx: = K + {Q,X}, (3.30) 

where X is an arbitrary odd function with ghost number - 1. 
Their main theorem is that the S matrix is independent of X 
(see Ref. 39 for a more detailed presentation). 

The analysis of this paper is very close to the BFV for­
malism with Q = cP + H 8,8]. However, there are two im­
portant points where this presentation does not cover the 
BFVwork. 

(i) BFV wanted to relate the phase space construction 
with the effective Lagrangian for a constrained system. In 
order to build the Lagrangian one must first extend the 
phase space by the inclusion of the primary constraints l6.17 

and their associated ghosts and conjugate ghosts. In this way 
one can relate the new Q with the phase space version of the 
BRST charge. In a separate paper we shall discuss the exten­
sion procedure in detail. 

(ii) BFV justified their method by constructing a path 
integral expression which agreed with the accepted S matrix 
for Yang-Mills theory. However, we are not discussing the 
quantization of Yang-Mills theory in this paper. Rather, we 
have presented this work as an example of a generalized dy­
namics. Thus, in order to justify the characterization of ob­
servables presented here we must show that it can be related 
to the standard Dirac analysis. This will be discussed in the 
next section. 

IV. CLASSICAL STATES AND OBSERVABLES 

A full description of a classical dynamical system is 
comprised of an algebra of physical observables, including 
the Hamiltonian, plus a rule for determining the allowed 
values the observables can take. This involves knowledge of 
the states of the system. There are two ways of viewing the 
states; on the one hand we think of them geometrically as the 
points of the phase space, but more generally, they can be 
viewed as normalized, positive elements of a suitable dual 
space to the algebra of observables.40 

The geometric characterization of states has limited vale 
ue, when we have constraints, because it assumes the reduc­
tion to the true degrees offreedom has been implemented. So 
we shall take the view that states assign expectation values to 
observables. In order to understand how this is to be 
achieved in constrained systems we first discuss the standard 
phase space approach. 40 

On an unconstrained phase space P we identify the ob­
servables with nO(p). Thus a state f/!is an element ofno(p)', 
the dual space to no(p), such that (i) f/!>O and (ii) 

(f/!,I) = 1, where ( , ) implements the duality between 
no(p), and nO(p). Given a state f/!, the expectation value 
(F) of an observable Feno(p) is given by 

(F) = (f/!,F) = i f/!F dll . (4.1 ) 

The measured dll on P is the Liouville measure. In the field 
theory situation where P is infinite dimensional, and possibly 
not a linear space, great care must be taken in defining the 
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dual space and the measure involved41 (see also Ref. 25). We 
shall not dwell on these important points here, but rather we 
shall investigate the formal extension of these ideas to con­
strained systems. 

For Yang-Mills theory a state will give the allowed val­
ues of physical observables. We do not attach any signifi­
cance to the pairing between a state and an unphysical ob­
servable. The constraints impose an equiValence class 
structure on the observable where we say two weakly invar­
iant functions FI and F2 are equivalent if they are weakly 
equal to each other, Le., F I -F2, if there exists va 
eno(T*d) such that 

(4.2) 

For this equivalence relation to have any physical signifi­
cance, we must require that (FI ) = (F2 ). In other words, if 
F-O, then (F) = O. Thus we require that our states '11 are 
normalized, positive elements of the dual to n° (T * d) such 
that 

(4.3) 

for all V aen° ( T * d). We shall write this condition on states 
as 

(4.4) 

This definition of states can be thought of as the minimal 
requirement that we can impose. If we want to relate states 
on T * d with states on the true degrees of freedom, then we 
must impose stronger conditions on f/!. In particular, we 
would require it to be gauge invariant or at least show that it 
can be decomposed into an invariant part. However, as a rule 
for assigning values to physical observables, formula (3.3) 
suffices. It is straightforward to show that this definition of 
states is compatible with the dynamical evolution of the sys­
tem. 

We now investigate the introduction of classical states 
into the BFV formalism. The observables are now elements 
of HO(S) so in order to introduce states we must first con­
struct a dual space to rO, and then pick out the positive, 
normalized ~lements compatible with the equivalence class 
structure found in HO(S). 

Define r,q,p as the space of (q + p)-linear, continuous, 
skew mappings from EX'" XE XE*X'" XE* to 

~eT ~ 
nO(T* d)', the dual space to nO(T* d). Then pq,p can be 
considered the dual to rM; we shall denote this duality by 
the bracket ( , ). The dual to P is then r' - P, where 

r'-p:= $ proS. (4.5) 
r-s= -p 

Given w€p, then SweP+ I and we can define the adjoint 
S+: r' -p-I_r' -P by 

(4.6) 

for all ~er' - p - I. Since {j = {jo + {jl' we can decompose {j+ 
into {j+ = {jo+ + {j _ I , where {jo+ and {j -I are the adjoints to 
{jo and {jl' respectively. The adjoint {j+ also satisfies 
({j+)2 = o and hence{jo+ and{j_1 obey the adjoint version of 
the relations (3.25). We denote the cohomology groups as­
sociated with the complex (r,p,{j+) by H' ({j+), 
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The states must be elements of pO, and we write 1/tEpo 

as 

(4.7) 

where "'iEPi,i. The equivalence class structure on HO(8) re­
quires that the states must be such that 

(81') =0, (4.8) 

forallXEr- l
• In terms of the adjoint 8+, we can write (4.8) 

as 
(4.9) 

Since (4.9) must hold for all X, we have that the states '" 
must satisfy 

8+",=0. (4.10) 

Ifwe put'" = 8+ t, for some tEr' - 1, then (4.10) holds 
since (8+)2 = O. However, if we use such a state then the 
observables YeH°(8) will all have zero expectation value 
since 

(4.11 ) 

We shall consider such states as trivial ones, and thus we are 
led to the conclusion that the states are elements of HO(8+). 
Not all elements of H ° (8 + ) will correspond to states though, 
since we must require that we can recover the standard de­
scription presented above. 

It is not clear how much of the full structure of H ° (8), 
for observables, and HO(8+), forstates, can be accommo­
dated in a generalized dynamical description of Yang-Mills 
theory. What we shall do is look at a restricted class of obser­
vables and construct the states for these. 

A 8-closed element Y Ero will in general have terms 
containing ghosts and conjugate ghosts. Since these fer­
mionic components have nothing to do with the true dynam­
ics, we might expect that a representative / can be chosen 
from the equivalence class [YJeH°(8) such that/Ero,o, 
i.e., / has no ghosts and conjugate ghosts. If /Ero,o and 
8/ = 0, then/ is gauge invariant. So we are asking whether it 
is possible to construct a XEr- 1 such that Y = / + 81" 
Equivalently, in terms of the Dirac analysis, we would like to 
know that if F is weakly gauge invariant, then F is weakly 
equivalent to a gauge invariant function. A local version of 
this theorem has become part of the folklore of constrained 
dynamics (at least in the situation where the constraints are 
associated with a group action on a phase space). However, 
we can see that in general there might be global obstructions. 
These would be measured by Hr(E,no(T*d) ®A'E) 
(r> 0), and it is difficult to determine when this is zero. All 
one can say is that for the known observables in Yang-Mills 
theory one does not hit any obstruction. We now take this as 
a property of the observables in our theory. 

Given this decomposition of the 8-closed functions it 
now becomes simple to describe the states. Let ,per ,0 be such 
that 

(i) 8+",=0, 

(ii) '" = "'0 + 8+ t, for some tEr' - I. 
If Y Ero is such that 

(i) 8Y =0, 

(ii) Y = / + 81', for some XEr- 1 
, 
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then 

(Y) = (/+81') = (/) = (/''''0) 

and 8+",0 = 0 implies that 80+ "'0 = 0, i.e., 

r <l>a Va",o = 0 , 
JT."" 

for all VaEno( T* d). 

(4.12) 

Thus, as long as "'0 satisfies the positivity and normali­
zation conditions introduced at the beginning of this section, 
we see that we have recovered the expected values the obser­
vables / can have and hence, we have shown that the BFV 
construction is a generalized dynamical description of 
Yang-Mills theory. 

The decomposition of Y Ero into an invariant part plus 
a coboundary is an important technical step in relating the 
BFV analysis with the work of Dirac. One would like to 
understand the associated decomposition of states as a con­
sequence of this decomposition of observables, since then the 
states will simply correspond to the dual space of the obser­
vables. 

The extension of these ideas to theories, like gravity, 
whose constraints are not described in terms of a momentum 
map is highly nontrivial. The main problem is that one can­
not then decompose a generic observable into an invariant 
part, and thus extracting the dynamical content is much 
harder. The analysis needed for such a situation will be pre­
sented in a later publication. 

v. CONCLUSIONS 

In this paper a generalized dynamical description of 
classical Yang-Mills theory has ben presented. Various 
technical assumptions have been needed in order to carry 
out this construction: however, we have seen that these are 
closely related to the assumptions inherent in setting up the 
Dirac analysis of such a field theory. A consequence of this 
work is that it supplies a firm dynamical underpinning to the 
BFV formalism and thus gives a precise geometric charac­
terization of the ghost and conjugate ghost fields. 

In this classical analysis we have shown the equivalence 
between the BFV and the Dirac description of Yang-Mills 
theory. The BFV approach is distinguished by the use of 
homological methods both in the description of the observa­
bles and the states. This is very reminiscent of the important 
work by Kugo and Ojima22 on the use of the BRST charge in 
the quantization of gauge theories. This suggests that many 
of the ideas developed here will have a counterpart in the 
quantum description of these constrained theories. Indeed, 
one finds that in many respects the BFV analysis of the quan­
tum theory is much richer than the classical one presented 
here, and has several advantages over the Dirac quantization 
methods. In particular, the structure of the Hilbert space of 
states can encode global aspects of the true degrees of free­
dom.42 This has important consequences for theories con­
taining anomalies and, more generally, for a deeper under­
standing of the quantization of constrained systems. This 
will be discussed in a later publication. 
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The generalized Batalin, Fradkin, and Vilkovisky (BFV) formalism was developed as a 
method for determining the ghost structure for theories, such as gravity and supergravity, 
whose Hamiltonian formalism has constraints not related to a Lie algebra action. Previously, 
the classical dynamical content of the BFV description of Yang-Mills theory was investigated. 
There it was found that this approach had a homological interpretation, derived from the Lie 
algebra cohomology of the gauge group, which allowed one to understand the construction in 
terms of the Dirac approach to constrained systems. In this paper the dynamical consequences 
of the generalized BFV formalism are investigated. It is found that even though one no longer 
has a Lie algebra structure associated with the constraints, one can still develop a homology 
theory that reproduces the Dirac analysis and from which the generalized BFV formalism can 
be derived. Some of the consequences of this approach are discussed. 

I. INTRODUCTION 

In Ref. 1, the BFV formulation of Yang-Mills theory 
was shown to have a useful cohomological interpretation. 
The main ingredient to that analysis was the ghost number 
complex (0,8), where 0 = :I"O" with elements of 0" hav­
ing ghost number n, and 8: 0" _ on + 1 was such that 82 = O. 
Up to this point, the BFV approach seemed identical to the 
standard discussions of Becchi, Rouet, Stora, and Tyutin 
(BRST) symmetry; however, as a consequence of working 
in the canonical formalism, it was found that (0,8) could be 
written as a double complex. This in turn supplied a rich 
geometric input which provided a dynamical understanding 
to the whole construction. 

Let us recall the salient points of the above analysis. We 
started with a phase space Y and a set of first class con­
straints t/Ja. So for Yang-Mills theory Y = dX ff where 
d is the space of connections, ff the space of generalized 
electric fields, and the constraints are the non-Abelian ver­
sion of Gauss' law. It was crucial for the whole construction 
that the constraints were of the first order, i.e., {t/Ja,t/Jp} 
= C~ t/Jr' where the coefficients C~ are constants. This 

was the case for Yang-Mills theory since the constraints 
could be identified with the momentum map for the gauge 
group action on Y. 

For each constraint t/Ja' a ghost 1]a, and conjugate ghost 
pp were added to the phase space in order to construct a 
graded phase space ®. The ring of all smooth functions on ® 
was identified with 0 and 8 was the (weak) coboundary 
operator constructed from the constraints. Writing 

o = 2: on = 2: 2: 0"', 
n n r-s=n 

where an mEO'" can be written as 
, .. = ,.,p," .p, 1]a, . . '1]a,p "'p 
u.r- ""at"' oaf' P. Ps 

with coefficients being smooth functions on Y, one found 
that 8 = 80 + 8 1, where 

a) Present address: Department of Physics and Astronomy, The University 
of Glasgow. Glasgow G128QQ. Scotland. 

(1.1 ) 

and 
81: 0''''_0,+1.'. (1.2) 
This decomposition of 8 allowed us to compare the co­

homology associated with 8 to the Dirac analysis of such a 
constrained system. The antiderivation 8 1 was related to the 
symplectic action of the constraints, whereas 80 induced a 
"weak equivalence" on this action. A basic result needed for 
this analysis was that 80 is a resolution of the 8 1 action, i.e., 80 

is an exact operator. This requirement was equivalent to the 
statement that the constraints were independent, i.e., if we 
have k constraints t/Ja and Y has dimension 2n (n > k), then 
t/Ja = 0 is a 2n - k dimensional submanifold of Y. 

So for Yang-Mills theory we found that 8 produced a 
weak Lie-algebra cohomology for the gauge group action, 
and in particular, the zeroth cohomology group correctly 
characterized the equivalence classes of weakly gauge invar­
iant functions one usually associates with the observables of 
the constrained theory. 

The conclusion from this work was that one could un­
derstand the introduction of ghosts into gauge theories in a 
classical way: They are simply introduced in order to give an 
alternative characterization of the constrained dynamics. 
However, there is a sense in which such an approach seems 
at odds with the way we normally view constrained systems. 

The standard classification of constraints is motivated 
from symplectic geometry and is in terms of first or second 
class constraints. Thus, a first class system is one for which 
the constrained surface is coisotropic and, for suitably cho­
sen constraints t/Ja' this means that 

{t/Ja,t/Jp} = U~ t/Jr' (1.3) 
where the coefficients U~ are now "structure functions." 
For a second class system the constrained surface is itself a 
phase space, and in terms of constraints 1/Ia we have 

det({1/Ia,1/Ip}) #0. (1.4) 

So, for a first class system the form of the structure func­
tions in (1.3) plays no role in our understanding of the dy­
namics. Indeed, for Yang-Mills theory we could replace the 
structure constants C~ with C~ + t/J6H~r" where H~ 
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= H!~ l' and not change the dynamical content of the the­
ory at all. However, the cohomological analysis presented 
above only worked for the structure constant case. 

We also know that there are many important systems 
where the constraints are not associated with a group action 
on a phase space, i.e., gravity, supergravity, and string the­
ory. Thus, any new method for dealing with constraints is 
limited if it cannot cope with such theories. 

In Ref. 2, the BFV formalism was formally extended to 
accommodate systems with structure functions. The basic 
idea of this extension was quite simple: For a system with 
structure constants, one could construct a charge Q which 
has ghost number one and is Abelian, i.e., {Q,Q} = O. Expli­
citly one finds that 

Q=<Pa1t-!PrU~prtrf. (1.5) 

To generalize this to the structure function situation one 
writes the required charge as a power series in the conjugate 
ghosts, i.e., 

Q=<Pa'Tt+PrFr+PaPpFaP+... (1.6) 

and then impose the condition {Q,Q} = 0 in order to deter­
mine the coefficients Fa, FaP .. '. It is a remarkable fact that 
such a procedure works (for a careful discussion see Ref. 3) 
and a charge Q can be constructed. However, one finds that 
such a Q is not unique and has no obvious geometric signifi­
cance. These facts combine to obscure any dynamical con­
tent to this construction. Indeed it is difficult to see whether 
this analysis has any physical justification at all, since the 
types of theories it is attempting to describe are notoriously 
hard to analyze and thus it has been virtually impossible to 
trace the consequences of such a formalism. 

It is the aim of this paper to present a new approach to 
the extension of the BFV formalism outlined above. The 
physical content, and the effect of the various ambiguities, 
will be made clear. Again, we shall be able to relate this 
analysis to the standard Dirac approach to such systems. 
The homological aspects of this construction will be empha­
sized in this paper. I 

S2 
OW 

.1"------~)(SOSl + SlSo)w 

r 
w-------+ 
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II. THE CONSTRUCTION 

We recall that for a first-order theory, Le., when the 
structure functions are constants, the operator 13 could be 
written as 13 = 130 + 131, Then 132 = 0 implied the following 
relations: 

13~ = 0, 

130131 + 131130 = 0, 

13i = o. 

(2.1a) 

(2.1b) 

(2.1c) 

The action of 130 and 13 1 on the basic variables were defined as 
follows: 

13d = {<Pa,fht, /eOo,o, (2.2) 

1311Ja = - !UPr rf1Jr, 

131 Pa = - u~prfPr' 
and 

13of = 0, 1301Ja: = 0, 13oPa: = <Pa. 

(2.3) 

(2.4) 

(2.5) 

It is straightforward to check that these definitions satisfy 
(2.1). Let us now investigate what happens when the struc­
ture functions are no longer constant. 

From the definitions of 130 and 131, we find that we can 
still maintain relations (2.1a) and (2.1b). However, acting 
on/eOo.o, 

13i/=!<Pr{U~p,fharf, (2.6) 

which is not identically zero. 

Let us define 132 : 0°,0 -+ 0 2,1 by 

132/= - !{U~,f}1JarfPr' (2.7) 

then we see that 

(13i + 130132)/ = o. (2.8) 

This suggests that instead of writing 13 = 130 + 131, we 
should write 13 = 130 + 131 + 132, where 132: 0"'-+0'+2,.+ 1, 

and require that 132 = O. (Note that 1321J and 132p are, as yet, 
undetermined. ) 

Consider an arbitrary element CtJeO"'; then the action of 
132 on CtJ decomposes as 

(2.9) 
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From this diagram we see that the required properties are 

«5~ =0, 

«51«50 + «5obl = 0, 

«52«50 + «5i + «5ob2 = 0, 

«5 1«52 + «52«5 1 = 0, 

(2. lOa) 

(2. lOb) 

(2.1Oc) 

(2.1Od) 

«5~ = 0. (2.10e) 

We have already seen that (2.1Oc) is true when acting 
on functions. Before verifying it on ghosts and conjugate 
ghosts we need to reconsider Jacobi's identity, 

° = (¢[a. {l,bp.¢rl}} = {¢[a. U~rl¢s} 

(2.11 ) 

As was the case in the first-order theory, we assume that 
«50 is exact, thus we can deduce that 

{¢[a. U~rl} - U~[a Upr1 = ¢E U~r' 
Using (2.12), we find 

«5i17a = - !¢€ up~s~17r17s. 
Thus we take 

8217a = !Up~s~17r17spE' 
Similarly, one can show that 

(2.12) 

(2.13 ) 

(2.14) 

«52 Pa = -1U'/:pr~17rpsPE' (2.15) 

Ifwedefine82 by (2.7), (2.14), and (2.15) and extend it 
by requiring it to be an antiderivation, then it is clear that 
(2.10c) is true. With this example in mind, we proceed to the 
general case. 

We are given a theory with first-class constraints ¢a 
satisfying (1.3), and we have extended the phase space by 
the addition of anticommuting variables (17a,pa)' (The in­
dex a is only used to keep track of algebraic manipulations 
and thus, unless we say otherwise, can be thought of as an 
abstract index labeling both discrete and continuous sets of 
constraints. ) 

As before we define an antiderivation «50 : nr.s ...... nr.s-I 

by (2.5) and we assume the constraints are such that this 
operator is exact. We define the action of «5 1 on len°'o by 
(2.2). We then require the existence of antiderivations 
81, ... ,8s '"'' where 8s : ni·j ...... ni+s.j+s-I, which satisfy the 
following relationships: 

8~ = 0, 

8180 + fJo81 = 0, 

fJob2 + fJi + «52fJO = 0, (2.16) 

m m 

«5ob3 + fJ I «52 + «52«51 + «53«50 = 0, 

fJob4 + «51«53 + fJ~ + fJ3fJ 1 + fJ4fJO = 0, 

In order to prove the existence of these antiderivations 
we need the followng lemma. 

Lemma: Given a set of constraints {¢a}' which are 
closed under the Poisson bracket, one can define the nth 
order (n > 0) structure functions Q pa , : : :pan by the formula 

1 11+ 1 

nQ a""an A. B [a,"'an_ d 
P,"'Pn+I'f'an = [P,"'Pn+d' (2.17) 

where 

n-I - L (_1)n(p+I)(p+l)(n-p+1) 
p=o 

(2.18) 

and we take Qa = ¢a' 
Proof; See Ref. 3. Using the higher-order structure func­

tions we assert that (2.16) is satisfied when 

fJ 1= {Qa""a'_1 I}"'P'" '''''P'p "'P s P,···Ps '·/"/ a, as_I' (2.19) 

(2.21 ) 

We prove this by induction. 
FromthelemmawehaveQa = ¢a andQpr = - !Upr . 

Therefore the definitions of «51 agree with (2.2)-(2.4), and 
hence satisfy «5~ = 0, «5obl + «51«50 = 0. We assume now that 
we have «5. defined according to (2.19)-(2.21) forO<:;s<:;m, 
and that identities 

fJ~ = 0, 

fJlfJO + fJobl = 0, 

808m + 818m - I + ... + 8m - 181 + 8m 80 = ° 
are true. We now define «5m + I and show that 

8obm+1 + 818m + "'«5m «5 1 +8m + 180=0. (2.22) 

To do this we evaluate (fJlfJm + .,. + 8m «51 + fJm + 180) on 
each of the functions, ghosts, and conjugate ghosts. Note 
that for functions and ghosts the term 8m + 180 drops out, so 
that there is no difficulty here: 

~ £ £ I ~ 8 ({Qa""am_i I},.,/J,··· Pm+l-i ... ) 
~U;Om+l_i =£..t; 13."'13"'_;+1' -'I 11 Pal Pam-i 
;=1 ;=1 

= ~ fJ.({Qa,:::am- i I}),.,/J, .. '''''Pm+I-'p' "'P . ,£.. I p, Pm _ i + I ' -,,-., a, am _, 
;=1 
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Where we have used the antisymmetry in a l " 'am _ I and 
PI ... Pm _ I + I , and the properties of the antiderivation. Sub­
stituting from (2.19)-(2.21) and simplifying gives 

m 

L ~1~m+I-J 
1=1 

X --p, .. '1]Pm + Ip .. 'p . -'I Q, am_I 

Then, using the lemma we get 
m 

L ~I~m+'-If 
1=1 

{ a "'a }rf P =~ (- Q ' ... m f ""1]m+lp "'P ). o PI /3m+l' a, am 

Hence, if we define 

~ f= {Qa,:::am f}--P'" '1]Pm+1p "'P (2.23) 
m + 1 p, Pm + I' -It a, am 

then we have shown that (2.22) is true when applied to func­
tions. 

Similarly one can show 
m 

L ~I~m+ 1_I1]a 
1=1 

aa "'a rf P = ( _ 1)mmB ' .. '. m-I ""1] m+2p "'P /3, /3m + 2 a l Qm-l 

= - ~o« - 1)m(m + 1) 

X Q a,~.,:· 'am rf'" '1]Pm + 2p .. 'P ). 
PI Pm + 2 a, am 

Then we can take 

~m+ 11]a = (_1)m(m + 1) 

XQa,~.':··am --p, •. '1]Pm+2p "'P . (2.24) 
/3, Pm + 2 -'I a. am 

When considering conjugate ghosts, we notice that the 
~m+l~o term in (2.22) is not zero. However ~m+I~OPa 
= ~m + I t/Ja, for which we have an expression from (2.23). 

Thus 
m+1 
L ~/~m+ I-I Pa = (m + 2)B::P::~'Pm+1 
1=1 

= - ~o«m + 2)Q::P::~·P:: I 
xrf'" '1]Pm+lpa " 'Pam+ J 

Thus we choose 

~ P =(m+2)Qa"·:~.m+1 --P""1]Pm+1p "'P . 
m + 1 a a,fJ, Pm + 1 -'I a, am + 1 

(2.25) 

So, if we define ~m + I by (2.23 )-(2.25) and extend it as 
an antiderivation to all elements in 0, then (2.22) will be 
true. This completes the induction step. 

If there exists an integer k such that ~m = 0 for all 
m > k, then we say that we have a k th-order theory and we 
can define ~: op -+ op + I by 

~ = ~o + ~I + ... + ~k (2.26) 

and ~2 = O. Thus Yang-Mills theory is of the first order, and 
one can show that gravity is ofthe second order. 
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It is possible that no finite k exists and hence we have a 
theory of infinite order. Indeed, this could well be an inter­
pretation of the results in Ref. 4 where a gauge theory of self­
interacting massless spin-3 particles was shown to be unob­
tainable. Such infinite-order theories will be excluded in 
what follows. 

The order of a theory is a useful concept, but it is not well 
defined since in the above proof we have simply found a 
choice for the {~m}' which satisfies (2.16): As mentioned 
for the first-order theories, there is an arbitrariness in the 
definitions of the structure functions and hence in the order 
of the theory. We now discuss what is well defined in this 
formalism. 

III. THE AMBIGUITIES 

In the Introduction we saw that one can always replace 
U"{.p by U"{.p + t/J/;H t,:;J in (1.3) without changing the dy­
namics of the system. Clearly such a possibility can occur for 
each order of structure functions, and we need to investigate 
how the dynamical content of the generalized BFV formal­
ism is effected by such variations. 

Under the replacement U"{.p -+ U"{.p = U"{.p + t/J /; H r.:t ' 
the definition of ~o (2.5) and ~d (2.2) are unchanged. 
However both ~11] and ~I P will pick up an additional ~o ( ) 
term. Thus, given a derivation K I : Ol,j-+Ol+ I,j+ 1 with 
Kd= 0, the most general change in ~I' due to the above 
ambiguity in the structure functions, is to replace ~I by 61, 

where 

(3.1 ) 

However as it stands, (3.1) is not satisfactory since it is 
not necessarily an antiderivation and it no longer satisfies 
(2.1 b). Both of these problems are resolved by writing 

61 = ~I + KI~O - ~oKI = ~I + [KI'~o], (3.2) 

since the commutator of a derivation and an antiderivation is 
always an antiderivation and clearly (2.1) holds. 

This argument can be repeated for ~2'~3"" and one finds 
that the possible changes in such maps are given by 

62 = ~2 + [K2'~O] + [K,,~d + UKI,[KI'~o]], 
~3 = ~3 + [K3'~O] + [K2,~d + [KI'~2] 

+ UKI,[KI,~d] + UK2,[KI'~O]] (3.3) 

+ UKI,[K2'~O]] + (1/31) [KI[KI,[KI'~O]]]' 

where K I : 0'" -+ 0' + I,s + I are derivations. While writing the 
general form of 6m like this is easy, we shall need to express 
them in a form more amenable to calculation. 

Lemma: If we are given ~ and ~ on 0, both of which 
satisfy (2.16), and are such that 

(i) ~o = ~O, 

(ii) ~I = ~I + KI~o - ~oKI' 
Then the general form for 6m is 

( _ 1)' 
~m =~m + L K· '''K/~ K· ·"K·, (3.4) 

s>O,t>O s!t! " $ a Is+ t ',,+ r 

where the sum is over all s and t, and all indices that satisfy 
l:j:!: ij + 0= m. In the expression the KI are derivations 
with k/: 0'" -+ 0' + I,s + I. 
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Before sketching the proof of this lemma we first make a 
few comments. 

(a) The statement of the lemma is slightly stronger than 
needed for the ambiguity discussed above, since we do not 
require that acting on/e.o°.o, KI/ = O. 

(b) It can be shown directly that a 8m defined by (3.4) 
will satisry (2.16). 

(c) 8m constructed as shown can be written in the 
[K/[Kj '" [KI,8a ]l] form and hence it is an antiderivation. 

Proof: We use induction, so by (ii), we can assume that, 
for all m<s, (3.4) holds. Acting on/Cor 1Ja) 

" S A A 

808'+1/= r 8j 8s+ I _ j / (3.5) 
j= I 

However, we can now use the induction hypothesis to re­
write the right-hand side of (3.5) in terms of 8a and K i , 

A ( '" (- 1)' 
808s+ I / = 80 8s+ I + """ , , 

.>0,1>0 S.t. 

( _ l)V ) 
+ r " Ki,' "Kiu8oKiu+IKiu+v /, 

u>O,v>o U.V. 

where in the first sum 0#0. Using the resolution prop,.erty of 
80' the 8a8s+ I action on Pa and the requirementthat 8s+ I is 
an antiderivation then gives the required result. 

So we can now construct two ghost number complexes, 
(.0,8) and (.0,8), and we need to understand the relation­
ship between them. We know that it is the cohomology of the 
complex that has dynamical significance, thus what we want 
to show is that these complexes have the same cohomology. 

There is a standard way to compare two complexes; we 
need chain mappings K: (.0,8) -+ (.0,8) and K': 

(.0,8) -+ (.0,8) such that 

and 

K8=8K, 

K'8=8K', 

KK' = idn = K'K. 

(3.6a) 

(3.6b) 

(3.6c) 

We now prove that 

K = 1 + '" J.. K . . "K· 
r~O r!" I,. 

(3.7) 

and 

K'=l+'" (-1)' K.· .. K. (3.8) 
r~O r! " I,. 

are the required mappings. In (3.7) and (3. 8) the sum is 
over all r> 0, and all values of i I ••• i •. 

The typical term on the left-hand side of (3.6a) will be 

1 r -K/, •• ·K/
f
8a • 

.>0 r! 
(3.9) 

The typical term on the right-hand side is 

r C(S,t)K/," 'Ki,8aKi'+1 "'K/
H

" (3.10) 
.>0,1>0 

where c(s,t)e.R. To prove the equality of these expressions 
we separate the cases: (i) t #0, (ii) t = O. 

We fix values of ii' i2 " ·i.+ 1 and o. For case (i), t #0, 
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1 (_ 1)u 
C(s,t) = r --

u=o slur (t - u)! 

1 1 (t) =- r (-1)u=o. 
sIt! u=o u 

To see this, one looks at the possible contributions to a par­
ticular term in (3.10), 

-K· ·"K.8 -K· ·"K· (1 )(1 ) s!" Is a t! 's+1 '5+1 

--K· ···K.8 K· (
-1 ) 

+ s! " 's a 's+l 

X ( __ I __ K . ···K· ) + etc. 
(t - 1)! 'H2 'H' 

For case (ii), t = 0, the contribution must come from 81. 
Thus C(s,O) = lis!. 

This proves that K is a chain mapping between the two 
complexes. Similarly one can show (3.6b) and (3.6c). Now, 
using standard homological methods5 we can deduce that 
the two complexes above have isomorphic cohomology. 

We already know that for a first-order theory HO(8), the 
zeroth cohomology group, characterizes the physical obser­
vables of the constrained system. Thus, we have now shown 
that for any higher-order formulation 8 of this theory, where 
8 is related to 8 via (3.4), H ° (8) still describes the physical 
observables. 

This result is all well and good, however, it falls short of 
giving us a complete understanding of the dynamical content 
of a general higher-order theory since it is not at all clear that 
one can always relate such a theory to a first-order one via 
relations ofthe form (3.4). 

IV. THE DYNAMICAL CONTENT 

We have shown that for a given set of first class con­
straints tPa, we can construct a ghost number complex 
(.0,8). For a first-order theory we know that H ° (8) charac­
terizes the observables, and we now extend this result to 
higher-order theories. 

Recall that a function/e.oo,o is said to be weakly invar­
iant if 

(4.1 ) 

for some V ~ e.o°'o. We now show that given such an/, we can 
construct .7 = / + lUI + lU2 + .. ·e.o°, with lUie.o/'/, such 
that 8.7 = O. Rather than prove this in general for a theory 
of order n, we prove it only for n = 2. The general case is 
similar. 

Define 

(4.2) 

then 

(4.3) 
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Consider the following diagram: 

Then, 

~0(~2f + ~lll.Il) = ~~2f - ~1~oll.Il 

= - ~~ f - ~1~oll.Il 

= 0, using (4.3). 

So, by the exactness of ~o, there exists an ll.I2e02.2 such that 

~2f + ~lll.Il + ~oll.I2 = O. (4.4) 

Now, let us look at the 0 3,1 terms in ~(f + ll.Il + ll.I2): 

~0(~2ll.11 + ~lll.I2) = - ~2~oll.Il - ~~ ll.Il - ~1~oll.I2 

= ~2~d - ~I (~lll.Il + ~oll.I2) 
= ~2~d + ~I~d, from (4.4) 

=0. 

Therefore, there exists ll.I3e03,3 such that 

~~I + ~lll.I2 + ~oll.I3 = O. (4.5) 

It is easy to see that this argument can be continued and 
~(f + ll.Il + ll.I2 + ... ) = O. For a generic field theory, one 
might have to worry about a finite termination to this pro­
cess; however, we shall not concern ourselves with this point 
here. 

Thus to each weakly invariant function we can associate 
an equivalence class in HO(~). For a first-order theory, one 
could show that if ll.IeOo is such that ~ = 0, then there exists 
(at least locally in the phase space) a tf1e0 - I such that 
ll.I - ~tf1eOo,o, i.e., in each equivalence class there exists an 
invariant function. This allowed us to relate H ° (~) with the 
Dirac prescription for observables. However, for a higher­
order theory we do not expect such a decomposition of ll.IeOo 
and thus it is not clear how H ° (~) will relate to the standard 
class of observables. In order to analyze H ° (~) we first dis­
cuss another amibiguity in the formulation of constrained 
dynamics. 

The first-class characterization of a constrained system 
is a statement about the symplectic structure of the con­
strained surface. As such, the constraints used to describe 
this surface playa minor role in the dynamical understand­
ing of the system. So consider a new set of constraints ~a' 
where 

- Il t/Ja = Aat/JIl' (4.6) 

and A~ is a (locally) invertible transformation acting on the 
old constraints. Then ~a are also first class with 

{~a'~Il} = U"{.p~y, 
where 
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U"{.p = A:A~U~6 (A -I)~ + {Ara,A~ j}t/JT(A -In 

+ A: {t/JT,A~}(A -I)~ - Ap{t/JT,~}(A -I)~. 
(4.7) 

Thus we would expect that any formulation of the con­
strained dynamics should be invariant under transforma­
tions of the form ( 4.6). A problem with the Dirac analysis is 
that (4.6) is not a canonical transformation on the extended 
phase space.Y, and thus one has to explicitly show the rela­
tionship between the two formulations of the same theory. 
This introduces several undesirable aspects to the Dirac for­
malism, some of which we shall discuss later. 

One can show, at least for finite dimensional systems, 
that locally the ~a can be constructed such that U"{.p = O. 
Thus all first-class theories have a first-order formulation. 
This is a well known result, but has had little use in our 
understanding of constrained systems, since there are usual­
ly many other physical reasons for not changing the con­
straints, i.e., physical interpretation and locality. However, 
we shall find that (4.6) provides us with a method for ana­
lyzing HO(~) and will ultimately lead to a deeper under­
standing of the central role fermionic methods can play in 
constrained dynamics. 

For the constraints t/J a' we introduce the ghosts TJa and 
conjugate ghosts Pa' and construct the ghost number com­
plex (O,~). Similarly, for ~a we introduce :;;a and Pa and 
build the complex (0.,8). In order to study the relationship 
between these objects, we need to understand the 8 action on 
O. 

We know that ~OPa = t/Ja and 80 Pa = ~a' therefore 
~o (A~ P Il ) = 80 P a' This suggests that we should take 

Pa = A~ PIl' (4.8) 

since then 80 = ~o. 
Let us now investigate 8d,JeOo.0 = 0.°,°, 

8d = {~a,J}:;;a = {t/Ja,J}Atpr,P + t/J1l{A~,J}fJa. 
If we let 

:;;a= (A-I)tp~, 
then 

8d=~d-~oKd, 
where 

Kd= (A -1)~{A~,J}77YplleOI,1 

= (A -1)~{A~,J}:;;aP6enl,l. 

Similarly, one can show that 
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81TJa = 81 (ApijP) 

= {jITJ
a 

- {joKITJ
a

, 
where 

KITJa = - !(A -I);(A -1)~{A~,AphfTJTp<5En.2,1. 
(4.11 ) 

Using (4.10), one finds that 

8 1Pa = {jIPa + KI{jOPa - {joKIPa' 

where 

KIPa = - !(A -I)~(A -I)~ {A:,Ap}",rpK PT' (4.12) 

Thus, by using the transformations (4.6), (4.8), and 
(4.9), we have been able to show that 80 = {jo and 
8 1 = {jl + [K 1,{jO]' Hence, we can use the results of Sec. III 
to deduce that HO({j) = HO(8). 

As we have already pointed out, one can choose a first­
order 8, where we already know thatHo(8) corresponds to 
the observables. So we can deduce that, at least locally in the 
phase space, HO({j) will correctly characterize the observ­
able in a constrained theory of any order. 

V. CONCLUSION 

We have presented a homological description of first 
class constrained systems. The relationship between this 
construction and the generalized BFV formalism is accom­
plished by substituting the higher-order structure functions 
(smeared with the ghost fields) for the coefficients in (1.6), 
then {jY: = {Q,Y}, where the super-Poisson bracket is 
used. These methods have been shown to supply the same 
dynamical information as the standard Dirac analysis of 
such systems. 

It might be felt that, even if this is a novel and possibly 
unexpected result, all we have really achieved is an unneces­
sary complication of what was basically a simple way to un­
derstand constrained dynamics. In order to answer this criti­
cism let us discuss the motivation for this work. 

Ghosts were originally introduced into quantum field 
theory in order to construct a unitary expression for the S 
matrix of Yang-Mills theory. It was clear that the break­
down of unitarity was related to the existence of constraints 
in the classical formulation of these theories; however, the 
ghosts, and associated BRST symmetry, were taken to be 
purely quantum constructions, with no classical dynamical 
significance. In recent years, the homological background to 
these quantum techniques have taken on a central role in our 
understanding of such theories. One finds that even if the 
quantization procedure is incompatible with the gauge in­
variant structure of the system, it still respects the cohomo­
logical structure of the gauge theory.6 

Thus, it is natural to ask whether the central role played 
by homological methods in the quantum theory is an artifact 
of quantization or a reflection of a more fundamental de­
scription of such constrained systems. This question takes on 
a new significance when one is dealing with theories like 
gravity, where a perturbative understanding of the quantum 
field theory does not exist, so that we would like to introduce 
the homological structure as a consequence of some classical 
analysis. 
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We have shown that the use of homological methods is 
not an artifact of quantization, and indeed, the use of ghosts 
and their symmetries translates directly into the classical 
vocabulary. However, there is a surprising bonus to this ap­
proach which we have not discussed in this paper. The addi­
tional odd variables in this construction introduce a graded 
symplectic structure into the classical formalism. This struc­
ture has an unexpected interplay with the homological 
methods introduced in this paper. One finds that {j induces 
( odd) canonical transformations on this space. This could 
be understood for the BFV formulation for Yang-Mills the­
ory, since there the odd generator Q, (1.5), could be de­
scribed as the momentum map for the lift of the configura­
tion space Lie algebra cohomology. I However, that such a 
result holds for an arbitrary order theory is far from obvious 
and suggests that the full significance of the (graded) sym­
plectic structure should be investigated. 

One finds 7 that the additional odd degrees of freedom 
have subtly changed the structure of the allowed canonical 
transformations. In particular, one finds that the chain map­
pingSK and K' (3.7) and (3.8) are actually (even) canonical 
transformations. So, in the formalism, the replacement of t/> a 

by ~a [cf. (4.6)] is an allowed invariance of the theory, in 
contrast to the Dirac approach. This allows us a greater 
flexibility in describing constrained systems, and in particu­
lar, allows for a much deeper insight into how one should 
construct polarizations for constrained systems.7 

One can view the introduction of an odd variable into 
constrained dynamics as analogous to the introduction of a 
complex number into the study of polynomials. Indeed we 
propose that the methods presented in this paper are a natu­
ral and useful description of first class constrained systems. 
The full consequences of this approach are presently under 
investigation. 
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The radiative correction of nonlinear sigma models on supermanifolds that have invertible 
metrics is investigated. It will be shown that the equation of motion for Riemannian 
supergravity (nonstandard supergravity) is derived from a consistency condition. This 
condition can be satisfied in the case of supergroup manifolds. We shall explicitly construct the 
model following the methods of Braaten, Curtright, and Zachos [E. Braaten, T. L. Curtright, 
and C. K. Zachos, Nucl. Phys. B 260,630 (1985)] and of Witten [E. Witten, Commun. Math. 
Phys. 92, 455 (1984)]. Finally, super-Kac-Moody algebras of these models are derived. 

I. INTRODUCTION 

There has been much interest in two-dimensional non­
linear sigma models with the Wess-Zumino term.! It is 
shown that they have nontrivial infrared fixed points and, on 
these fixed points, its light-cone currents realize the Kac­
Moody algebra.2 Witten has used this algebra for bosoniza­
tion, that is, to show the equivalence of free fermionic theor­
ies and nonlinear sigma models. 

These models were extended to supersymmetric models, 
which have supersymmetry in two dimensions.3 This is an 
interesting extension because they have the super-Kac­
Moody algebra and the super-Virasoro algebra. In this paper 
we investigate another type of supersymmetric extension. 
For that purpose we introduce Grassmannian fields in addi­
tion to bosonic fields (which are often called coordinates of 
target space). This means that we construct supersymmetry 
in target space. 

In the following we adopt a formulation of geometry of a 
superspace following Ref. 4. But here we shall use the word 
geometry in a restricted sense; we are not concerned with 
global or topological structure in this paper. The formula­
tion presented below is only a formal description. The reader 
who is interested in a more rigorous treatment of supermani­
folds is referred to Refs. 4 and 5, for example. 

We shall investigate the nonlinear sigma model in that 
formalism, restricting ourselves to the case where the metric 
of target space is invertible. This is necessary for Riemannian 
geometry and background field expansion. This assumption 
leads to the equation of motion of nonstandard supergravity 
as a consistency condition. For that reason our model does 
not seem relevant to the string model. But we think that 
these models are interesting by themselves, because of their 
Riemannian structure and current algebra, which we shall 
see in the following. 

In the bosonic case, the parallelism of group manifolds 
plays an important role.6 We can use the parallelism of su­
pergroup manifolds to show the one-loop finiteness and con­
struct the super-Kac-Moody algebra as an extension of 
Refs. 6 and 2. 

II. RIEMANNIAN GEOMETRY OF THE NONLINEAR 
SIGMA MODEL ON A SUPERMANIFOLD 

We consider the nonlinear sigma model described by the 
following Lagrangian: 

.y = J,.,za agb J,.,Zb + ~ E"'" J,.,za aeb J"Zb, (1) 

where f.i represents the suffix of the two-dimensional coordi­
nate, Z a is the coordinate of the target space, and ag b and a e b 
are the metric and antisymmetric tensors. [They have the 
following symmetries: bga = ( _l)ab+a+b ogb' bea 
= - (_l)ab+a+b aeb.] Webriefty summarize the geom-

etry of the superspace in the Appendix. In this formulation, 
the equation of the motion from the above Lagrangian is 
given by 

J,., J,.,za + ra
be J,.,ze J,.,Zb _sa beE,.,,, J,.,ze J"Zb = 0, 

S a - ( l)a gad be - - e(db.e),' (2) 

where 

[ABCL =j(ABC+ (_l)A(B+ClBCA 

+ (_l)C(A+BlCAB). 

and where r a be and sa be are the Christoffel symbol and the 
torsion. 

We shall investigate the radiative correction to this 
model in the background field method. If we expand Z a 

around the classical value Z ~I in terms of the normal coordi­
nate Sa as 

za - za - f;-a + 1 r a f;-cf;-b + ... 
- cl - ~ 2 be~ ~ , 

then the action is written as follows: 

/ = /(0) + /(1) + /(2) + ... , 
/(0) = /(Z~!), 

/(1) = f d 2x{ - 2 (a,.,Z a D,.,agb Sb)}, 

/(2)= f d 2x{(SaD,.,)agb(SbD,.,) 

(3) 

(4) 

- J,.,Z~I agb R bcdeS ' J"Z~I SC(~,.,,, - E,.,,, )}, 

where 
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vaDI' = V b{6a
b al' + ( _ 1)b(a+ I) 

x (ra
be6l'v -sabeEl'v)avZ~l} 

and R a bed is the generalized Riemannian tensor given by the 
connection Fa be = r a be - sa be' 

Ifwe define the fluctuating quantum field on the tangent 
space using the vierbein gab = Va iVb j1]ij ( - 1 )ai by 

t i = ViaS a, (5) 

then the vacuum function (ti(x)t J( y» is proportional to 
1]ij [ 1]ij is the inverse of 1] ij and satisfies 1]ii = ( - 1) ij1]ij, it is a 
generalization of 6ij in the bosonic case]. Then the on-shell 
one-loop divergence in (eiI

) is proportional to 

Rab =RaCbdg<d( -1)be. (6) 

So the one-loop finiteness of this model is equivalent to the 
generalized Ricci flatness (R a b = 0) of the target space in 
the Riemannian formalism. This is the equation of motion of 
nonstandard supergravity, i.e., the Riemannian supergra­
vity.7 The Riemannian supergravity chooses the supergroup 
as a tangent group. This corresponds to our assumption of 
the invertibility of agb' (Although we can interpret the new 
superstring action of Green and Schwarz as a nonlinear sig­
ma model on a supermanifold,8 its metric does not have the 
inverse.) 

III. NONLINEAR SIGMA MODEL ON SUPERGROUP 
MANIFOLD 

If we construct the nonlinear sigma model on a super­
group manifold, this model satisfies the generalized Ricci 
flatness condition, more precisely R a bed = 0 in this case, 
when the coefficient of the Wess-Zumino term is properly 
chosen as in the bosonic case. 

A super Lie algebra is characterized by the following 
commutation relation9

: 

[W/Ai, W/Aj ] = iw/w/I/Ak , (7) 

where the Wi are parameters. Here we asume i + j + k = 0 
(mod 2) for a physical application. In the following we use 
matrix representation of this algebra, so we regard Ai as ma­
trices which satisfy 

str AiAj = 1l;j [i + j = 0 (mod 2)], (8) 

where str is supertrace and we assume the invertibility of 1] ij 

for further construction of gab' The lijk defined by lij 11] Ik is 
fully antisymmetric in ij,k with an extra factor, i.e., 

.. ·k 
lijk = - ( - 1)1) ljik = - ( - l)J J:kj' (9) 

For a given superalgebra, we can parametrize the group ele­
ment as 

U = exp(iOS)exp(ixn, ( 10) 

where Si and Ti are the fermionic and bosonic generators, 
respectively. Hence Cartan's left invariant one·form is given 
using the inverse of 1]ij' by 

DZ i = - istr(U- 1 dUAj )1]ij. (11) 

[These one-forms are invariant under right transformations 
0-0', x-x', where 

gU = exp(iO 'S)exp(ix'T) , 
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and are transformed as adjoint representations under left 
transformations 0-0', x-x', where 

Ug = exp(iB 'S)exp(ix'T).] 

This one-form satisfies the following Maurer-Cartan 
equation, which is important in the following discussions: 

d(DZi) =~DZIDzmllmi. (12) 

The vierbein Va i, which is defined by DZ i = V ~ dZ a, satis· 
fies 

Via;b = -! (_1)amV l
a vmbllmi (13) 

as a result of the Maurer-Cartan equation and the symmetry 
of r a be and covariant constantness of agb' (See the Appen­
dix.) 

The kinematic term and the Wess-Zumino term are con­
structed as 

10= - J d2xstr(U-laI'UU-laI'U), 

Iwz =~11 r str(U- 1 dU)3, (14) 
JM 3 

where we omitted the overall coefficient of the action for 
simplicity. (The discussion about quantization of coefficient 
of the WZ term is found in Ref. 10.) The Iwz can be written 
as 

Iwz = ~ 1] J d 2x EVI' al'za aeb avz b, 

where 

(15) 

e = 1 #.. Vi Vj V k (_ l)b(k+a) +e(j+k+a+b) [ab,e], 2J i.Jk e b a • 

(16) 

After these, the Riemannian tensor R a bed is easily calculated 
as follows. The curvature two-form 

R ij =! ViR abed dZd dZ e V b
j 

(vai is the inverse of Via)' 

is written as 
- j i ; k R j = dw j - W kW j' 

Wi
j = VioDV°j' 

Wi} =! (1 -1])Dzmlmji, 

Rij =!(1-1]2)DZIDZkfimilkjm. 

Therefore R abed = 0 when 11 = ± 1. 

(17) 

(18) 

(19) 

An example in the case of U( 1/1) is given in Ref. 11. 
(The notations of Ref. 11 are a little different from those of 
this paper.) The Lagrangian is given by 

.5t' = 2aI'X1{aI'X2 - (i/4)(i11 al'i11 + {}2 al'{}2)} 

+ i al'{}2 al'{}l 

± (i/2)El'v aI'X1({}1 av{}l + {}2 a v{}2)' (20) 

We notice that this model has the WZ term although the 
bosonic part is a trivial U( 1) EB U( 1 ). 

IV. LIGHT-CONE CURRENT ALGEBRA 

It has been shown that the above model is (one-loop) 
finite. Next we investigate the current algebra following Ref. 
2. 
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It is easy to show that these models have conserved cur­
rents (light-cone currents) 

a_J+ =0, J+ = u-1a+u, 

when 7] = 1, (21) 
a +J _ = 0, J _ = a _ u u - 1, 

where r=x+ = (1/~)(XO+XI), q=x- = (l/~) 
X (xo - x'). Algebras of these currents are constructed by 
the canonical quantization model. In the following we fix 
7]=1. 

Our Lagrangian is written as 

(22) 

where Aa is independent of a+(pa. The (super-) Poisson 
bracket is defined as 

{A,B} = Fab(aA )(aB) , 
PB a¢b a¢a 

(23) 

where Fab is the inverse of 

a a 
F =-A - A-a b a¢a b a a¢b· 

If we choose target space vectors i8Z I = str( U -I dUAl) 7]ij 
as variables instead ofthe coordinates za, then IFj is easily 
obtained from a variation of action I, 

8I = K f dr dq str( U - 1 8 U :q ( U -I :r u)), 

comparing with 

f I d¢1 
8I = dr8¢ IFj -, 

dr 
where K is a normalization constant. This leads to 

d 
IFj =K7]ij ® dq' 

Fij= (lIK)7]ij®{}(q_ql). 

As a result, the Poisson bracket of 

X = str( A ~~ U -I) and Y = str( B ~~ U -I) 
is 

{X,Y}PB = - .l8(q - q')str{A,B} dU U- I 
K dq 

- .l8'(q - q')str AB, 
K 

(24) 

(25) 

(26) 

(27) 

where A and B are elements of the super-Lie algebra. Then 
the quantum mechanical commutation relations of J _ I 
=Kstr(a_UU-IA I ) are 

[J _ I (q),J _j(q')} = if/J _ k (q)8(q - q') 

+ iK7]ij8'(q - q'). (28) 

The above current algebra is a superversion of the Kac­
Moody algebra. We must notice that this "super" corre­
sponds to the supersymmetry of target space and not to that 
of two dimensions. 
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V. CONCLUDING REMARKS 

We have investigated the nonlinear sigma model on a 
supermanifold. The finiteness condition of the nonlinear sig­
ma model leads to the equation R a b = 0, which corresponds 
to the Riemannian supergravity. The nonlinear sigma model 
on the supergroup manifold can satisfy this condition and 
have light-cone currents that realize the Kac-Moody alge­
bra. 
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APPENDIX: CONVENTIONS 

De Witt has introduced four types of vectors, 

where va and Va are contravariant and covariant vectors, 
respectively, and av and a V are defined as av = va, 
a V = ( - 1)ava. We use conventional ( - 1)a, that is, ± 1 
corresponds to bosonic or fermionic properties of index Q. 

The above formulation is free from troublesome factor 
( - 1)a in many cases. The contraction is written as 

va agb bV= va a V= Va avo 

where agb is the metric tensor. There are two types of deriva­
tives, right and left ones. We define right derivatives as 

d 
I,a = I dz"· 

And covariant derivatives are defined with Christoffel sym­
bols I'" be as 

Va;b = Va,b - Vc r c ab' 

va,b = va;b + ( - 1)c(a+ l)vcra
Cb . 

The Christoffel symbols I'" be are defined to have the symme­
try ra

be = ( - 1) bera
Cb ' and are written in consequence of 

this symmetry and covariant constantness of gab as follows: 

ra
be =!( - 1)agda(gab.c + ( - 1)begac,b 

- ( - 1 )a(c + blgbe,a). 

Here, gda is the inverse of metric agb' i.e., 

agcg<b = 8b
a, ~c cgb = 8a

b. 
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The non trivially gauge-invariant Lagrangian field equations of arbitrary helicity are 
constructed directly by integration of the corresponding non-Lagrangian Poincare field 
strengths based on the Lorentz irreps of unmixed spin. All the details of the gauge properties of 
the Lagrangian formulation of the free massless Poincare irrep fields are derived systematically 
and uniformly for arbitrary spin from the very simple field-strength formulation as a direct 
consequence of an integration process. The gauge transformations, including the tracelessness 
ofthe gauge parameters, the form of the fermionic and bosonic potential field equations (first-, 
and se~ond-order, respectively), and the vanishing double trace of the higher-spin (>D 
potentials are all seen to be natural consequences of the integration of the classical equations 
for the field strengths without need for appeal to other requirements such as those of quantum 
field theory. Thus the equivalence (modulo gauge freedom and derivability from a 
Lagrangian) of the field strength and standard potential formulations of classical free fields are 
demonstrated explicitly, and uniformly for arbitrary helicity. 

I. INTRODUCTION 

The study of the Lagrangian formulation for arbitrary 
spin, in which all field equations and subsidiary conditions 
should be derived from an action principle, was started in 
1939 by Fierz and Pauli. I Their classical approach began the 
now well-established "Fierz-Pauli program" for the setting 
up of interacting field theories free of certain algebraic path­
ologies such as the loss or gain of degrees of freedom on 
interaction. However, the technique was exceedingly diffi­
cult to extend beyond spin-2 even for the free fields and in­
volved increasingly large numbers of auxiliary parameters. 
The well-known Lagrangian forms of the Poincare fields of 
spin-l (Maxwell or Proca2) and spin-2 (linearized Ein­
stein l.3 or massive gravity4) were first supplemented to in­
clude the spin-~ fields by Rarita and Schwinger in 1941. The 
spin~ Lagrangian was formulated by Kawakami and Kame­
fuchi6 in 1967 while Chang,7 also in 1967, extended the La­
grangian formulation of bosonic fields to spins-3, -1, and -4. 
The culmination of efforts to extend the formulation to arbi­
trarily high spins came with the work of Singh and HagenS in 
1974, who completed the massive formulation for both bo­
sonic and fermionic fields. The corresponding massless La­
grangian fields for arbitrary spin j were then obtained by 
Fronsdal and Fang9

•
10 in 1978. Many of these developments 

in the theory of higher-spin fields, especially those up to 
spin-2, are reviewed in the early chapters of Wiltshire. II 

A further major step in the analysis of the massless fields 
was the analysis by de Wit and Freedmanl2 in 1980 where 
the equations of higher-spin massless fields were very ele­
gantly based on a hierarchy of generalized Christoffel sym­
bols with simple gauge properties. The highest-order Chris­
toffel symbol is a gauge-invariant generalized Weyl 
(vacuum Riemann) tensor which plays the role of a higher­
spin field strength. 

A feature common to many treatments of massless high-

aJ Present address: Department of Physics, State University of New York at 
Stony Brook, Stony Brook, New York 11794-3800. 

er-spin theories has been the extensive a priori use made of 
gauge principles. Appeal is also made to other techniques 
and results that may ultimately have their basis in physical 
principles arising either from quantum field theory or from 
the theory of interacting fields rather than solely from classi­
cal free field theory. Some of these gauge properties, in parti­
cular, have been derived, ab initio, only for certain lower­
spin cases. Quite often the form of the gauge transformations 
of the spin:i Lagrangian potentials are assumed at the outset 
by plausible generalization of these well-known lower-spin 
cases. These forms are then validated by demonstrating, 
with the use, for example, of projection operator techniques, 
or by counting components, that the equations to which they 
apply are indeed those of Poincare irreps of spin:i, free of 
lower-spin contributions. In the process of demonstrating 
that this is the case, one may also demand, as is well known 
to be necessary for lower spin, that bosonic field equations be 
of second order and the fermionic of first order. These re­
quirements are, of course, closely related to energy positivity 
and the existence of a positive-definite probability density as 
demanded by the eventual desire to quantize the field theory 
being constructed. 

It is our contention that some of these assumptions and 
techniques are unnecessary in the context of classical free 
field theory and that the form of the gauge-invariant Lagran­
gian fields of arbitrary spin may be obtained, by an essential­
ly algebraic analysis, from the much simpler features of the 
field-strength Poincare irreps. For this to be so, the analysis 
should supply, as a consequence of the field strengths and the 
equations they satisfy, all the details of the gauge properties 
of the standard completely symmetric Lagrangian poten­
tials. We shall denote the latter by cp = (CPI'I"'I') for bosonic 
fields and 1/1= (1/11'1"'1') = (1/II'I·'·I'.a) for fermionic fields, 
where a is a Dirac index (which we shall almost always 
suppress). 

To achieve this goal in a systematic, uniform manner we 
shall, in essence, reverse the technique of de Wit and Freed­
man,12 Burgers,13 and Berends, Burgers, and van Dam, 14 

448 J. Math. Phys. 28 (2), February 1987 0022-2488/87/020448-09$02.50 © 1987 American Institute of Physics 448 



                                                                                                                                    

who begin with Lagrangian potentials (satisfying relatively 
involved field equations), from which they define field 
strengths in terms of derivatives. We show that the field 
strengths of arbitrary spin, based on unmixed-spin Lorentz 
irreps which satisfy such simple differential equations that 
they can be considered almost trivial, may be systematically 
integrated to obtain correctly constrained Lagrangian po­
tentials satisfying the appropriate gauge-invariant field 
equations. The nontrivial gauge invariance of the Lagran­
gian potential formulation arises naturally from the arbitrar­
iness necessarily introduced with each integration. Much of 
that arbitrariness can be removed by taking advantage of the 
evident freedom to select the higher-spin potentials to be in 
their standard symmetric and, for higher spin, zero double 
trace form. There is, in fact, no freedom of choice in the 
symmetry type of the potentials for spins-l and -~. Various 
choices of symmetries are possible for spin-2 and ., but these 
ultimately lead to equivalent potential formalisms. For spin 
> 3 the choice of symmetries made here may be necessary in 
order to apply the Poincare Lemma (Appendix B) suffi­
cientlyoften (see Secs. IV and V) to reach the Lagrangian 
potentials from the field strengths. 

One of the effects of our analysis is thus to demonstrate 
the equivalence, for arbitrary spin, between the non-Lagran­
gian Poincare formulation based on the unmixed Lorentz 
irreps, (j,O) ~ (O,j), and the corresponding Lagrangian for­
mulations based on the mixed-spin Lorentz irreps (j/2, 
j12), of Fierz and PaulV and (n + 1)/2, n/2)~(n/2, 
(n + 1 )12), where n = j - ~,ofRarita and Schwinger.s The 
principal results of this paper have been reported briefly in 
Doughty and Collins. 15 

We shall introduce the arbitrary-spin field strengths in 
Sec. II, outline the lower-spin potential results in general 
terms in Sec. III, and establish the arbitrary integer-spin re­
sult in Sec. IV. The minor modifications required for the 
half-odd-integer case are provided in Sec. V. Section VI dis­
cusses the possibility of arriving at potentials with nonstan­
dard symmetries. Our main conventions are set out briefly in 
Appendix A. The Poincare Lemma is described in Appendix 
B and three extensions to it are established in Appendices C, 
0, and E for use in Secs. IV-VI. 

II. ARBITRARY-SPIN FIELD STRENGTHS 

The symmetries of the arbitrary-helicity tensor and ten­
sor-spinor field strengths are discussed by Weinberg16 and 
Rodriguez and Lorente l1 in Dirac notation. Wiltshire11 and 
Doughty and Wiltshire18 used a Weyl spinor analysis to sys­
tematically set out these and other symmetries. 

For any spin';; we begin, as in Collins 19 and Doughty and 
Collins,20 with a totally symmetric 2 (2j + 1) -component 
Dirac multispinor t/J = (t/Ja •... a) (where a i = 1,2,3,4), 
obeying the very simple massless Bargmann-Wigner equa­
tion, 11.18.21 ~t/J = 0, and the Y5 condition appropriate to zero 
mass. These provide the unique, linear, parity-covariant, 
zero-mass Poincare irrep equations oflowest possible order. 
Using the Bargmann-Wigner equation as a starting point 
has the enormous advantage of providing the same almost 
trivial structure for all nonzero spins. For spino! this equa­
tion is simply the massless Dirac equation. For spinj> 1 we 
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define,19,20 from t/J, a field strength Fby 

F.,v"'''v = (l)"Tr("'Tr(t/JC-1y"v )"'C-
1
y"v)' 

r-l I r-n,. 4 ,-1 I r-,. .. 

(1a) 

where C is the charge-conjugation matrix, Yl-'v = !i(yl-'Yv 

- y v Y I-' ) is the generator of Lorentz transformations in the 
Dirac irrep, and F is a tensor for integer spin j = n and a 
tensor-spinor with one free Dirac index (suppressed) for 
half-odd-integer spinj = n + ~. Construction of the inverse 
relation 

t/J= (P" FI-'.v."'I-'.v.(YI-'·v·C ® ... ®yl-'.v·C), (1b) 

shows that F and t/J contain the same information. A Major­
ana t/J corresponds 19,20 to a real tensor or a Majorana tensor­
spinor F, and FI-'.v."'I-'.v. is equivalent to the corresponding 
quantity of Burgers13 and Berends et al. 14 The following 
symmetries and field equations 11-20 are deducible from the 
complete symmetry on all indices of t/J and from the proper­
ties of the Bargmann-Wigner equation it satisfies: 

FI-',V,···l-'iV,."I-'.V. = FI-',v""[l-'iV,] "'I-'.v.' (2) 

FIJ-I VI , • 'I-'IV," 'P.kVk'· 'J',.V", = Fl'lv", 'PkVk" 'P.IV,"· 'I'"VII ' (3) 

FI-'.V,···I-'._IV._I[I-'.VO,A I =0, (6) 

aAFAV'1-'2V2"'l-'oVo = 0, (7) 

OFI-',v."'I-'.v. = 0. (8) 

For the fermionic case, F also satisfies 

yA F AV ... " ,. = 0, ~F" v ... " v = 0. 
I r-n,. r-l I """" 

(9) 

For both cases these equations have no gauge freedom and 
ensure 19.20 that F describes a massless Poincare field of spinj. 
For n = 1, Eq. (3), (4), and (5) are clearly vacuous and the 
rest of this section is then trivial. We define an associated 

A 

field strength, F= r("), by 

(10) 

[The index levels used in ( 1 0) were chosen to ease display of 
the index ordering and symmetrizing.] The field strength F 
corresponds to the generalized Riemann tensor or tensor­
spinor of de Wit and Freedman12 and has the following sym­
metries: 

A A A 

Fp, ... p.I-' .... I-'. = F(p,···po)(JJ.,···JJ..) = ( - I)" FJJ.,···JJ..P,"'P., 

A 

Fp""p._I(P.JJ. •... JJ..) =0, 

yAFAP,"'P.JJ. •... JJ.. = ° (fermionic case). 
A 

Furthermore, F may be recovered from F via 

(11 ) 

(12) 

(13) 

(14) 

FP'JJ.·p,JJ.,'''P.JJ.. = [2"/(n + 1)] FP,[P'''·[P.JJ..l .. ·JJ.,IJJ.l, 

(15) 

showing that F and F contain the same information. We 
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apply the Poincare Lemma repeatedly to F to obtain the 
same hierarchy of generalized Christoffel symbols r(i) 
(i = n - 1, n - 2, ... ,1) used by de Wit and Freedman. 12 VI-

A 

timately we demonstrate that, associated with F, there exists 
a nontrivially gauge-invariant Lagrangian potential r(O) 
(==(fJ or ,p for the bosonic or fermionic cases, respectively) 
which obeys the standard arbitrary-spin, classical free field 
equation. 

III. LOWER-SPIN POTENTIALS 

The analysis is well known, and almost trivial, for the 
Maxwell field and was demonstrated for the massless spin-2 
(linearized Einstein) field by, for example, Pirani.22 Wilt­
shirell and Doughty and Wiltshire18 show that the spin-~ 
gauge-invariant Lagrangian equations may be constructed 
directly by integration from the field strengths paralleling 
the spin-I and -2 results. Collins19 and Doughty and Col­
lins20 note that the integration method may easily be ex­
tended to spin1 which has many features in common with 
the spin-2 case. The general method presented below in Secs. 
IV and V is essentially uniform for all values of spin, apart 
from some of the steps or conditions being vacuous in lower­
spin cases corresponding to a lack of sufficient indices. There 
are also, of course, minor differences between the integer 
(bosonic) and half-odd-integer (fermionic) spin cases. 

For spin-I, Fpv is simply the Maxwell field strength and 
one of its field equations, a[pFVA J = 0, constitutes an inte­
grability condition on Fpv so that the Poincare Lemma (Ap­
pendix B) guarantees the existence of the electromagnetic 
potential AI' satisfying Fpv = ap Av - a v AI" It arises di­
rectly from this integration that Fpv is invariant under 
8Ap =ap 5 (with5an arbitrary scalar field) and hence that 
the first-order field equation, ap FPV = 0 (which becomes 
Maxwell's equation for the potential, DA I' - apa'A = 0) is 
nontrivially gauge invariant. 

For spin-~ the steps are almost identical. The equations, 
a[p FVA J = 0, satisfied by the tensor-spinor field strength F 
imply the existence of a vector-spinor potential ,p = (,pI') 
(it should not be confused with the multispinor ,p) satisfying 
Fp" = ap ,pv - av ,pI" which is invariant under 8,pp = apE 
(with E an arbitrary spin-! Dirac spinor). The vanishing y 
trace of the field strength, yp Fpv = 0, yields the simplest 
form, ~,pp - ap r-,p = 0, of the gauge-invariant Rarita­
Schwinger equation,S,1I while ap FP" = 0 yields differential 
identities on the potentials also derivable directly from the 
field equation for the potential. It should be noted that these 
procedures are automatically and naturally supplying equa­
tions that are already of the standard type for each statistics, 
namely equations of second order for bosonic fields and of 
first order for the fermionic. Any second-order differential 
equation may, of course, be rewritten in first-order form by 
the introduction of auxiliary variables. However, we disre­
gard such a recasting as it obscures rather than clarifies the 
structures involved. 

For spin-2, the Poincare Lemma must be applied twice 
to obtain3,11.18-20.22 the symmetric massless Fierz-Pauli or 
linearized gravity potential hpv ==(fJp,,' The first application 
of the Poincare Lemma yields a tensor r PI''' which has a 
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freedom (partly gauge) that is largely (but not entirely) 
fixed by selecting specific symmetries for r ppv' There are 
several alternative ways to do this but each choice of symme­
tries is essentially equivalent in that each leads ultimately to 
the same potential hpv' and the differences amount only to 
redefinitions of the intermediate r ppv' After setting out the 
general arbitrary-spin derivation in Secs. IV and V, we com­
ment briefly on these alternatives in Sec. VI. An algebraic 
equation obeyed by F ApI''' induces the necessary r ppv differ­
ential equation, which permits the Poincare Lemma to be 
applied the second time, guaranteeing the existence of the 
potential hpv ' The residual arbitrariness in rpp" leaves hpv 
with the gauge freedom, 8hpv = ap 5" + a" 51" The mass­
less Fierz-Pauli or linearized gravity field equations (in non­
Lagrangian Ricci form), Ohpv -2() Aa(p hV)A 

+ ap av h = 0 (where h = h \), arise from the zero trace, 
FA,."AV = 0, of the field strength. Combining this equation 
with a multiple of its own trace gives the Einstein Lagran­
gian form, which is suitable, by its identically divergence­
free left-hand side, for coupling to a conserved source. 16 

The spin-~ steps are essentially the same as for spin-2 
except that it is possible to fix r ppv so that it obeys 
yAr APV = 0 and this algebraic condition supplies 19,20 the de­
sired first-order differential field equation for the potential 
,ppv' For spin-3, the Poincare Lemma is applied to the field 
strengthFp,P1P,p,P2P, three times, yielding the two interme­
diate tensors of de Wit and Freedman,12 r(2)p,P2p,p2p, , 
r(\)pp,p,p" and the completely symmetric Lagrangian po­
tential (fJp, 1'21', (== r(O». The Lemma also allows one to im­
pose the condition, r(2)\p,p2p, = 0, which yields the ap­
propriate second-order field equation. 12 Indeed, for 
arbitrary spin>~, second-order bosonic field equations are 
supplied by the zero trace of r(2) and first-order fermionic 
field equations are supplied by the vanishing y trace of r ( 1 ) • 

The only remaining new feature for spin>l is the zero 
double-trace condition on the higher-spin potentials, namely 
y A,p A P Pp •. .. p. = 0 for fermionic fields and (fJ \ P PI'" .. Pj = 0 for 
bosonic fields. As will be seen in the following section, this is 
closely related to the Bianchi identity of de Wit and Freed­
manl2 also referred to as a source constraint (Burgers l3 and 
Berends et 01.14). 

IV. ARBITRARY INTEGER-SPIN POTENTIALS 

All the lower-spin results summarized in the previous 
section are implicitly included in our derivation here of the 
arbitrary-spin case although, in practice, each of the cases 
with spin-I, -~, -2, and -~ can be treated individually some­
what more simply. We shall omit explicit mention of the 
spin<~ cases in order to avoid repeated qualification. 

Equation (6) and the Poincare Lemma ensure the exis­
tence of a tensor field A such that 

FP,P,···P._lp._lP.p. =AP""P._lp''''p._dp.,P.J' (16) 

This A is free to be varied according to 

with B arbitrary, without affecting the value of F. By (5) we 
could take A to be traceless across any pair of indices in 
{PI"'" Pn _ I' ILI""""n _ I}' However, since it will turn out 
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to be possible to ensure zero trace only on the P indices of the 
generalized Christoffel tensor, r<1I - I), this is all that we 
shall impose on A, namely 

PiPJA - 0 1] P ... p ... p ... p " ... " -
J i 'j II - 1,-1 rn 

(n>3). (18) 

This condition partially fixes the freedom (17). The tensor 
field A may still be freely varied according to (17) with B 
restricted to be traceless on its p indices. We define 

Then by (10) 

F"'P""Pn-tPn 
J.',···Pn-llln 

(19) 

C P1"'Pn-t "'" _ Cp,"'Pn-1 Pit 
= < 1', ... 1'. _ 1 1'.) < 1', ... 1'. - 1 >1'.)' 

(20) 

and 

BCp ... p " ... " ,,=B<p ... p )<" ... " ),,' (21) I ,,- 1 r-I rn - I r-II I II _ I ,.-. ,-,. _ 1 ""n 

is allowed. Thus C, like A, is traceless across any pair of p 
indices 

(22) 

and B in (21) must be similarly restricted to preserve this 
condition. Equation (4) implies 

A p , .. ·P. _ II',·· .1'. _,[ 1'. _ 11' •• P. I = 0, (23) 

and similarly 

AP,···P.-,I',··· ···1'.-1 -0 (i=I, ... ,n-1). 
[I', 1' •• p.I -

(24) 
Hence 

C p ,···P._II"···I'._,[ I'._II' •• A I = O. (25) 

Results (19) and (25) allow an extension of the Poincare 
Lemma (PLX1, Appendix C) to be applied, yielding the 
existence of a tensor B, as in (21), such that 

rp<II.:-:pl) " ... " " 
I ,. - 1.-1 rn - 1,-" 

satisfies 
r<II-I) - r<II-1) 

p,···P._II',···I'. - <P,···P._I)(I',···I'.l' (27) 

and hence 
'" Fpl " 'PII _ I PIII'I" 'I-'" _ I p" 

= rp<II.:-:pl) " ... " "P _ rp<II.:-:pl) p <" ... " " ). 
I II _ I ,-1 r-II _ I rll' II I II - I "r-I '-11 - I- r-II 

(28) 

PLX 1 allows B to be chosen to be traceless on its p indices. 
Hence one may restrict r<1I - I) to satisfy 

r<II-I)A -0 ('3) 
Ap, ... p._II', ... I'.- n". (29) 

Even if C were traceless across any pair in {Pi'" 'PII _ I' 
/l-i' .. '/l-II _ I}' Eq. (29) would still be the maximum restric­
tion that could be imposed on r<1I -I). The restrictions (27) 
and (29) eliminate all those freedoms in r<1I - I) that may be 
fixed solely by choosing the algebraic symmetry of r<1I - I). 

Nevertheless, Eq. (22) does not exhaust all the freedom 
of ( 17). Consider the variation 

Br<II-1) - Y 
PI" 'PII - 11'." '1',. - PI" 'p" - 11'1" 'I'll - 1- p,.. (30) 
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Topreservethesymmetriesofr<II-I) the tensor Ycan, with­
out loss of generality, be restricted to obey 

Y p , ... P._II', ... I'._1 = Y<P, ... P._I)(I', ... I'._I) (31) 

Y\p, ... P._II" ... I'._1 =0 (n;;.3), (32) 

and, furthermore, Y must obey 

(33) 

This implies 

Y p , ... P._II', ... I'._'[I'._I.I'.1 = 0, (34) 

and hence, by our second extension to the Poincare Lemma 
(PLX2, Appendix D), there exists a field S such that 

Yp ... p " ... " = I:p ... p " ... " , I 11-1.-1 r-"-I ~. I II-I'r-I ,-"-1 

Sp ... p =S<p ... p )' 
I II-I I II-I 

I:\p ... p =0 (n;;.3). ~ 3 11- I 

(35) 

(36) 

(37) 

In other words, r<1I - I) has the residual gauge freedom 

Br<II-1) - I: 
P,···Pn-IJ.l.t··'!J.1I - ~PI···PII-I'P.I···IJ.II' 

(38) 

with S satisfying (36) and (37). This freedom is the most 
general variation of r < II - I) that maintains the symmetries of 
r<1I - I) and the value of F but it is insufficient to impose 
further covariant symmetries on r<1I - I). In fact, (38) is the 
gauge freedom of r<1I - I) corresponding to the usual gauge 
freedom 12 that will be deduced below for the spin n potential 
which corresponds to it. 

A further n - 1 essentially identical integrations with 
the Poincare Lemma can now be used to recreate the hierar­
chy of generalized Christoffel symbols and potential, r < II - 2) 

···r<I), r<O)=qJ, of de Wit and Freedman. 12 These can be 
carried out by induction using the above derivation of 
r<II - I) from r<lI) =F as the initial step. Given m> 1, we 
suppose that 

r Im + I) _ rIm + I) 
P,···Pm+llI-t'·'J.L" - (p,"'Pm+I)(Il,"'Pn)' 

rIm) - rIm) 
P,···Pml',···I'. - < P,···Pm)( 1' .... 1'.)' 

r <m)A - 0 ( '2) 
Ap, .. ·Pml' .. · .1'. - m", 

r<~.:I) ... 
PI PmPm+ 11'1 1l1I- Il'n 

= rp<~!.p " ... " "P I mrl '-11-1 rll' m+ I 

and the freedom 

(39) 

(40) 

(41) 

(42) 

Br~~!.Pml'''··I'. = am SP,···Pm<I'm+2···I' •• I',···l'm+ I) , (43) 

where am = (- ),,-m-I (n -1)!/(n - m -1)!m!. We 
then deduce the existence of rIm - I) satisfying the corre­
sponding relations for m - 1. 

Equations (39), (40), and (42) imply 
o = rIm + 1) 1'2·· .1'. 

P,···Pm-l[ PmPm+ 1 1', I 

= rIm) 1'2·· .1'. 
P .. · ·Pm - I! Pm 1', .pm + 1 I 

- [lI(m + 1)] rIm) "' ... ". , (44) 
Pl"'Pm-l[PmPm+1 '~II 

and therefore 

rIm) 1'2·· .1'. = O. 
P,···Pm-I!Pml', .Pm+11 

(45) 
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Hence by the Poincare Lemma, 

rp(~)'p [p "I""'" =Gp"'p " .. ,,,[,, pI' (46) I m-l mr-I,-2 r-n I m-I,-2 r-n rl' m 

for some tensor G such that 

G'\P3"'Pm_I/-""'/-'. = 0 (m - 1;;;.2). 

Furthermore, 

with 

H'\p "'P " "'" = 0 (m - 1;;;.2), 3 m - 1,-1 r-n _ I 

(47) 

(48) 

(49) 

(50) 

leaves r~~!'Pm_'[Pm/-',]/-'2"'/-'. invariant. Equations (40) and 
(46) imply 

Gp .. 'P " .. ," [ " ,,' I = O. 1 m - 1,-1 r-n - 2 r-n _ I r-ntA 
(51 ) 

This equation with (47), (48), and PLX1, imply the exi~ 
tence of a tensor H, as in Eqs. (49) and (50), so that G 
defined by 

'" 
Gpl " 'Pm -1 PI" 'Il" =Gpl " 'Pm- II'," 'J.i-" 

(52) 

satisfies 

It is not necessarily the case that 

'" 
GP,"Pm_I/-""'/-'. = G(P,"Pm_I)(/-""/-'.) 

or even tha~the two are proportional. The maxi~al residual 
freedom of G which preserves the symmetries of G and leaves 
rem) invariant can be deduced exactly as for the sequence 
(30)-(38) and has the form 

'" 
6Gpt " 'Pm _ I J.l1·· 'Jl" = PPI" 'Pm _ 1.1l,'· 'I'n' 

where 

P-<,p '''P = 0 (m - 1;;;.2). 
i'\. 3 m- t 

(56) 

(57) 

(58) 

On the other hand, (43) allows a freedom t>Gp ", 'Pm _ I 1-'," '/-'. 

Proportional to tp "'P (" .. ,,,,, .. ," ). This causes 
1m-I r-m+l r-n.,-I r-m 

r~~!'Pm_'[Pm/-,,]1-'2"'I-'. to vary but only within the freedom 
'" (43) which leaves F invariant. Symmetry (39) and equa-

tions (42) and (55) imply 

_ r(m)p''''Pm-1 I-""/-'. 
- [Pm .Pm+11 

_ [nl(m + 1)] r(m)p,"Pm-1 (1-',"'/-'.-1'/-'.) 
[PmPm+11 

_ r(m)PI" 'Pm - 1 PI" 'Il" 
- [Pm ,pm + II 

+ [nl(m + 1)] G P, "Pm - I( /-,," '1-'.- I .1-'.). 
[Pm,pm+ II 

(59) 

Therefore the Poincare Lemma implies that there exists a 
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tensor J such that 
'" rp(~!'p " .. ,,, + [nl(m + 1)] G p "'P (" .. ," ,,) 

I mr-I r-n 1 m r-l r-n-l',-n 

J-< -<P "'P " .. '" = 0 (m - 1;;;.2). 3 m-Ir-I r-n 

Equations (59), (53), and (55) imply 

JPI"'Pm-t P2"'P" 
[ /-',.Pml 

_ r(m)PI"'Pm-t Jl2'·'J.Ln 

- [Pml-" I 

+ [lI(m + 1)] GP,"Pm-1 1"'''. 
[Pm .1-', J 

(60) 

(61) 

(62) 

= [ml(m + 1)] G P,"Pm-I/-'2"'/-'. • (63) 
[1-'1.Pm I 

'" Hence JP,"Pm_I/-'I"'/-'n - [ml(m + 1)] GPO"Pm_II-""l-'n 

obeys all the conditions ofPLX2 which ensures the existence 
ofa tensor P, as in (57) and (58), satisfying 

Jp "'P " .. ,,, - [ml(m + 1)] Gp "'P " .. ," 1 m - I r-I r-n I m - I r-l r-n 

We use freedom (56) and rescale to define 

r~~'-:p~_I/-""/-'. = [ml(m + 1)] GP,"Pm_II-""I-'. 

(64) 

- [ml(m + n)] PPI'''Pm-I.I-''''l-'m' 

or, equivalently, 
(65) 

r(m-I) -J 
p,"'Pm-l!-lI"'Jl" - p,"'Pm-IP""I'" 

- [nl(m + n)] PPO"Pm-I'I-','''I-'.' 

(66) 

Clearly, rem - I) satisfies (40) and (41) for m - 1. Further­
more, by (52) 
rem) 

PI" 'Pm - I [Pm 1-',] 1-'2' "I-'. 

= [(m + 1)lm] r~~'-:P~_'1-'2"'I-'.[I-',.Pml' (67) 

and by (65), (66), and (60) one can readily verify (42) for 
m - 1. Varying rem - I) according to 

t>rp(~'-:pl) " .. ,,, =am _ 1 f.-p"'p (" .. ," ""''')' I m _ 1...-1 r-n ~J I m - I r-m + I r-n'r-I r-m 

(68) 

varies rem) in accordance with (43) and leaves F invariant. 
The final result of carrying out all the above steps, for 

m = n - 1 down to m = 1, is to establish the existence of the 
completely symmetric potential r(O)/-'I"'I-'. ==qJl-'l"'I-'.' The 
trace condition WI-'I" 'I-'. == r(2)'\I-"" '/-'. = 0, constitutes the 
field equation 12 for qJ 

DqJ/-"" 'I-'. - na -< a( /-'1 qJ1-'2" '1-'.)-< 

+ [n (n - 1 )/2] a( 1-', al-'2 qJ1-'3" '1-'.) '\ = O. (69) 

This equation is not itself derivable from a Lagrangian 12 but 
combined with a multiple of its own trace gives the equiva­
lent standard bosonic spin n Lagrangian equation. 12-14 

The source constraint of Burgers13 and Berends, 
Burgers and van Daml4 is, for spin ;;;.3, precisely the zero 
double trace of r(3l, namely 

(70) 
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which implies 

aA.WA.I""'l'n - [(n - 1 )/2] W"-...( 1',"'l'n-.,l'n) = 0, 

(71) 

where Wis the left-hand side of the field equation. Expand­
ing (71) in terms of the potential q;>I'I"'l'n yields, for n>4, 

q;> "-... PP( 1'," 'I'n' 1',1'.1'.) = 0' (72) 

and three successive applications of our third extension of 
the Poincare Lemma (PLX3, Appendix E) yield the double­
traceless condition12 for the potential q;>I'I"'l'n' namely 

A. P - 0 ('- 4) q;> A. PI',"'l'n - ] - n> . (73) 

We note that the requirement (E3) of Appendix E is sup­
plied by the vanishing of our physical fields at infinity. With 
the potential obeying the symmetry (73) the source con­
straint is id~tically satisfied. The vanishing dive~ence of 
the trace of F for spin-2 and the antisymmetry of F=F for 
spin-l yield the lower-spin source constraints. 

V. ARBITRARY HALF-ODD-INTEGER SPIN 

The half-odd-integer spin analysis closely resembles the 
integer spin case. The hierarchy of generalized tensor-spinor 
Christoffel symbols of de Wit and Freedman 12 can be re­
created exactly as for integer spin. However, in addition to 
the traceless condition (41) for rem) (m>2) one can im­
pose, by (14), a r-traceless condition: 

(74) 

The rem) have a gauge freedom of the same form as (43) 
with the tensor S replaced by a tensor-spinor, which we de­
note by E, obeying rA.EA.P,-"Pn_. = 0 (j = n + !>~), This 
condition, (74), supplies the appropriate first-order field 
equation for the potential 1/1, namely 

~I/II'I"'l'n - ny"-I/IA.( 1',"'1' •• 1'1) = O. (75) 

Again, this is equivalent, though not identical, to the stan­
dard Lagrangian field equation, 12-14 

For spin} = n + !>~ the combination 

4 A. r(2) P + 2"'" P A. r(2) - 0 (76) 
"3 r A. PI'," 'I'n "3 r r r A.PKI'," 'I'. - , 

yields the appropriate source-constraint equation and also 

(77) 

and hence, via PLX3, the zero double trace of I/II'I"'l'n 

(78) 

For spin-~ and -~ !!te source constraint arises from the equa­
tions satisfied by F. 

It is worth emphasizing that, for all spins, the sets of 
equations obeyed by the potentials q;> or 1/1 are equivalent to 
the sets of equations obeyed by the field strengths. No equa­
tions have been especially selected or discarded in order to 
obtain the standard Lagrangian field equations and source 
constraints for arbitrary spin. 

VI. ALTERNATIVE SYMMETRIES FOR THE 
LAGRANGIAN POTENTIALS 

For spins-l and -~ the integration from F to q;> or 1/1 is 
completed in a single step and all the freedom arising from 
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the integration corresponds to the usual gauge invariance of 
q;> or 1/1. For spins >2, most of the freedom arising from each 
integration was used to fix the symmetries ofthe fields rem) 
(m = 0, ... , n - 1) in a conventional manner. Clearly, it is 
desirable that alternative choices of potential symmetries 
lead to equivalent dynamical equations. We will demon­
strate here that this is the case for spins-2 and ~. Another 
desirable possibility would be for only one choice of symme­
tries to allow the series of integrations to be completed. This 
may be the case for spin >3 though it seems likely that alter­
native integration schemes exist for higher spin as well. 

For spin-2 we work directly with the original field 
strength Fp11'1 P,I', , As before, there must exist a field A such 
that 

Fpl"'-v = Apl'[v,A. I' (79) 

However, this time we use the antisymmetry of F to directly 
impose 

Apl'v =A[pl'lv' (80) 

These equations are preserved if A is varied by an arbitrary 
antisymmetric field B 

8ApI'v = Bpl"v, BpI' = B[ PI' I' (81) 

Equation (4) implies A p[l'v,A. 1 = 0 and hence there exists a 
field C such that 

Ap[l'vl = Cp[l',vl' 

By (80) we can write 

(82) 

Apl'v = C p[l',vl - CI'[p,vl- CV[Pol' I' (83) 

Varying C according to 8CI'v = DI"v with D arbitrary leaves 
A invariant, By splitting C into its antisymmetric and sym­
metric parts 

CI'V = El'v + GI'V = E[l'vl + G(I'V) , 

we find that 

Apl'v = 2Gv[l',p 1 + Epl"v' 

Hence we may use (81) to redefine 
A 

Apl'V = Apl'v - Epl',v' 
"-

(84) 

(85) 

(86) 

Ali of the equations (79 )-( 83) hold for A replacing A and, in 
addition, one has 

Apl'v = 2Gv[l"p I' (87) 

with G symmetric. 
The only variation of G which leaves A fixed is 8GI'v 

= HI"v and to preserve the symmetry of G, PLX2 allows 
this to be expressed as 8GI'v = J,I'V where J is an arbitrary 
scalar. However, this variation can be incorporated into the 
more general variation 

8GI'v = K(I"vP (88) 

which varies A according to 8Apl'v = K[I',pl,v' which is con­
sistent with (81) and leaves F invariant. 

The relation between F and ~ G is precisely that between 
F and q;> obtained by the formalism of Sec. IV. Therefore the 
field equations for q;> and G are identical and (88) is just the 
appropriate spin-2 gauge invariance, Identifying! G=q;> we 
find that A is just a (scaled) redefinition of r(1) 

(89) 
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For spin1 there is a similar alternative. However, the 
derivation of the field equation is slightly less straightfor­
ward. For spin1, the tensors A, B, ... , Kbecome tensor-spin­
ors and, in addition to Eqs. (79)-(88), we may impose 

rA.AA.I'v = 0, rA.BA.I' = 0, rA.CA.I' = 0, rA.DA. = 0. 

(90) 

We cannot require that both G and Ebe r traceless but we do 
have 

rA.AA.I'V = rA.AA.I'v - rA.EA.I"v = rA.GA.I"v, 

which implies 

(91) 

2r A.Gv[I',..t J - rA.GA.I"v = 0, (92) 

and hence the field equation for G is the same as that for the 
spin-~ field f/!. Again, ! G can be identified with f/!. The vari­
ation l>GI'V = €(I'.v) with rA.€A. = ° preserves the value of F 
and the symmetries of A. 

It is probable that similar alternative methods can be 
applied to spin :;;.3. In each case we expect that alternative 
choices of symmetries will correspond to redefinitions of the 
intermediate fields so that the physically relevant quantities, 
the trivially invariant F and the nontrivially invariant q; or f/!, 
are unaltered. 

VII. CONCLUSION 

Berends et al. 14 show that interacting quantum field the­
ories involving fields of helicity > 2 encounter consistency 
problems. Berends et al. also note, however, that consistent 
higher-spin interaction may be possible with the inclusion of 
an infinite number of participating higher-spin fields. 

The current importance of superstring theories23 in uni­
fication studies of all the known interactions, including grav­
ity, is closely related to the consistency with which they may 
be formulated. The close relationship between string states 
and those of an infinite sequence of particles of various spins 
points to the continued importance of higher-spin studies. 

I 

APPENDIX A: CONVENTIONS 

Dirac algebra: rl'rV + rVrl' = 21] I'V, 

However, analyses of arbitrary spin fields can be exceed­
ingly complex, if only because of the notational difficulties 
involved. This can be especially true when different higher­
spin cases are considered individually and without full use of 
the systematic relationships that must tie together fields 
which are all irreps of the Poincare group differing only in 
their irrep labels. Indeed, failure to capitalize on the system­
atic relationships can easily lead to misunderstandings of the 
origins of specific properties of higher-spin fields, especially 
in the highly nontrivial Lagrangian potential formulation 
which is routinely used for consideration of their mutual 
interactions. 

In this paper, we have further developed the systematic 
study of arbitrary helicity fields by deriving the elegant rela­
tionships of de Wit and Freedman12 from the exceedingly 
simple multispinor field strengths satisfying the equally sim­
ple Bargmann-Wigner equations. We have shown, by a di­
rect method, which is, however, unlikely to be the most ele­
gant available, that these simple equations may be 
systematically integrated, uniformly for arbitrary spin, to 
obtain all the properties of the Lagrangian potentials, their 
field equations, gauge freedoms, and source constraints (or 
Bianchi identities) without recourse to assumptions besides 
those of relativistic classical free fields. 

This derivation of the Lagrangian formulation for arbi­
trary helicity explicitly confirms the equiValence (modulo 
gauge freedom and derivability from an action principle) of 
the massless unmixed spin irreps and the nontrivially gauge­
invariant Lagrangian irreps of the Poincare group. 
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Minknowski metric: 

partial derivatives: 

1] = (1]I'v) =diag( + 1, -1, -1, -1), 

AI'.v = a v A,., b = rl' aI" 

1 
T(I' "'1' ) = - L TI' "'1' ' 

I m m! 1T "., 1J'm 
complete symmetrization: 

complete antisymmetrization: T[I' "'U 1 =_1_~ (-1)""1:, "'U , 

I r-m m! ..;- '-". rfrrn 

where each sum is taken over all permutations, 11" 
= (11"1' "11"m),ofthenumbers 1, ... ,mand ( -l)""is + lor 
- 1 for 11" even and odd, respectively. 

APPENDIX B: POINCARE LEMMA 

Completely antisymmetric tensors of rank n are essen­
tially equivalent to n-forms and a very concise expression of 
the Poincare Lemma makes use of the language of differen-
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tial forms (Misner, Thome, and Wheeler,3 and Choquet­
Bruhat, deWitt-Morette, and Dillard-Bleick24 ). For the 
purposes of this paper only the following two tensor expres­
sions of the Poincare Lemma2S are needed. Both cases (and 
all their extensions) apply on a domain homeomorhic to Rd 
(with d = 4 used here). 

Case 1: An arbitrary vector Tv satisfying 

(Bl) 
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can always be expressed in terms of a scalar S 

TI-' = al-' S, (B2) 

and the only variation of S allowed is by a constant R. 
Case 2: The antisymmetric part of an arbitrary tensor 

TVA obeying 

a[I-' TVA) = 0, (B3) 

can always be expressed in terms of a tensor S such that 

T[I-'v) =a[I-' SVI' (B4) 

and S may be varied by the gradient of an arbitrary tensor R 

8SI-' = al-' R. (B5) 

For each of these cases we may append any number of 
free indices simultaneously on T, S, and R and any symme­
tries possessed by T on these indices may also be imposed on 
the tensors Sand R. It is also possible to apply the Poincare 
Lemma to Majorana tensor-spinors (which have four real 
spinor components in an appropriately chosen representa­
tion: see, for example, Doughty and Collins20

). As with sym­
metries on the free space-time indices, symmetries involving 
the spinor indices may also be transferred to the tensor­
spinors corresponding to Sand R above. 

The following three appendices extend the Poincare 
Lemma for specialized cases, required in Secs. IV-VI, in­
volving highly symmetric tensors. 

APPENDIX C: POINCARE LEMMA EXTENSION 1 (PLX1) 

Suppose that n > 2 and the tensor A satisfies 

A" ... " lu "') =0. ,-1 r,. - 2 ,...n - 1 r-n-'" 

Then there exists a tensor B such that 

BI-',"'I-'._' = B(I-""'I-'._') ' 

rill" Oil,. _ I""n =Ap, "' Oil-,. _ 1 Jln - BI-'I"' "P,. _ I' IL,.' 

(Cl) 

(C2) 

(C3) 

(C4) 

(C5) 

Proof: (by induction) n = 2: The Poincare Lemma and 
( C2 ) implies there exists a vector B satisfying A [I-'. 1-', ) 

=B[I-'.,I-'2) with rl-'.I-',=AI-'.I-', -BI-'.,I-', clearly satisfying 
rl-'.I-" =r(I-"I-',)' 

n> 3: Equation (C2) implies there exists a tensor C such 
that 

AI-"···I-'._211-'._II-'.) = CI-',···I-'._211-'._I'I-'.1' (C6) 

and by (Cl) we may take 

(C7) 

Using (C6) and (C 1) yields 

CI-""'I-'._11l-'._21-'._I'I-'.) =0. (C8) 

These last two equations are just the assumptions (C 1) and 
(C2) for n - 1 so that by induction there exists a tensor D 
such that 
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(C9) 

(ClO) 

(Cll) 

By (C6) and (ClO) 

(CI2) 

and r defined in (C4), using the B of ( C 10), satisfies (C5). 
Q.E.D. 

APPENDIX D: POINCARE LEMMA EXTENSION 2 (PLX2) 

Suppose the tensor T satisfies 

TI-""'I-'. = T(I-""'I-'.)J 

TI-""'I-'._III-'.,A) =0. 

Then there exists a scalar P such that 

(01) 

(02) 

(03) 

Proof (By induction) n = 1: T[I-',v) = ° implies TI-' 

= a I-' P directly by the Poincare Lemma. 
n>2: Equation (02) implies 

(04) 

Equation (D 1) implies we may take 

(05) 

and, in addition, (D1) and (04) imply 

RI-""'I-'._211-'._I'I-'.) = 0. (D6) 

Hence, by the inductive assumption, 

RI-',"'I-'._' =al-'."· al-'._, P, (07) 

or 

(08) 

APPENDIX E: POINCARE LEMMA EXTENSION 3 (PLX3) 

Suppose the tensor T satisfies 

TI-' •... I-'. = T(I-""'I-'.)J 

T(I-""'I-'.,A) =0, 

(El) 

(E2) 

and suppose that T and its first n gradients vanish at infinity, 
namely 

TI-' •... I-'. -+0, TI-""'I-'.,A. -+0, ... , TI-""'I-'.,A,···A. -+0. (E3) 

Then 

(E4) 

Proof: (by induction) n = 1: T(I-'.).) = ° implies TI-',A 

- TAo/' = T[I-'.).)' Therefore 0= TI-',[Ap) = - T(A,p)I-' 

which implies T(A,p) is constant. Thus by (E3) one has ° = T[A, p) = T A, p and hence TI-' is also constant and similar­
ly vanishes by (E3). 

n>2: (El) and (E2) imply 

(E5) 

and 
2 ,. 

T" ... " A = -- '" T" ... r. ... " I" A )' (E6) ~. ~., n + 1 /:-, ~. "'j ~. ~i' 

Where the caret indicates an omitted index, Eq. (E5) im­
plies 

0- TI-'····I-'· - nT (1-',"'1-'.,1-'.) 
- ,[Ap) - - (.l ,p)' (E7) 

This (and the induction) allows the theory for n - 1 (with 
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two extra free indices, Kp) to be applied to the tensor 
SKPJ.L,···J.Ln_1 = TJ.L,···J.Ln_I[K,p] to deduce 

TJ.L""J.Ln_I[K,p] =0. 

By (E6), TJ.L •... J.L
n
,;" = 0 so that TJ.L''''J.Ln is constant and by 

(E3) must vanish everywhere. 
Remark: As with the Poincare Lemma, the three exten­

sions above generalize to tensors A or Twith extra free space­
time or spinorial indices and any symmetries involving only 
the free indices can be imposed on the tensors B, r, and T. 
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It is supposed that a single fermion with HamiltonianH = a'p + /3p,(r) + t/J(r) , wherep,(r) 
and t/J (r) are central potentials, obeys the Dirac equation. If tP I (r) and tP2 (r) are the radial 
factors in the Dirac spinor, then the graph {tPl (r), tP2(r)} for 1'E(0, 00 ) is called a spinor orbit. 
In cases where discrete eigenvalues exist, the corresponding spinor orbit eventually returns to 
the origin. However, ifthere is a constant 0>0 such that, for r>o, the three functions t/J(r), 
t/J(r)/p,(r), and rp,(r) increase monotonically without bound, then it is proved that the spinor 
orbit must eventually be confined to an annular region excluding the origin. Consequently, the 
spinor orbit approaches a "spinor circle," the spinor is not L 2, and there are no eigenvalues. 
This happens, for example, if p, is constant and t/J(r) is any monotone increasing and 
unbounded potential. In such cases the radius of the spinor circle is sensitive to the energy, and 
instead of eigenvalues one finds a sequence of resonant energies for which the radii of the 
spinor circles are local minima. 

I. INTRODUCTION 

We consider a single spin-~ fermion moving in a static 
central field t/J(r). This potential is actually the time compo­
nent of a four-vector, just like the Coulomb potential of the 
hydrogen atom. We also allow for a central scalar potential 
by writing the mass as m = p, (r). Thus the Dirac Hamilto­
nian has the form: 

H=a'p+/3p,(r) +t/J(r), (1.1 ) 

where a = (a l ,a2,a3) and /3 are the usual Dirac operators 
defined, for example, in the book by Messiah. I The main 
result of this paper (which we prove in Sec. IV) is to estab­
lish sufficient conditions on unbounded potentials which im­
ply that the Hamiltonian H has no eigenvalues. We suppose 
that there is a distance 0>0, such that for r> 0 the following 
three conditions hold: 

t/J(r), t/J(r)/p,(r), and rp,(r) are positive 
monotone increasing without bound. ( 1.2) 

These conditions describe a competition between the 
scalar and vector potentials. The conditions are satisfied if 
the vector component t/J(r) dominates the scalar potential 
p,(r) sufficiently strongly. For example, ifp,(r) is constant 
and t/J (r) increases without bound, then the three conditions 
are met and we know that there are no eigenvalues. 

There is extensive literature on the Dirac equation going 
back to 1928. Interest in the nature of the spectrum when the 
potentials are unbounded has emerged in recent years main­
ly because of the importance of the problem for applications 
to quark physics. Specific results, which we have to date,2-4 
are consistent with the present work, in the general sense 
that bound states are found not to exist whenever an un­
bounded vector potential dominates the scalar potential. 
The purpose of this article is to treat this question more gen­
erally, and by a new method that may also prove to be useful 
as a tool for treating other aspects of the Dirac problem. 

Our technique is to study what we call Dirac spinor 
orbits. These were first introduced in Ref. 5 as a method for 
finding Dirac eigenvalues with the aid of a microcomputer. 
For central potentials, we can choose the total angular mo­
mentum and the parity and then solve the Dirac equation for 
a given value E of the energy. The Dirac spinors so generated 
can be constructed (more details will be given in the next 
section) with the aid of just two radial functions tP I (r) and 
tP2 (r), which are sometimes called the large and small radial 
functions. With the initial conditions 

( 1.3) 

the energy E is an eigenvalue of H if the boundary condition 

r {tM (r) + ~ (r)}dr< 00, ( 1.4) 

that is to say, if the spinor is L 2. A Dirac spinor orbit is the 
graph {tPl(r), tP2(r)} for 1'E(0,00). In Fig. 1 we show the 
spinor orbit for the hydrogenic atom with p,(r) = 1, 
t/J(r) = - O.2/r, J =~, parity = + 1, and the energy 
E = 0.999 591308, which is (approximately) the energy of 
the fifth excited radial state. It is, of course, not clear from 
such a figure whether or not the orbit is L 2 because we have 
no idea how fast the orbit returns to the origin. However, if 
the orbit never returned to the origin, we would certainly 
know that the spinor was not L 2 and that E was not an eigen­
value. 

This is how we prove our result. We prove that for the 
class of potentials satisfying ( 1.2) the Dirac spinor orbit nev­
er returns to the origin; in fact, in those cases we shall prove 
that, for any choice of E, the orbit is eventually confined to 
an annular region excluding the origin. Such orbits approach 
a circular orbit we call a spinor circle. Our proof depends on 
the convergence properties of some delicate conditionally 
convergent integrals. These integrals are discussed in Sec. 
III. 
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FIG. 1. The spinor orbit for the hydrogen1ike problem I" = I, 
tjJ(r) = - O.2/r, and the eigenvalue E ~ = E ,+,11. = 0.999 513 08. 

Some illustrations of spinor orbits with spinor circles 
and a discussion of the resonancelike properties of the orbits 
when no eigenvalues exist are presented in Sec.V. 

II. THE ORBIT EQUATIONS 

We are concerned with central potentials and it is there­
fore possible to work entirely in a subspace labeled by the 
total angular momentum quantum numbers JM and the par­
ity P. It is very convenient to follow the exposition of Mes­
siah I and introduce two new quantum numbers rand k de­
fined by 

P= ( _ 1)J+ (1/2),-, k =J +!, (2.1) 

where r (called ti) by Messiah) takes the two values r = ± 1. 
The spinor can be constructed with the aid of just two radial 
functions, which we write in the form t -If/!I (t) and 
t -1f/!2(t), along with spherical harmonics and spin func­
tions. We now use t instead of r for the radial variable in 
order to suggest the idea that the orbit is generated by an 
abstract dynamical system in the plane. The coupled radial 
equations for the central field problem may then be written 
as the dynamical system 

{ -d + rk} f/!2(t) = {E-p,(t) -tP(t)}f/!I(t), 
dt t 

(2.2) 

{!!..+ rk} f/!I(t) = {E+p,(t) -tP(t)}f/!2(t), 
dt t 

with the initial conditions 

f/!I(O) = f/!2(0) = o. (2.3) 

The dynamical system (2.2) can also be written in the vector 
form 

458 

'II'(t) = S(t)'II(t), where 'II(t) = [f/!I(t)f/!2(t) ]T, 
(2.4) 
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and S(t) is given by 

[ 
- krlt 

S(t) = (p, _ E + tP) 
(p, +E-tP)]. 

krlt 
(2.5) 

The singularity in the differential operator S(t) at t = 0 al­
lows this system to move away from the origin. 

We now introduce an important argument. We suppose 
that the potentials p, (t) and tP (t) are such that there are no 
singularities in S(t) for t> O. In this case, if'll (t) is zero 
(that is to say, the orbit is at the origin) for t = t I > 0, then 
we can run the system both forwards and backwards from t I' 
and, since (2.4) is linear and homogenous, we conclude that 
'II(t) is zero for all t. Hence, nontrivial solutions cannot re­
turn to the origin for finite positive t. 

Now we look at an argument concerning the asymptotic 
behavior of a particular class of potentials. Much of the rest 
of this paper is directed towards making this kind of argu­
ment secure. Suppose tP(t) is non-negative, increases with­
out bound, and dominates p, (t) in the sense that tP (t) I p, (t) 
also increases without bound. Then, for large t, S(t) has the 
asymptotic form 

S(t) = [~ - tP] o . (2.6) 

We can therefore immediately write down an asymptotic 
solution to the system equations in the form 

f/!I (t) = R cos(f tP(t)dt). 

(2.7) 

where R is a constant which, for a nontrivial solution, cannot 
be zero. The graph of this asymptotic solution is a spinor 
circle and the spinor is therefore not L 2 and there can be no 
eigenvalues. The weak point of this argument is that, al­
though in the above asymptotic solution R cannot be zero, in 
the (unknown) exact solution a corresponding time-depen­
dent radial factor may approach zero sufficiently fast for the 
orbit to be L 2. This possibility must be ruled out. 

We shall continue the discussion of the orbits by using 
the polar variables: 

r(t) = {'IIi (t) + 'IIi (t) }l/2, 

O(t) = arctan{f/!2(t)/f/!1 (t)}. 
(2.8) 

In terms of these polar variables the system equations (2.2) 
become 

r' (t)lr(t) = p,(t)sin(20(t») - (krlt)cos(20(t»), 

O'(t) = (tP(t) -E)+p,(t)cos(20(t») 

+ (krlt)sin(20(t»). 

(2.9) 

(2.10) 

These equations are valid for t> O. The initial condition 
(2.3) becomes r(O) = O. The initial angle 0(0) depends on 
the form of tP (t) and p, (t) and can usually be calculated by 
using a series approximation about t = O. 

We now start the work towards the proof of our main 
result. We observe that (2.10) does not involve r(t). By us­
ing our hypotheses ( 1.2) in the 0 equation (2.10) we see that 
a positive number a exists such that for t > a, 0 ' (t) > 0; also, 
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B ' (t) increases without bound as t ..... 00. Moreover, if we 
choose a sufficiently large, we also have B(t) > 0 and there­
fore, on the patch (a,oo), B(t) is positive and monotone 
increasing without bound. We may therefore change vari­
abies and work with B instead oft. IfweletBI = B(a), we can 
now formally integrate Eq. (2.9) and write r in the form 

r=r(a)exp(J(B»), (2.11) 

where (with s = 2B) we have 

J(B) =.!. 128 
sin(s) - u(s)cos(s) ds, 

2 28, g(s) + cos(s) + u(s)sin(s) 
(2.12) 

and we defineg(s) and u(s) by the expressions 

g(2B) = {;(t) -E}/p.(t), u(2B) = kr[tp.(t) J- 1
• 

(2.13 ) 

The direction of our argument now is as follows. If we can 
show that J(B) is bounded, say IJ(B) 1 <B, for Be(B1,00), 
then (2.12) implies that the spinor orbit lies inside an annu­
lar region with boundary radii r(a)exp( - B) and 
r(a)exp(B). Meanwhile, as we showed above, r(a) cannot 
be zero. Hence, such an orbit will not be L 2 and there can be 
no eigenvalues. 

Since, by hypothesis (for t sufficiently large), both ;(t) 
and the ratio ;(t)/p.(t) increase monotonically without 
bound, and since we know that B ' (t) > 0, and B ' (t) increases 
without bound as t ..... 00, we can easily prove from (2.13) 
thatg(s) is positive and monotone increasing without bound 
for s sufficiently large. Similarly, our hypotheses ( 1.2) guar­
antee that lu(s) 1 decreases monotonically to zero as s ..... 00 
(i.e., t ..... 00). We shall assume that properties of g(s) and 
u(s) for the remainder ofthe paper. 

If g(s) were to increase, for example, like 8"', for a> 1, 
then J( 00) would be absolutely convergent. However, this 
only happens for potentials which increase faster than expo­
nential. The power-law potentials, for example, cannot be 
accommodated this way. We can see this by the following 
argument: suppose p. = const, and; (t) = (I, then, for large 
t, a(t) -(1+ I, and ;-Bq/(q+ I); consequently, 
g(s) -~/(q+ I) increases too slowly. Therefore in order to 
handle such potentials as the linear potential, we must treat 
the integral J( B) as a conditionally convergent integral as 
B ..... 00. 

Since g(s) increases monotonically without bound, 
comparison of J(B) with the well-known convergent im­
proper integral 

K = 100 

sin(s) ds (2.14) 
28, g(s) 

would appear to settle the issue immediately in favor of all 
increasing potentials. However, it turns out that the conver­
gence of K is easily disturbed by small perturbations such as 
we have inJ(B). These convergence questions are treated in 
Sec. III and we return to complete the proof of our main 
result in Sec. IV. 

III. SOME INTEGRALS 

Throughout this section we shall assume that the con­
stant Bl > ° and that the functiong( B) is defined and positive 
and differentiable on (Bt>oo). In addition we shall assume 
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that g( B) is monotone increasing without bound as B ..... 00. 
The monotone behavior is essential whereas the differentia­
bility is merely an analytical convenience. 

The first result is the well-known convergent integral. 
Theorem 3.1: 

J
1 
= roo sin(B) dB. 

J8, g(B) 
(3.1 ) 

Proof of Theorem 3.1: See, for example,the text by Wid­
der,6 p. 331. 

We now demonstrate that the convergence of (3.1) can 
be upset by a periodic perturbation of the denominator. 

Theorem 3.2: 

J
2 
= roo sin(B) dB 

J8, {g(B) - sin(B)} 
(3.2) 

diverges if the integralS;, {g(B)}-2 dB diverges. In particu­
lar, the caseg(B) = B 1/2 diverges. 

Proof of Theorem 3.2: We construct a lower bound. Let 
K,. be the integral in (3.2) from B = t,. = 2mr to 
B = 2(n + 1 )1T, where n is a positive integer. Then, by 
change of variables, we may write this integral in the form: 

[ 
sin(t){g(t,. + 1T + t) - g(t,. + t) + 2sin(t)} 

~= ~ 
o {g(t,. + t) - sin(t) }{g(t,. + 1T + t) + sin(t)} 

(3.3) 

Since g is monotone increasing, we therefore have 

K" >tT{g(t,. + 21T) + I}-2. 

This inequality establishes Theorem (3.2). We note that the 
changes of variables B ..... B + 1T and B ..... B + ! 1T leave the 
proof unchanged so that the sin functions can both be 
changed to cos, and the sign in the denominator can be 
changed from - to + without altering the divergence 
properties of the integral. 

Before considering the next integral, we first prove a 
lemma that is really a mean-value theorem for the type of 
integral we are discussing. 

Lemma 3.1: Suppose that the functionsp(B) and q(B) 
are continuous and suppose that g(B) + p(B) #0 for 
Be [a,b J, where b > a > 0, then there exists a constant 
BIE[a,b J such that the integral 

P= rb 

p(B) dB 
Ja {g(B) +q(B)} 

has the representation P = G( ( 1) where G(x) is defined by 

G(x) = rb 

p(B) dB. 
Ja {g(x) + q(B)} 

Proofof Lemma 3.1: The function G(x) is continuous. 
Becauseg(B) is monotone, we see that, asx varies between a 
and b G(x) varies monotonically, assuming all values 
between G(a) and G(b). Meanwhile, the integral P lies 
between G(a) and G(b). This establishes Lemma 3.1. 

Theorem 3.3: The following integral is convergent: 

J
3 

= Loo sin (B) dB. (3.4) 
8, {g(B) + cos(B)} 

ProofofTheorem 3.3: We letK,. represent the integral in 
(3.4) between thelimitst,. = n1Tand (n + 1)1T, wheren isa 
positive integer. We may now employ the mean-value 
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Lemma (3.1) along with the appropriate changes ofvari­
abIes to write Kn in the form 

Kn = ( - 1) (n + 1)G(tn + In ), 

where the function G(x) is given by 

G(x) = lnl(g(x) + 1)/(g(x) - 1)1 , 

(3.5) 

(3.6) 

and In e [0, 1T]. Since g is monotone increasing to infinity, it 
foUowsthatthefunctionG(x) in (3.6) is monotone decreas­
ing to zero. Meanwhile, the sequence {t n + In} is monotone 
increasing to infinity. Consequently a sum of terms of the 
form K" is a convergent alternating series and we have 
proved that the integral (3.4) converges. We note that by 
making the changes of variable, 0-+0 +! 1T and 0-0 + 1T, 

the proof again goes through and we can conclude that the 
convergence is unaltered if the sin and cos are interchanged 
and also if the sign in the denominator is reversed. 

IV. THE SPINOR CIRCLE THEOREM 

We now continue the proof of our main result, which we 
began in Sec. II. We need to show that for the class of poten­
tials (1.2) the integral J( 0) given in (2.12) is bounded for 
Oe (0 1,00 ). We shall prove this by showing that, by a suitable 
change of variables, we can write J = J( 00) as the sum 
J = J3 + J4 of two integrals, where J3 is the conditionally 
convergent integral of Theorem 3.3 and J4 is absolutely con­
vergent. We begin by defining the angle y(s), -! 1T 

<y(s) <! 1T, and the quantity pes) as follows: 

y(s) = arctan(u(s»), pes) = {I + o2(S)}l/2. (4.1) 

We recall that g(s) is monotone increasing without bound 
and o2(s) is monotone decreasing to zero as s- 00 [the sign 
of u(s) itself is the same as T]. The integral J now takes the 
form 

J=..!.. (00 sin(s-y(s») ds. (4.2) 
2 J281 {g(s)/p(s) + cos(s - y(s»)} 

It is natural at this point to make the change of variables 

u=s-y(s), f(u)=g(s)lp(s). (4.3) 

It follows from (4.1) and our hypotheses (1.2) and the re­
sult from Sec. II that 0' (t) > 0, that 

res) =! u(s)u'(S)p-2(S) <0. (4.4) 

Hence we have the differential relation 

ds = du + y'(s)ds. (4.5) 

Meanwhile, because y(s) is bounded and s increases without 
bound, we conclude that the variable u increases monotoni­
cally without bound as s -+ 00. The integral now has the form 
J = J3 + J4 , where J3 is given by 

J
3 

=..!.. (00 sin(u) du, 
2 JU1 {feu) + cos(u)} 

(4.6) 

where U 1 = 201 - y(201 ), and J4 is given by 

J
4 

=..!.. (00 sin(u)y'(s) ds 
2 )28

1 
{feu) + cos(u)} . 

(4.7) 

The functionf( u) = g(s) I p (s) is an increasing function of u 
for we have 
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df = d{glp} =g'(S)p-I(S) 
ds ds 

- g(s)u(s)u' (S)p-3(S) > 0, (4.8) 

and therefore, since dul ds > 0, it follows that!' (u) > O. Also, 
sinceu- 00 ~s- 00, weknowalsothatf(u) increases with­
out bound as u -+ 00. Consequently, the integral in (4.6) has 
exactly the form of the conditionally convergent integral J3 

in Theorem 3.3. 
The integral J4 is absolutely convergent because the fac­

tor res) in the integrand decreases to zero sufficiently fast 
and the other factor is bounded. In fact we have 

12J41<1 y(201 )I[g(201 )/p(20d _1]-1. (4.9) 

Thus the integral J( 00) is bounded and so therefore is 
J(O) for Oe(OI' 00). Hence there exists a positive number B 
such that IJ(O)I<B for Oe(OI'oo). Consequently, from 
(2.11) we have that the spinor orbit is confined for t> a to 
the annulus bounded by r = r(a)exp( ± B). Since the orbit 
is confined to an annular region excluding the origin, we can 
now rely on the argument we introduce in Sec. II that shows 
that the orbit approaches a circle as t - 00 • 

This completes our proof that no eigenvalues exist and 
the orbit is asymptotically circular if the potentials satisfy 
the conditions (1.2). 

V. AN EXAMPLE 

We now consider an illustration of the circle phenome­
non which we have thus far characterized in general math­
ematically. We consider the case of a harmonic oscillator 
with constant mass J.L (t) = 1 and vector potential 
¢(t) = (0.02) t 2

• We first suppose that in all innocence we 
were to look for an "eigenvalue" withJ =!, parity P= - 1, 
and the fourth radial state (counting the bottom as the first), 
that is to say n = 4, where n is a radial quantum number. 
First, from (2.1) we see that T = k = 1. Examination of the 
orbit equations near r = 0 leads us to the conclusion that the 
orbit should start from the origin initially along the'" 2 axis. 
The absolute size of the orbit is not significant in this discus­
sion, but all the orbits we show are drawn to the same scale. 
As we shall see, the relative sizes are important. 

In order to find the energy E ~ = E 4-112' we therefore 
integrate the Dirac equations (2.2) and try to find a value for 
E which causes the orbit to have three nodes in "'I (t) and 
after this the orbit should (for the n = 4 eigenvalue) ap­
proach the origin. If we arrange for a microcomputer to per­
form this search automatically we get the Dirac spinor orbit 
shown in Fig. 2(a) which was obtained with E = 2.385 28. 

However, although all seems well at first glance, diffi­
culties are encountered with the algorithm that searches for 
that energy which would allow the orbit to approach the 
origin after the required number of nodes. In fact, as we 
know, no such approach is possible. Figure 2(b) shows the 
central part of the orbit and it is the best we could do in 
choosing E to minimize the size of the spinor circle. The 
radius of this circle is about 1 % of the overall size of the 
complete orbit. The T inscribed next to the orbit indicates 
the point at which the equation 

(5.1 ) 
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-100 

-10 
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100 

(c) 

10 

10 

10 

o 

o 
I 

-1.5 

-10 

(b) 

1.5 

(d) 

10 

FIG. 2. (a) The spinor orbit for the harmonic-oscillator potential,u = I, <p(r) = 0.02 r, and the resonance E '-112 = 2.382 58. (b) The central part of the 
spinor orbit in Fig. 2(a) for the harmonic oscillator, showing the approach to the minimal spinor circle. (c) The central part of the spinor orbit for the 
harmonic-oscillator potential,u = I, <p (r) = 0.02 r of Fig. 2 (a), but with the energy value E = E '-112 - 10 -'. (d) The central part of the spinor orbit for the 
harmonic-oscillator potential,u = I, <p(r) = 0.02 r of Fig. 2(a), but with the energy value E = E '-112 + 10-'. 

is satisfied. After this point, the initial clockwise direction of 
the orbit is reversed and the orbit now assumes the anticlock­
wise direction of the spinor circle according to the matrix 
(2.5). 

In Figs. 2 (c) and 2 (d) we show what happens to the 
spinor circle if the energy E is, respectively, decreased and 
increased by only 10-4

, in both cases the circle radius in­
creases by a factor of about 10. What we have here is a phe­
nomenon exactly analogous to resonance in scattering. One 
can define resonance energies in scattering to be precisely 
those values for which, for a given ingoing probability cur­
rent, the outgoing probability current is minimized. In the 
present problem, the Dirac particle therefore "sees" (in the 
Schrodinger sense) not an unbounded confining oscillator 
potential r but something (qualitatively) more like r - r4 : 
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the spinor circle is simply a representation for the outgoing 
wave after tunneling through the barrier. 

We note that the same phenomena as we have seen with 
the oscillator are found with other examples that meet the 
hypotheses of the circle theorem. For example, we have 
found similar graphs for the very slowly increasing un­
bounded potential <p (t) = In(ln (t + 3») with,u (t) = 1. In all 
cases one can find a sequence of resonance energies that lo­
cally minimize the radius of the spinor circle. 

VI. CONCLUSION 

We have proved that there are no eigenvalUes to the one­
particle Dirac problem if the vector potential <p (r) increases 
without bound and dominates the scalar potential,u(r) in 
the sense that <p(r)/,u(r) increases without bound as r-+ 00. 
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We also require that the scalar potential does not diminish 
with distance too fast, that is to say, that rj.t(r) increases 
without bound. For potentials satisfying these hypotheses, 
we have proved that the spinor orbit eventually lies inside an 
annular region excluding the origin and it approaches a 
spinor circle asymptotically as r-- 00. 

In certain special cases it has been argued by Su and Ma 7 

that, if the vector and scalar potentials are equal, then there 
are no eigenvalues. It does not seem possible to prove this 
result in general by our method. 

There may be another class of potentials for which the 
orbit can eventually approach the origin but not sufficiently 
fast for the spinor to be square integrable. We do not know 
what such potentials might look like except that they would 
have to be bounded. 
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In the context of quatemion valued fields spontaneous symmetry breaking and the Higgs 
mechanism are investigated. In particular, for the potential - (f.l2/2)¢¢ - (Il /4 )(¢¢)2, 
Goldstone's theorem is studied and, for the gauge theory of automorphisms of the quatemions, 
a Higgs mechanism investigated. 

I. INTRODUCTION 

The fact that the Birkhoff and von Neumann 1 formula­
tion of quantum mechanics admits quatemionic scalars has 
invited study of so-called "quatemionic quantum mechan­
ics" (QQM) by a number of authors.2

-
9 Independently, 

Kanen02 and Finkelstein et al.3 first looked at QQM in the 
early 19608. Finkelstein et al. and Rembielinskf have inves­
tigated the quatemionic quantum Hilbert space. 

This interest in QQM began concurrently with interest 
in gauge theories; not surprisingly, gauge theory was incor­
porated in QQM at the beginning. As a result, several gauge 
symmetries have been proposed.4 ,5,8,9 Since we do not find 
these symmetries exactly reflected in nature, we must find a 
mechanism by which to break them. Spontaneous symmetry 
breaking (SSB) and the Higgs mechanism are successful in 
breaking gauge symmetries in the complex theory. 10 

In a quatemionic theory the classical fields are quater­
nion valued functions of space time. The Lagrangian will be 
a function of these quatemionic fields and so the form of it 
will be restricted by quatemionic multiplication. There will, 
however, be no restriction on the nature of the fields like 
those on Chkareuli's8 "quasireal" fields. Equally, the deriva­
tive will not be restricted as Morita's9 is; this can be done 
without losing the association between infinitisimal changes 
and derivatives. 

We will produce SSB and the Higgs mechanism for qua­
temionic valued fields, though it is not the case that we give a 
physical interpretation of the full quatemionic field apart 
from its components. That is, we wish to consider the phys­
ical fields as the components of the quatemionic fields. 

The plan of this paper is as follows: in Sec. III, a quater­
nionic SSB will be investigated and a quatemionic Gold­
stone's theorem produced for the potential - (f.l2/2)¢¢ 
- (Il /4) (¢¢ )2. In Sec. IV, quatemionic gauge theory is dis­

cussed and the preferred example of an automorphic gauge 
theory examined. In Sec. Va quatemionic Higgs mechanism 
is produced in the context of automorphic gauge theory. 4 In 
Sec. VI a simple Lagrangian is expanded in terms of quater­
nionic components for a general vacuum vector and possible 
decompositions of the gauge boson a la' Finkelstein et al.4 are 
investigated. 

II. NOTATION 

We will use Einstein summation notation. Greek indices 
will take the values 0, 1, 2, and 3 and Latin indices will take 

the values 1,2, and 3 unless otherwise specified. 
Let the quatemions Q be the noncommutative algebra 

{qaea: qaER} where addition is defined by qaea 
+ Paea = (qa + Pa )ea and multiplication is defined by 

qaea . rpep = qarp (ea' ep ), 

where 

eo' eo = eo, ej 'eo = eo'e j = e j , 

ejej = - 8ijeo + Eijkek' 

with E ijk' the altemating symbol with E 123 = 1. 
Let ¢(x) be a quatemion valued field and define 

¢(x) = ¢a (x)ea = ¢(x)eo + ¢j (x)e j 

= ¢o(x)eo + ~(x) . ~, 

where an underbar indicates the vector component. Note 
that ¢ a (x) is a real function R4 -+ R. Let 

¢(x) = ¢a (x)"ea, 

where 

Let 

al-'¢(x) = al-'¢a (x)ea· 

Let 

S(¢) =! (¢ + ¢) = ¢oeo' 

Let 

Iql = qq for qEQ. 

This is a norm on the quatemions and qq = qaqaea' It is 
noteworthy that Iq1q21 = Iq111q21· 

III. QUATERNIONIC SPONTANEOUS SYMMETRY 
BREAKING 

We begin by looking at the classical nongauge invariant 
case ofSSB for quaternion valued fields. Variations 8 Vin the 
potential V( ¢) due to variations in ¢ are approximated by 
(aV /a¢a )8¢a' So for symmetries which rotate the ¢a 
amongst themselves SSB and Goldstone's theorem follow 
that of four real fields. 

The following shows what happens in quatemion lan­
guage. Remembering that multiplication is quatemionic we 
consider the Lagrangian 

.!L'=al-'¢al-'¢- V(¢), (3.1a) 
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V(I/» = (Jl.2/2)# + (..t /4)(#)2, 

Jl.2 < 0, ..t > O. (3.lb) 

For future use we note the action of the derivative on the 
function V: Q ..... R is 

dV(I/>,dl/» = (Jl.2 +..t~(J)S«(J d~), (3.2) 

d(dV) «(J,d(J) 

=US«(J dl/»2+ (Jl.2+..t~(J)S(d(J d(J). (3.3) 

We now consider an infinitesimal variation 61/> of (J with 

(3.4) 

where {Ji is infinitesimal and real, R ~ is real, and i takes the 
values 1,2, ... ,n. The variation in V to first order (see Refs. II, 
12, and 13) is 

6V= (Jl.2 +..t~(J)S«(J 6(J). (3.5) 

Differentiating (3.5) we find 

d(6V) = (Jl.2 +..t#)d [S«(J 6(J)] 

+ US«(J d(J )S«(J 6(J). (3.6) 

The vacuum state is the state of minimum energy and 
can be found by minimizing the potential. So the vacuum 
state satisfies 

dV(v,d(J) = 0, (3.7) 

for all d(JeQ, where v is the value of the field in the vacuum 
state. From (3.2) and (3.7) we have either iiv = - JI./..t or 
S( v,d(J) = 0 for all dt/>eQ, and S( v,d(J) = 0 for all d(JeQ im­
plies v = o. So as V(v) is a minimum of V, and Jl.2 <0 and 
..t > 0 implies V( v) < 0, we have 

(3.8) 

Such a vacuum state is in general not invariant under varia­
tions (3.4). 

We now assume that the Lagrangian and the potential 
are invariant under variations (3.4). That is that6V = 0 for 
all Wi, i = I, ... ,n. Therefore 

d(6V)1~=v = 0, (3.9) 

for all dt/>eQand for allal, ;= 1, ... ,n.Nowasv#O,S(v d(J) 
can be made to take any real value by suitable choice of d(J. 
So using (3.8) and (3.6) we have 

(3.10) 

for all i = I, ... ,n. 
A real valued function V of a quaternionic variable (J has 

the following "Taylor" series expansionl2: 

V«(J) = V(v) +dVI~=v +¥ldVI~=v + ... , 
d~ = ~. d~2 = d~, = ~. 

(3.11 ) 
where we have expanded V( 1/» about v with (J' = (J - v. 

For the potential (3.lb) using (3.2), (3.3), and (3.8) 
we find that its series expansion to second order is 

V«(J) = V(v) +..tS(v(J')2. (3.12) 

Alternatively by straight substitution of (J' + v for (J in 
(3.lb) we find using (3.8) that 

V«(J) = V(v) +..tS(v (J')2 + (..t/4)( (J'(J')2 

+ (..t /2)( (J' (J')( (J'v + ii(J'). (3.13) 
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Thus if (J' is a linear combination of the R ~vpea' then by 
(3.10) there are no second-order terms in (J' in the potential. 
Consider the subspace G (the quaternions may be consid­
ered as a four-dimensional real vector space with the unit 
vectors eo, e1, e2, e3) of the quaternions spanned by 
{R ~vaep: i = I, ... ,n}. As we physically interpret (J' at the 
component level, and as any component of (J' in G will have 
no second-order term in the Lagrangian, then any compo­
nent of (J' in G will correspond to a massless particle. Now 
the dimension of G is the same as the number of independent 
components of (J', which can be massless, and this is equal to 
the number of independent quaternions R ~p vpea , with i tak­
ing values I, 2, ... ,n. This is Goldstone's theorem. 

IV. QUATERNIONIC GAUGE THEORY 

We now examine the rudiments of quaternionic gauge 
theory for classical scalar fields. Take a field (J(x)eQ and 
assume that the Lagrangian governing the motion is invar­
iant under transformations (J ..... (J + 6(J, where 

(4.1 ) 

for infinitesimal {JieR, i = 1,2, ... ,n. Note that we are consid­
ering rotations within a quaternion value field, that is, rota­
tions between the components of a field not rotations 
between quaternion valued fields. However, with the inter­
pretation that the quaternion components are the physical 
fields then we are still rotating the particles amongst them­
selves. 

Ifwe allow {Ji to depend upon the space-time coordinate 
x then to ensure the invariance of the Lagrangian under 
these "local" transformations we need to introduce a covar­
iant derivative. We require any gauge field introduced in the 
covariant derivative to be quaternion valued and that it ap­
pears in the Lagrangian as a quaternion and not in compo­
nents. As a result, although we introduce several gauge bo­
sons at a component level, we can only produce the 
interaction terms by a combination of quaternion multipli­
cation and quaternion addition of the gauge boson field and 
the other particle fields, so the quaternionic form of the co­
variant derivative is dependent on the R 's. 

In a quantum theory, the field and the canonical mo­
mentum will satisfy some (anti) commutation relations. For 
complex theories U ( I) symmetry is guaranteed to leave the 
(anti)commutation relations alone as exp(iO) commutes 
with all the operators. 14 However, not all of the R 's above 
generate transformations that leave the form of the 
(anti)commutation relations of the quaternionic field alone. 
One transformation that does not have this problem is (J 
going to q(Jq-l, where q is a quaternion. Since 1T,.. the conju­
gate momentum is a function of (J and a,.. (J then 1T,.. goes to 
q1T,..q-l and so the form of the (anti)commutation relations 
is unchanged. 

So we will follow Finkelstein et a/.4 and consider the 
automorphisms of the quaternions as the symmetry of the 
Lagrangian. This means that the physics described by the 
Lagrangian does not vary with changes in the quaternions 
that leave the algebra invariant. 

These automorphisms form the group 0 (3) acting on 
the vector part of the quaternions. That is that every auto-
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morphic gauge transformation leaves ;0 alone and trans­
forms tE by an O( 3) gauge transformation. 

As a global symmetry of the Lagrangian, we have that 
the Lagrangian is invariant under the transformation 

;(x)~q;(x)q-t, (4.2) 

for qeQ. In infinitesimal form this transformation is 

;(x)~(1aP + 2EiZ~);pea' (4.3) 

where i = 1,2,3, and can be written 

;(x) = ;(x) + [;(x),E], 

with 

Z~=O, 

for a = 0 or {3 = 0, and 

z~ = EiaP ' 

(4.4) 

for a;'=O and {3 ;'=0. Here, Eijk is the totally antisymmetric 
symbol with El23 = 1, E is defined as EA, and Ei is an infini­
tesimal. As a local symmetry, we have that the Lagrangian is 
invariant under transformations 

(4.5) 

for any function q: R4 ~ Q such that dq (x,dx) exists for all x 
and dx. In infinitesimal form this is 

;(x)~(laP + 2Ei(X)Z~p);pea' 
This can be written 

;(x) ~;x + [;(x),E(x)] 

(4.6) 

(4.7) 

with Z i as above and with Ei (x) infinitesimal and differen­
tiable for all x, while E(x) is still Ei (x)ei and dE(x,dx) 
exists. 

The requirement of local symmetry of the Lagrangian 
is, as such, not satisfied by all Lagrangians that satisfy the 
global symmetry. The problem lies with the derivatives of 
the fields. Assuming that the Lagrangian has no derivative of 
greater than first order then local symmetry is satisfied by a 
Lagrangian that satisfies global symmetry if we replace the 
derivative, ap" by a covariant derivative, Dp., such that 

q(x)(Dp.;)q(x) -1 = D ~(q(x);(x)q(x) -1). (4.8) 

We let D p. have the form 

Dp.;=ap.;+q[Ap.,;]' (4.9) 

where Ap. is a quatemionic vector field with Ap. = Ap.a ea' 
The requirement thatDp.; transforms as in (4.8) is a neces­
sary and sufficient condition for Ap., defined in (4.9), to 
transform 

Ap. (x) ~q(x)Ap. (x)q(x) -1 + (lIg)(ap.q(x»)q(x) -1, 

(4.10) 

which has the infinitesimal form 

Ap. (x) ~Ap. (x) + [Ap. (x),E(x)] + (lIg)ap.E(x), 
(4.11 ) 

where E is defined above. 
A kinetic energy term for the gauge field Ap. must be 

gauge i~ariant and involve first derivatives of Ap.. Such a 
term is Kp."Kp.,,' where 

Kp." =ap.A" -a"Ap. -g[Ap.,A,,]. (4.12) 

Explicitly, we have 
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Kp."Kp.v = 2( ap.Avap.Av - ap.A"a"Ap.) 

- 2g( ap.A" [Ap.,A,,] + [ Ap.,A" ]ap.A,,) 

+.r[ Ap.,A,,][Ap.,A,,]. (4.13) 

v. THE HIGGS MECHANISM FOR A QUATERNIONIC 
GAUGE THEORY 

If there are to exist gauge symmetries apart from elec­
tromagnetism and color, then the zero mass Goldstone bo­
sons that are predicted are phenomenologically unaccepta­
ble. The Higgs mechanism transforms the fields to a gauge­
the unitary gauge-in which the offending fields no longer 
lie in the space of massless particles that Goldstone's 
theorem provided, thus avoiding unknown massless parti­
cles. In complex theories it is fortuitous that in the unitary 
gauge not only is Goldstone's theorem a null result but that 
the gauge bosons decouple from the scalar field to first order 
and that some gauge bosons acquire mass. 

To look at the Higgs mechanism quatemionically we 
combine the two examples already used. When local auto­
morphic gauge invariance, of Sec. IV, is required of the La­
grangian (3.1a), it becomes 

!/ = Dp.;Dp.; - V(;) + Kp."Kp.,,' (5.1) 

where V(;) is defined in (3.1b),Dp.; is defined in (4.9), and 
the kinetic term of ( 4.13) has been added. 

Goldstone's theorem is-in this language-for a vacu­
um quatemion v satisfying vv = - f.l2 / A that if a component 
of ;' =; - v is in the space G generated by {Z ~vpea: 
i = 1,2,3}, then that component has no second-order terms 
in V. The Higgs mechanism becomes finding a gauge-the 
unitary gauge--such that in this gauge the shifted field has 
no components in G. That is, if the unitary gauge is the phys­
ical gauge then none of the physical Higgs bosons may be 
forced to be massless through Goldstone's theorem. 

Now writing gauge transformations as ;~O(;), the 
transformation to the unitary gauge is required by the last 
paragraph in Sec. III to satisfy "0 (;) - v has no component 
in G." This means that 

(5.2) 

for i = 1,2,3. By the definition of Z~ we see that 
vaz"aPvp = 0 for i = 1,2,3. Therefore the unitary gauge con­
dition becomes 

(5.3 ) 

Remember that the gauge transformations act as 0 (3) on tE 
and leave;o alone. It is the case that for every gauge transfor­
mation there is an 0 ( 3) transformation and vice versa such 
that 

0gauge (;)'e = Ogauge (tE • ~) = 0 0 (3) (tE) • ~. (5.4) 

This along with (5.3) and the fact that Eijk' i = 1,2,3, are the 
generators of 0 (3) allows us, following Weinberg, 15 to con­
clude that a transformation 0 satisfying (5.3) exists. The 
expression (5.3) may also be written [O(;),v] = 0 and is 
equivalent to "0 (;) is parallel to ~." 

We now expand D p. ;D p.; in the unitary gauge in terms 
of the shifted fields. Remember that D p.; is designed that 
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under gauge transformations Dpt,6-q(x)Dpt,6q(X)-I. Thus 

Dpt,6Dpt,6 is invariant under gauge transformations. So we 
have 

Dpt,6 Dpt,6 = J5C!;iF D~t,6° 
= D~ (t,60' + v) D~ (t,60' + v), (5.5) 

where the ° denotes the transformation to the unitary gauge, 
so that (t is parallel to !!, t,60' is defined as t,60 - v. Now we 
drop the o's and leave the unitary gauge as implicit in what 
follows. We have 

Dp (t,6' + v) Dp (t,6' + v) 

= apt,6'apt,6'+g apt,6'[Ap,t,6'+v] 

+ g[ Ap't,6' + v]apt,6' 

+g2[ Ap't,6' + v] [Ap,t,6' + v]. (5.6) 

As p.. = f:..±.£. is parallel to !!. then so is f. As !!. is a constant, 
and as f is parallel to!!., apt,6' is parallel to!!. and therefore to 
f...±!:!:.. That aet,6' is parallel to ~ means, as the reader 
can verify, that the second and third terms in (5.6) cancel 
each other. In the analogous complex theory these terms 
both vanish independently. This difference results from us­
ing quatemions explicitly rather than using the components. 
The terms vanish independently if we write 

as 

(Dp (t,6' + v»)a (Dp (t,6' + v»)aeo' 

In either case we have that 

Dp (t,6' + v) Dp (t,6' + v) 

= apt,6'apt,6' + g2[ Ap'v HAp,v] 

+2g2S( [Ap't,6'] [Ap'v]) +g2[ Ap,t,6'] [Ap't,6'] , 
(5.7) 

where first order Ap' t,6 cross terms have disappeared as well 
as this a second-order "mass" term for Ap has appeared. 
Then the Lagrangian in the unitary gauge using (3.13), 
(4.13), and (5.7) can be written 

!t' = Dp (t,6' + v)Dp (t,6' + v) - V(t,6' + v) + KpvKpv 

= apt,6'apt,6' +g2[ Ap,v] [Ap,v] -AS(~'v)2 

+ 2( apAv apAv - apAv avAp) 

+ 2g2S( [Ap,t,6'] [Ap'v]) +g2[ Ap,t,6'] [A p't,6'] 

- V(v) - A /4(~'t,6')2 -A(~'t,6')S(~'v) 

- 4gS( apAv [Ap.Av]) + g2 [ Ap.Av] [Ap.Av]· 
(5.8) 

The term AS(~'v)2 is not forced by Goldstone's theorem to 
be zero for any component of t,6' as t,6', in the unitary gauge, 
has no component in G. As has already been noted the first­
order cross terms have disappeared and a second-order mass 
term for Ap has appeared. 
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VI. POSSIBLE VACUUM VECTORS 

As physical interpretation of the quatemion fields is on 
a component level we will express the Higg's mechanism on 
a component level. We first look at the vacuum quatemion v 
in components. The most general possible vacuum quater­
nion is 

v = aeo + bel + ce2 + de3 , 

with 

a2 + b 2 + c2 + d 2 = _",2/,.1,. 

(6.1 ) 

The Higgs mechanism finds a gauge transformation 0 such 
that 0(t,6) is parallel to !!.. We then define t,6' such that 
0(t,6) = t,6' + v. Now global gauge transformations ofO(t,6), 
which have the form 0(t,6) -qO(t,6)q-l, where q is not de­
pendent on x, will leave the Lagrangian invariant and will 
send t,6' + v to qt,6'q-1 + qvq-I. So we can transform v to 
v' = qvq-I = a'eo + b 'el, where a,2 + b,2 = - ",2/,.1" by 
such a global transformation. The unitary gauge condition is 
invariant under such a transformation and so we might well 
have chosen v' as v in the first place. We now choose 

v = aeo + bel' 

where 

a2 + b 2 = - ",2/,.1" 

as the general vacuum quatemion. 

(6.2) 

(6.3) 

Now the Lagrangian (5.8) in component form in the 
unitary gauge for the general vacuum vector and shifted 
fields to second order is 

!t' = {apt,6~ apt,6~ + apt,6; apt,6; + 4g2Ap2Ap2 b 2 

+ 4g2Ap3Ap3 b 2 - A(t,6~a + t,6; b)2 

+ 2(apAav apAav - apAav avAap) }eo' (6.4) 

Notice that two components of the gauge boson Ap have 
gained mass and two components of the scalar field t,6' have 
disappeared. Note also that one component of t,6', namely 
t,6~a + t,6; b, has mass, and that, if a is not zero, t,6~a - t,6; b is 
massless and if a is zero, t,6~ is massless. This last point is not 
in contradiction to the Higg's mechanism as the massless 
state is not forced by Goldstone's theorem but occurs inde­
pendently of it. 

Now it is possible to split Ap into 

Ap =Bp + Cp' 

where 

Bp -q(x) Bpq(-;,/, 

and 

(6.5) 

(6.6a) 

(6.6b) 

under gauge transformations. The transformations ( 6. 6a) of 
Bp allow Bp to have a gauge invariant mass term mBpBp 
added to the Lagrangian. We can make the decomposition 
(6.5) in two ways: first we may decompose Ap via existing 
fields as Finkelstein et al. 4 do. This does not change the num­
ber of degrees of freedom. Second we may introduce new 
degrees of freedom and have Bp and Cp as totally indepen­
dent quatemion fields. In either case the Lagrangian is now 
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.!f = D,.. (f/J' - v)D,.. (f/J' + v) 

- V(f/J' + v) K,..vK,..v + m B,..B,... (6.7) 

In the first case take an example and consider, as did Finkel­
stein et al., 4 the following simple situation. The fields B,.. and 
C,.. are restricted to satisfy 

{B,..'I]} = 0, (6.Sa) 

and 

(6.Sb) 

where 1/ is an existing field or combination of fields satisfying 

1/2 = - 1, (6.9a) 

and 

1/--Q(x)1/Q(x) -I, (6.9b) 

under gauge transformations. To demonstrate what happens 
we further particularize the situation to the case where we 
identify 1/ as f/lfl. Now in the unitary gauge and for the 
general vacuum vector 

f/J'=f/J~eo+f/Jiel' (6.10) 

From which follows that 

1/ = el , 

B,.. =B2p.e2 +B3~e3' 

C,.. =CI,..e l . 

(6.l1a) 

(6.l1b) 

(6.l1c) 

Here the Lagrangian (3.7) becomes in component form 

.!f = {a,..f/J~ a,..f/J~ + a,..f/Ji a,..f/Ji + 4g2b 2B2p.B2,.. 

+ 4g2b 2B3,..B3,.. + mB2,..B2,.. + mB3,..B3,.. 

- A(f/Joa + f/J lb)2 + 2(a,..Aava,..Aav 

- a,..AavavAa,.. )}eo, (6.12) 

to second order. This is open to the same interpretation as 
(6.4). However, this method may produce new interpreta­
tions if we can identify 1/ as something that is not parallel to 

In the case that we introduce B,.. and C,.. as independent 
fields, the Lagrangian (6.3) becomes 

.!f = {a,..f/J~ a,..f/J~ + a,..f/Ji a,..f/Ji -A(f/J~a + f/Jib)2 

+ mBI,..BI,.. + (4b 2g2 + m)B2p.B2p. 

+ (4b 2g2 + m)B3,..B3,.. + Sb 2g2C2p.B2p. 

+ Sb 2g2C3,..B3,.. + 4b 2g2C2p. C2,.. + 4b 2g2C3,.. C31-' 

+ 2(a,..Aav a,..Aav - a,..Aav a .. .Aa,.. )}eo, (6.13) 

to second order. This can be written in a more explicit form 

.!f = {a,..f/J~ a,..f/J~ + a,..f/Ji a,..f/Ji - A(f/J~s + f/Ji b)2 

+ (Bw Cu )[2(a,.. a,..G :)~Ak -ak aAG :)) 
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(6.14 ) 

to second order. This is reminiscent of the current mixing of 
Hung and Sakurai. 16 However, we will not examine (6.14) 
in that light here. 

VII. CONCLUSION 

SSB and the Higg's mechanism has been successfully 
produced for classical quaternionic fields. Further, it seems 
the extension from complex theories is nontrivial. More 
work is required to produce a Hilbert space formulation of 
SSB and the Higgs mechanism with the quaternions as the 
scalar field of the Hilbert space. It is not obvious whether or 
not the extension to quaternions will be significant there. 
The gauge boson splitting in Sec. VI especially with refer­
ence to current mixingl6 warrants more investigation. As yet 
we have not examined fermions and it is clear that this will 
need to be done. 5.6.8,9 
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The classical improvement program in lattice gauge theory is examined from the geometric 
point of view. Improved actions are derived for pure gauge theories as well as for fermions. 

I. INTRODUCTION 

The lattice treatment of quantum chromodynamics has 
been a very fruitful one. Numerical calculations have given 
us a surprisingly large amount of information on nonpertur­
bative aspects of the theory. Much ofthis information, how­
ever, has to be regarded as preliminary, because the desired 
accuracy necessitates values of the lattice spacing that are 
too small to be handled by existing computers in a reasonable 
amount of time. To overcome this difficulty, one may modify 
the lattice action in such a way that the continuum limit 
remains unchanged but is-loosely speaking-approached 
faster. If the dynamical continuum limit is sought to be ap­
proached faster, renormalization group transformations are 
involved and the modified action has to be calculated on the 
computer itself. Alternatively, the approach to the perturba­
tive or even classical continuum limit may be desired to be 
hastened; in this case, the new action can be determined ana­
lytically. It is this kind of modification or improvement­
pioneered by Symanzikl-with which we shall be concerned 
in this paper. 

It is fairly simple to adjust the classical Lagrangian in 
such a way that the leading corrections to the classical con­
tinuum limit get canceled. Nearest-neighbor terms have to 
be supplemented by terms involving next-nearest or even 
more remote neighbors. In principle, one can continue in 
this fashion and remove nonleading corrections order by or­
der. All this involves the classical Lagrangian, which may be 
regarded as the tree-level approximation to the quantum ef­
fective Lagrangian. An order by order improvement in the 
coupling constant also may be carried out. This involves 
loop calculations and is obviously more complicated than 
mere classical improvement. In any case, high-order im­
provement in either the lattice spacing or the coupling con­
stant makes the Lagrangian too unwieldy for practical work, 
so that only the leading tree-level and one-loop modifica­
tions are usually attempted. We shall be even more restric­
tive and ignore all quantum (loop) corrections. 

Classical improvement of pure gauge theory has been 
discussed very clearly by Weisz and Wohlert2 on the basis of 
Luscher's ideas; see also Grensing and Grensing. 3 A more 
complicated action has been advocated by Eguchi and 
Kawamoto,4 who were really interested in improving the 
fermion action proposed by Wilson; Hamber and Wu5 also 
have considered the Wilson action, as have Sheikholeslami 
and W ohlert. 6 The other popular action for fermions, viz., 
the staggered one, has been improved by Mitra.7 

Our aim in this paper is to discuss the improvement of 
the classical action from the point of view of differential ge­
ometry on the lattice. The standard action for pure gauge 

theory on the lattice can very easily be written in a geometric 
language closely paralleling the continuum situation-see, 
e.g., Mack.8 Similarly, staggered lattice fermions can be for­
mulated in an elegant geometric way.9.10 It is these languages 
that we wish to use in our study of improvement. 

In Sec. II, we first rewrite some of the possible improved 
actions for pure gauge theory, including a new one, in an 
extension of the available geometric formalism. Then we 
show that the formalism, without some such extension, can­
not naturally incorporate improvement. A modification of 
the formalism is found to pick out the imprOVed action sug­
gested by Eguchi and Kawamoto.4 

In Sec. III, we consider fermions. The geometric formal­
ism is used to derive an improved action. It is equivalent to 
the one found earlier7 in a different framework. But the ear­
lier derivation left it unclear whether this is the simplest im­
proved action for staggered fermions. This defect is reme­
died in the present derivation. 

A concluding discussion is given in Sec. IV. 

II. IMPROVEMENT OF THE ACTION FOR THE PURE 
GAUGE THEORY 

The dynamical variables of a pure gauge theory on the 
lattice are gauge group elements associated with links. We 
write U(x,p,) to denote the group element associated with 
the one-chain (x, {P}), i.e., the link going from the site x to 
the next site in the /l direction. Introducing the basic one­
cochains dXV.} dual to the basic one-chains (x, {P} ), one can 
construct the one-cochain 

(2.1 ) 

which is the analog of the one-form in the continuum de­
scribing the gauge field, taking values, however, in the repre­
sentation R of the gauge group rather than in the Lie algebra. 
To obtain the field strength, one considers the commutator 
between parallel transports along two different paths8

; tak­
ing these to be along the sides of an elementary cell, one is led 
to 

FJ.tv(x) = U(x,p,hU(x+eJ.t,v)R 

- U(X,V)R U(x + ev,p,h, (2.2) 

whereeJ.t stands for translation to the next site in the/l direc­
tion. A two-cochain can now be constructed: 

F= ~ IE" F (x)dxV.. v
} (2.3) 

2 x.J.t.v J.tV J.tV . 

Here dXV.. v
} is the basic two-cochain dual to the basic two­

chain (x, {p, v}) and may be identified with dxJ.' 1\ dxv up to 
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a sign in the continuum limit, the sign being E/lv = ± 1, 
depending on whether It is less or greater than v. Using the 
wedge product of cochains, 10 one can actually write 

F=U/\U. (2.4) 

The standard lattice action for pure gauge theory is related 
to the norm of F: 

1 
(F,F) = - L tr{F /l~ (x)F/lv (x)} 

2 X,/l,V 

= 2 Re tr L (1 R - Up) . (2.5) 
p 

In the second line, the sum is over all (unoriented) pla­
quettes p and Up denotes the product of the link variables 
around p. The usual lattice action is thus 

SWilson = (l/2g2)(F,F) . (2.6) 

If one wishes to describe the standard improved lattice 
action2 in the same language, one has to introduce alterna­
tives to the above F and take a suitable combination of the 
norms of the different cochains. These alternatives are 

F + = L F( + )/lV (x)d xiJl.2,V} , 
x,p.,v 

/l<V 

F _ = L F( _ )/lV (x)d xiJI..v'} , 

where 

}C.p,v 

/l<V 

F( + )/lv(x) 

= H U(x,lth U(x + e/l,lth U(x + 2e/l,v)R 

(2.7) 

- U(X,V)R U(x + ev,It)R U(x + ell + ev,It)R] , 

F( _ )/lv(x) 

= H U(x,f.th U(x + e/l,v)R U(x + ell + ev,vh 

- U(X,V)R U(x + ev,vh U(x + 2ev,f.th], (2.8) 

and (x, {Jt2,V}) indicates a doubled distance in the It direc­
tion (a rectangular cell instead of a square one). The contin­
uum limit of the norm is unchanged if F is replaced by F ± . 

But the corrections-terms of higher order in the lattice 
spacing-do change. By taking an appropriate combination 
of these terms, the first nonleading term (or equivalently, 
the leading correction) can be canceled. The normalization 
of the combination is fixed by demanding that the contin­
uum limit be the same as for (F,F ). The resulting improved 
action is 

Simproved = (1/6,f)[5(F,F) - (F +,F +) - (F -,F _)] . 

(2.9) 

However, this is not the only way in which the first non­
leading piece in (F,F) can be canceled. One can use co­
chains different from both F and F ± -F corresponds to 
squares and F ± to 2 X 1 rectangles. The next thing to try is 
obviously F. corresponding to 2X2 squares: 

_ 1 ~ xiJl.2.v'} F. -- £... F(.)/lv(x)d , 
2 X./l.V 

(2.10) 

F(.)/lv (x) =H U(x,lth U(x + e/l,f.th U(x + 2e/l,v)R 

X U(x + 2e/l + ev,v)R - (W-w)] . (2.11) 
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If one is willing to use both F ± and F., then conditions of 
improvement to leading order and normalization are not suf­
ficient to determine all the coefficients. One may think of 
canceling the leading as well as the first nonleading correc­
tions, but there are two kinds of terms making up the first 
nonleading correction, and both cannot be canceled by the 
single degree of freedom available. Hence some other crite­
rion is needed to fix the coefficients. Equation (2.9) follows 
from the desire to avoid 2 X 2 squares altogether. One might 
instead decide to omit the rectangles. This would lead to the 
improved action 

Simproved = (l/6g2)[4(F,F) - (F.,F.)]. (2.12) 

This action takes less time on the computer than (2.9), 
mainly because it involves only two terms instead of three. It 
is true that larger cells are involved here than in the standard 
case, but in both cases the restriction on the lattice size is that 
it should be much bigger than 2 in each direction. Thus, from 
the computational point of view, S improved is the improved 
action to be preferred. An improved action involving both 
2 X 1 rectangles and 2 X 2 squares has been used4 in the liter­
ature: 

S ::Oproved = (1/18g2) [16(F,F) - 4(F +,F +) 

- 4(F_,F_) + (F.,F.)] . (2.13) 

It has the advantage that the propagator factorizes and 
thereby makes weak-coupling calculations somewhat easier. 
We shall show below that it has some aesthetic advantage as 
well: it can be motivated by the geometric approach! 

The three improved actions discussed above have been 
expressed in the cochain language, but the formalism is not 
used in their derivation. The elementary cell is supplemented 
by more complicated rectangles in a more or less arbitrary 
way, a two-cochain being then introduced separately for 
each kind of rectangle. We would like to take a different 
approach, making the departure from the unimproved ac­
tion (2.6) less arbitrary and more fundamental. Thus we try 
to retain (2.6) and even the form (2.4) for F, replacing the 
cochain Uby 

X./l 

(2.14 ) 

in an attempt at improvement. The coefficients A 1 and Az are 
to be determined by the conditions of improvement and nor­
malization. First of all we need 

F=U /\ U 
=AiF+A 1A2 (F+ +F_) +A~F •. 

The norm is 

(F,F) = IAI14(F,F) + IAI12IAzIZ{(F +,F +) 

+ (F_,F_)} + IA214 (F.,F.) . 

(2.15 ) 

(2.16) 

Note that all coefficients are non-negative here. Since the 
leading corrections to the continuum limits of the different 
terms are all of the same sign, it immediately follows that 
improvement cannot be achieved in this way. 

We therefore have to develop a different formalism for 
the action. We go back to the unimproved case. In addition 
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to the cochain U of (2.1 ), we introduce 

(2.17) 

Correspondingly, we define 

F<-l)= U<-l) 1\ U<-l) , (2.18 ) 

where the left-directed arrow on the wedge indicates that the 
matrices in the cochains are to be taken in the reversed order. 
Explicitly, 

F<-l) = ~ L E,.." {U-I(x + e,..,vh U-I(X,p)R 
2 x.,..." 
- U-I(x + e",ph U-I(X,V)R}dx-r,...,,}. (2.19) 

Finally, we write 

SWilson = (l/2g2) (F<-I),F) , (2.20) 

where the inner product ( , ) is bilinear, i.e., dispenses with 
complex conjugation in the first factor, in contrast to the 
Hermitian inner product ( , ) used earlier. This construction 
may look unnecessarily involved in the context of the unim­
proved action, but something like this is necessary if the sign 
problem of (2.16) is to be avoided. 

Going back to the cochain [j of (2.14), we introduce, in 
analogy with (2.17), 

[j<-l) = L{..1.IU-I(x"uhdx-r,..} 
x.,.. 
+ (..1. 2/2) U-I(x + e",p)R U-I(x,phdx-r,..'}}. 

(2.21) 

Similarly, in analogy with (2.18), we set 

p<-l) = [j<-l) A [j<-l). 

The inner product entering the action is 

(p<-I),P) =..1. ~(F,F) +/q..1.~{(F+,F+) 

+ (F _,F _)} + A. ~ (F. ,F. ) , 

(2.22) 

(2.23) 

which is the same as (2.16) except in the crucial matter of 
the phases of the coefficients. The condition for improve­
ment can be shown to be 

..1.~ +5..1.i..1.~ +4..1.~ =0, 

while the normalization demands that 

A. ~ + U i..1. ~ +..1. ~ = 1. 

These imply that 

(2.24) 

(2.25) 

..1.~ =-'!, ..1.~/..1.i = -!, (2.26) 

yielding the action S ;;"proved of (2.13 ). Thus, out of the one­
parameter class of classically improved actions obtainable 
by supplementing the elementary cell with 2 X 1 rectangles 
and 2 X 2 squares, our geometrical approach chooses a spe­
cific one, and it is the same one that has been motivated 
earlier4 by a factorization property. Unfortunately, it is hard 
on the computer! 

III. IMPROVEMENT OF THE STAGGERED ACTION FOR 
FERMIONS 

A geometrical formalism9
•
10 for lattice fermions can be 
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derived from the continuum formalism due to Kahler, II 
which involves four species of fermions. It turns out to be a 
new representation for staggered fermions on a lattice of 
doubled spacing.1O The fields can be written as a combina­
tion of p-forms with p running all the way from 0 to 4. On 
the lattice, this translates to a combination of p-cochains. It 
may be expanded in basic cochains as 

</J = L </J(x,H)d XH , (3.1 ) 
x.H 

where H goes over all subsets of {O, 1,2,3}. In this representa­
tion, the Dirac operator takes the form d - {j or i(d + {j), 
where d and {j are the lattice versions of the usual cobound­
ary (exterior derivative) and boundary (adjoint of exterior 
derivative) operators. Ignoring the mass term, we can write 
the action for free fermions as 

Sstaggered = (¢,(d - {j)</J) , (3.2) 

where ¢ is a cochain as in (3.1), but independent of </J. The 
introduction of gauge interactions involves the replacement 
of d and {j by appropriate covariant versions l2 and will not 
bother us here. Let us rewrite (3.2) in terms ofthe compo­
nents of </J and ~: 

Sstaggered = L ~(x,H) [LE,...H,-r,..} (</J(x + e,..,H \ {P}) 
x.H ,..EH 

- </J(x,H \ {P})} + LE,...H(</J(x,HU{p}) 
,..w 

(3.3 ) 

Here E ,...K is equal to - 1 raised to a power given by the 
number of elements in K which are less than 1". 

A special symmetry of (3.3) will be very important in 
our development. If we make the transformations 

(3.4 ) 

(and similarly for ~ ), both terms in (3.3) change sign. Thus 

~(x,H)(</J(x + e,..,H \ {P}) - </J(x,H \ {P})} 

-+~(x - eH,H) (</J(x - e,.. - (eH - e,..),H \ {P}) 

- </J(x - (eH - e,.. ),H \ {P})} 

= -~(x-eH,H)(</J(x-eH +e,..,H\{p}) 

-</J(x-eH,H\{p}}. (3.5) 

The first and last lines give equal and opposite results when 
all values of x are summed over. This symmetry is recog­
nized to be the invariance of the action under a formal 
change of sign of the lattice spacing when one recalls 10 that 
</J(x,H) is to be associated with the site x + !eH of a lattice 
with halved spacing. Under this formal change of sign, the 
chain (x,H) gets rewritten as (x + eH,H), i.e., the origin is 
shifted from one extremity to the opposite one. This trans­
formation of basic chains is equivalent to the replacement of 
</J (x,H) by </J (x - e H,H) as is clear from (3.1). 

To improve the action (3.2), we add similar terms 
where (d - {j) is replaced by (d - {j) TO which is the same as 
(d - {j) except that the hopping distance is multiplied by a 
factor r; thus, in the analog of (3.3), the rth forward and 
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backward differences will occur instead of the 1st. If this 
were the only difference between the different terms in the 
improved action, the linearity ofthe action (3.2) in (d - 8) 
would permit us to rewrite the improved action in the form 
(3.2) with (d - 8) replaced by an improved (d - 8), i.e., a 
sum of several (d - 8),. However, with such a structure it is 
not possible to preserve the symmetry discussed above. It is 
necessary to change rfJ and ~ when we change r in (d - 8),. 
We take 

rfJ(S) = L rfJ(x + seH,H)d XH , (3.6) 
x.H 

and consider 

(~(S),(d - 8),rfJ(S» 

= ~ ~ ~(x + seH,H) [kEp.H,{Jl} 

X (rfJ(x + rep + s(eH - ep),H '\ {P}) 

- rfJ(x + s(eH - ep),H '\ {P})} 

+ L Ep.H(rfJ(x+s(eH +ep),HU{p}) 
peH 

- rfJ(x + s(eH + ep ) - rep,HU{p})}] . (3.7) 

Under the transformation (3.4), a term in the first piece 
(with se H absorbed in x) changes as follows: 

~(x,H)(rfJ(x + (r - s)ep,H '\ {P}) - rfJ(x - se,..,H '\ {P})} 

->~(x - eH,H) (rfJ(x - (eH - ep ) - (r - s)ep,H '\ 

{P}) - rfJ(x - (eH - ep ) + sep,H '\ {P})} (3.8) 

It is clear that this expression (after the absorption of e H in 
x) will be the negative of what it was if 

r=2s+ 1. (3.9) 

The same condition ensures the desired transformation of 
the second piece of (3.7) as well. Thus we see that the sym­
metry can be preserved if in the different terms s and rare 
related in the above manner. One immediate observation is 
that r must be odd. Note also that changing the sign of r does 
not change (3.7). 

The usual action (3.2) has r = 1 and s = O. To improve 
it, the simplest thing that can be done is the introduction of a 
termwithr=3ands= 1: 

SimprOVed = AI(~,(d - 8)rfJ) + A2(~(J),(d - 8hrfJ(J)) . 
(3.10) 

The parameters AI and A2 are to be determined by the condi­
tions of improvement and normalization. Because of the 
symmetry considered above, second derivatives do not arise 
in the expansion of (3.10) about its continuum limit. The 
cancellation of the third derivatives imposes the condition 
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AI + A2 . 32 = 0 . 

Since normalization demands that 

AI +A2 = 1, 

it follows that 
- -(1) (I) 

SimprOVed = i(rfJ,(d - 8)rfJ) -l(rfJ ,Cd - 8)3rfJ ). 

(3.11 ) 

(3.12) 

(3.13) 

This action is equivalent to the one arrived at earlier7 in 
a different representation for staggered fermions. There it 
was shown in greater detail that this action and its gauge­
invariant version effect improvement, but in that approach it 
was not clear that this is the simplest imprOVed action. The 
first term in (3.13) corresponds to a nearest-neighbor term 
(also on the lattice with halved spacing) while the second 
term involves third nearest neighbors, so that the question 
arises whether improvement can be effected with second 
nearest neighbors. The present derivation, through the re­
sult that r must be odd, demonstrates that second nearest 
neighbors cannot be used. 

IV. CONCLUSION 

In this paper we have studied both pure gauge and fer­
mion theories on the lattice, the aim being to look at what are 
called improved actions from a geometric point of view. In 
both cases we have come up with specific improved actions. 
In the pure gauge case, some alternative (nongeometric) 
actions exist, so that our work may be invoked to motivate 
one particular choice. In the case of (staggered) fermions, 
our action coincides with the only improved action known. 
Now this action, involving third nearest neighbors instead of 
second nearest ones, is not simple from a computational 
point of view. Our work shows that a simpler improved ac­
tion cannot be found. In both cases we have restricted our­
selves to improvement at the leading order. Extension to 
higher orders is straightforward. 
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First it is shown in an abstract mathematical framework of supersymmetric quantum theory 
that. under some conditions for the perturbation. the wave and the scattering operators on 
bosonic states have some connections with those on fermionic ones. In particular. a unitary 
equivalence between the two scattering operators is proved. Then. a class of supersymmetric 
quantum mechanical models on Rn is discussed and the abstract general results are applied to 
obtain some more explicit results on the supersymmetric potential scattering. 

I. INTRODUCTION 

In this paper we study some mathematical aspects of 
scattering in supersymmetric quantum theory (SSQT).1-3 
The main interest is to understand on a mathematically rig­
orous basis what the supersymmetry implies for scattering 
quantities such as wave and scattering operators. On a level 
of model studies. such an attempt has recently been made.4 

where supersymmetric quantum mechanical models in one 
and three dimensions are discussed. although their discus­
sions are not completely mathematically rigorous. In the 
present paper. however. we first consider SSQT in an ab­
stract framework and derive some general results on the 
scattering theory. which include the results in Ref. 4 as spe­
cial cases. Then. we discuss a class of models of supersymme­
tric quantum mechanics (SSQM) on Rn. We hope that our 
approach would clarify in some mathematical generality the 
role of supersymmetry in scattering phenomena. 

The outline of this paper is as follows. In Sec. II. we start 
with a mathematically precise definition of SSQT with a 
functional analytical ftavor.2·5 Then, after preparing some 
terminologies from the standard abstract scattering theory 
(e.g .• Refs. 6 and 7), we state the main result (Theorem 2.2). 
In particular, we note that. under some conditions for the 
perturbation, a unitary equivalence between the scattering 
operator on bosonic states and that on fermionic ones holds. 
This theorem is proved by a series of lemmas. An essential 
point lies in the fact that the bosonic and the fermionic part 
of the total Hamiltonian H restricted to the orthogonal sub­
space of the kernel of H are unitarily equivalent (Lemma 
2.3). which is due to the supersymmetry. In Sec. III, we 
consider a class of models of SSQM on Rn 

• which contains 
the one-dimensional Witten model. 1.3-5 By applying the gen­
eral results. we can get an explicit relation between the T­
matrix elements on bosonic states and those on fermionic 
ones. Furthermore, the spectrum of the Hamiltonian is ex­
actly identified. 

II. WAVE AND SCATTERING OPERATORS IN AN 
ABSTRACT SSQT 

We first give a mathematically precise definition of 
SSQT in an abstract framework. 2

•
5 

a) Address after 1 June 1986: Department of Mathematics, Hokkaido Uni­
versity, 060 Sapporo, Japan. 

Definition 2.1: Let N be a positive integer. Then. an 
SSQT with N-supersymmetry is a quadruple {H, 
{Q; }f= 1 .H.NF } consisting of a complex Hilbert space H. a 
set of self-adjoint operators {Q;}f= 1 (the "supercharges"). 
self-adjoint operators H (the "supersymmetric Hamilto­
nian"), and N F the "Fermion number operator"). which 
has the following properties. 

(a) H is decomposed into two mutually orthogonal 
closed subspaces HB and H F: 

H=HB !BHF · (2.1) 

(b) For all i,j = 1, .... N. 

Q7=QJ. (2.2) 

and H is written as 

H= Q7, i= 1 ..... N. (2.3 ) 

(c) For all 'IJ in HB (resp. H F ), 

NF'IJ= +'IJ (resp. -'lJ). (2.4) 

(d) N F: D(Q;)--D(Q;). NFQ; + Q;NF =0, 

i = 1 ..... N, (2.5) 

on D(Q;), where D(Q;) denotes the domain of Q;. 

(e) Q;Qj + QjQ; = o. i# j,i,j = 1, .... N. 

onD(Q; Qj)nD(Qj Q;). 
In physics literature (e.g .• Refs. 1 and 3). elements in 

the Hilbert space HB (resp. H F ) are called bosonic (resp. 
jermionic) states. 

From the above definition. one can easily see that H is 
non-negative and reduced by HB and HF (Ref. 5). We shall 
denote by H B (resp. H F ) the reduced part of H to the sub­
spaceHB (resp. H F ). The operator H B (resp.H F) is called 
the bosonic (resp.jermionic) part of the total supersymme­
tric Hamiltonian H. It is also obvious from (c) and (d) in 
Definition 2.1 that 

Q;: D(Q;) nHB (resp. H F) --HF (resp. H B) • 

and 

Ker Q; = Ker H. i = 1 .... ,N. 

(2.6) 

(2.7) 

In what follows. we concentrate our attention on properties 
of H and hence we write Q; simply as Q: 

H = Q2. (2.8) 
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Remark: In the following discussions, we do not use 
property (e) in Definition 2.1. 

In order to consider scattering theory, we first have to 
prepare some terminologies from the standard abstract scat­
tering theory (e.g., Refs. 6 and 7). Given a self-adjoint oper­
ator A, we denote by Hac (A) [resp. Pac (A)] the subspace of 
absolute continuity with respect to A [resp. the orthogonal 
projection onto Hac (A) ] . Let A, B be two self-adjoint opera­
tors acting in Hilbert spaces H2 and HI' respectively, and J 
be a bounded operator from HI to H 2. Then, wave operators 
are defined by 

W ± (A,B;J) = s-lim eitA Je - itBPac (B) , (2.9) 
t_ ± 00 

provided that the rhs exists. The scattering operator 
S(A,B;J) is given by 

S(A,B;J) = W+(A,B;J)*W_(A,B;J) . (2.10) 

If HI = H2 and J = I (identity), then we write 

W ± (A,B) = W ± (A,B;I) , (2.11) 

S(A,B) =S(A,B;I). (2.12) 

If 

Ran W ± (A,B) = Hac (A) , 

then W ± (A,B) are said to be complete. It is well known 
that, if W ± (A,B) are complete, then W ± (B,A) exist and 
are complete.6

•
7 

As a "free" part in the supersymmetric quantum scat­
tering system, we take another SSQT, {H, {QoJf= I' Ho, 
N p }, where Hand N p are identical with the previous ones. 
We shall write QOi simply as Qo and denote by HOB (resp. 
Hop) the bosonic (resp. fermionic) part of Ho. Let {E(A)} 
[resp. {Eo (A )}] be the spectral family of Q (resp. Qo) and 
define 

U=I-E(O) -E( -0), (2.13) 

(2.14 ) 

Then, our main result is the following. 
Theorem 2.2: Suppose that (a) W ± (H,Ho) exist and 

are complete; (b) D(Qo) CD(Q) and, for all 'l'EHac (Ho) 
and for all E> 0, there exist functions F ± on [E, 00) such 
that, for all SE [E, 00 ) and tER, 

and 

II (Q - Qo) (Qo ± is) -Ie - itH°'l'II<F ± (s) , (2.15) 

I CC> 1 
-F±(s)ds<oo; 

£ s 
and (c) for all 'l'EHac (Ho) nD(Ho), 

lim II (Q - Qo)e - itH°'l' 11 = 0 . 
t_ ± 00 

Then, we have 

W ± (HB,HOB) = UW ± (HF,Hop)UoPac(HoB ), 
(2.16) 

S(HB,HoB ) = UoS(Hp,Hop)UoPac(HoB)' (2.17) 

Remark: (1) By symmetry, formulas (2.16) and (2.17) 
with "B(F)" in place of"F(B)" also hold. The same is true 
for formulas appearing in what follows. 

(2) Formula (2.17) shows that the scattering operator 
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on the bosonic states is unitarily equivalent to that on the 
fermionic ones. In other words, (2.17) is equivalent to that 
the total scattering operator 

_ (S(HB,HoB ) 0) S- , o S(Hp,Hop) 

is commutative with Uo on the space of absolute continuity 
of Ho. Since Uo may be regarded as a "normalized" gener­
ator of the supersymmetry in the "free" system, this may be a 
rigorous version of the statement that the supersymmetry is 
a symmetry consistent with scattering (cf. Ref. 8). 

( 3) Condition (2.15) can be weakened: It is sufficient 
for (2.15) to hold for all 'I' in a dense domain D in Hac (H 0) 
(see Proof of Lemma 2.6). 

To prove Theorem 2.2, we need some lemmas. A funda­
mental fact in SSQT is given by the following. 

Lemma 2.3: Let U be given by (2.13), Then, U is a 
partial isometry from HB (resp. Hp ) to Hp (resp. HB ) with 

Ker U = Ker Q and Ran U = Ran Q and we have 

HB = UHpU, (2.18) 

on HB nD(H B)' 
Proof" Since Q is self-adjoint, it has the polar decomposi­

tion as 

Q=UIQI 

(see, e.g., Ref. 6, p. 358). Noting that IQ 1= H 1/2, one can 
easily see that I Q I is also reduced by HB and Hp. Therefore 
(2.6) implies that 

U: RanlQlnHB (resp. Hp) ..... Hp (resp. H B), 

and is isometric. Since (Ran I Q / ) 1 = Ker / Q / = Ker Q and 
Ker Q = Ker U, U gives a partial isometry from HB (resp. 
Hp) to Hp (resp. H B). Using the self-adjointness ofQ and 
U, we have 

H = QQ * = U IQ / /Q /U = UHU 

on D(H). Then, the restriction of both sides to HB nD(H B ) 
gives (2.18). 0 

Remarks: (1) Equation (2.18) implies remarkable 
properties on the spectrum of H B and H p. Namely we have 

and 

up (H) \ {O} = up (HB) \ {O} = up (Hp) \ {O}, (2.20) 

with the equal multiplicity of each corresponding strictly 
positive eigenvalue between HB and H p, where u(A) [resp. 
up (A)] denotes the (resp. point) spectrum of the operator 
A. [Equation (2.20) is actually well known on a formal level 
in the physics literature and it has been expected or assumed 
that (2.19) is also true. It seems, however, that, in physics 
literature, no rigorous proofs have been given for (2.19) so 
far.] 

(2) IfKer Q = {O}, then Uis unitary and (2.18) repre­
sents a unitary equivalence between H B and H p. 

Lemma 2.4: Suppose that W ± (H,Ho) and W ± (Ho,H) 
exist. Then, W ± (Ho,Ho;U) exist and we have 

W ± (Ho,Ho;U) = W ± (Ho,H)UW ± (H,Ho) . (2.21) 

Proof" Let 'I' be in Hac (Ho) and put 
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= eitHo e - itH UeitH e - itHo\ll , 

where we have used the commutativity of U with H. There­
fore we have 

1I\11(t) - W ± (Ho,H) UW ± (H,Ho)\II1I 

< II [eitH e - itHo - W ± (H,Ho) ] \1111 

+ II [eitHo ritH - W ± (H,Ho)] UW ± (H,Ho)\IIII. 
(2.22) 

On the other hand, it is well known6
•
7 that 

W ± (H,Ho)\IIeHac (H). Since U maps Hac (H) onto 
Hac (H), UW ± (H,Ho)\II is in Hac (H). Hence the rhs of 
(2.22) converges to zero as t ..... ± 00. 0 

Lemma 2.5: Under the same assumption as in Lemma 
2.4, we have 

W ± (HB,HoB ) = UW ± (Hp,Hop) W ± (HOP,HoB;U) , 
(2.23) 

S(HB,HoB ) 

= W+(HOB,HoP;U)S(Hp,Hop)W_(Hop,HOB;U). 
(2.24) 

Proof: Using (2.18) and Lemma 2.4, we have 

UW± (HB,HoB ) 

I· itHp - itHop itHop T T - itHoB P (H ) 
= s- 1m e e e ue ae OB 

t_ ± 00 

= W± (Hp,Hop)W± (Hop,HoB;U) , 

which imply (2.23). Eq. (2.24) is a direct consequence of 
(2.23). 0 

Lemma 2. 6: Under the same assumption as in Theorem 
2.2, we have 

+ II(Q - Qo)(Qo - is) -Ie - itHo\llIl}· 

The integrand in the rhs is dominated by 
S-I [F + (s) + F _ (s)] for SErE, 00 ), which, by the assump­
tion, is integrable on [E, 00 ). Therefore, by the dominated 
convergence theorem and condition (c) in Theorem 2.2, we 
get 

lim IIr(t) II = O. 
1_ ± 00 

Thus we have 

lim 1I\11(t) II 
t_ ± "" 

(2.27) 

One can easily see that 

IIr(t;Q) 112 = ( [arctan ~]2 d (E(A)<l>(t),<l>(t») , 
Jft IA I 

(2.28) 

where 

<l>(t) = e - itHo\ll . 

By condition (c) in Theorem 2.2, for any 8 > 0, there exists a 
constant to > 0 such that, for all I t I > to, 

II (Q - Qo)e - itH0<l> II <8 . 

Hence, for any a > 0, we have 

IIE( - a,a)<l>(t) " <8 + IIE( - a,a)Qe-
itH

"<l>1I 

<8 + all<l>lI. 

Then, by dividing the integral interval in (2.28) into two 
W ± (Ho,Ho; U) = UoP ac (Ho) . (2.25) parts IA I>a and IA I <a, we have for It I>to 

In particular, [rhs of (2.28) 1 
W ± (HOB,HOF;U) = UoPae (HOF ) . (2.26) <2(1T/2)2(82 + a 211<l>1I2) + (arctan(Ela)fIl\ll1l2. 
Proof: It is easy to see that the linear subspace 

Dae = {Qo<l> I <l>ED(Ho) nHae (Ho)} 

is dense in Hac (Ho) and hence we need only to prove (2.25) 
on Dae. Let \II = Qo<l>EDac. Noting that 

U= s -lim~ (P Q(Q2 +?)-I ds 
P-"" 1T J6 
6-0 

(see Ref. 6, p. 359), we can write as 

\II(t)=(eitHo Ue- itHo _ Uo)\II 

= (2/1T){IE(t;Q) + IE(O;Qo)} - (l/1T)r(t) , 

where E> 0 is arbitrary and 

r(t;A) = s - [ ds eitHoA (A 2 +?) -Ie - itHo\ll , 

IE(t) = s -I"" ds eitHo 

X{(Q + is)-I(Q - Qo) (Qo + is)-1 

+ (Q - is) -I(Q - Qo)(Qo - is) -1}e-itHo\ll . 

We have 
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Taking the limit t ..... ± 00 first, 8 ..... 0 second, E ..... 0 third, and 
finally a ..... O, we get 

lim IIr(t;Q) II = O. (2.29) 
t_ ± 00 

It is obvious that 

lim IIIE(O;Qo) II = 0 . (2.30) 
E-O 

From (2.27), (2.29), and (2.30), we obtain 

lim 1I\11(t) II = 0 , 
t_ ± 00 

which is the desired result. 0 
Theorem 2.2 now follows easily from Lemmas 2.5 and 

2.6. 

III. EXAMPLES 

Let n,p> 1 be positive integers and let us consider the 
operator of Dirac type 

L = iY'a,. + i<l>(x) , (3.1) 

acting in the Hilbert space 
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(3.2) 

Here {r"}; = 1 is a family of p Xp Hermitian matrices 
("gamma matrices") satisfying the Euclidean Dirac algebra 

r"rv + rVr" = 2/jI'v, jl,V = 1, ... ,n , 

and <I>(x) is a real-valued function on R". The operator Lis 
considered by Callias9 from a different context. Throughout 
this section, we assume for simplicity the following state­
ment. 

(A) <I> is bounded and differentiable on R" with its par­
tial derivatives being also bounded on R". 

By the boundedness of <1>, L is closed with domain 
D(L) = HI (R";C;P) (the first Sobolev space of CP-valued 
tempered distributions) and the adjoint is given by 

L * = ir" all - i<l>(x) , (3.3) 

withD(L*) =D(L). 
Let HB and Hp be copies of K and put 

H = HB eHp . (3.4) 

Further, let 

(3.5) 

Then, QI and Q2 are self-adjoint with D(QI) = D(Q2) 
= D(L) e D(L *) and satisfy 

QIQ2 + Q2QI = 0, (3.6) 

on D(L *L) eD(LL *)( = D(QIQ2) = D(Q2QI»)' We also 
have 

H=Qi=Q~=(L*L 0) 
deC 0 LL*' 

(3.7) 

Finally, we define 

(3.8) 

with Ip being the pXp identity matrix. Then, we conclude 
that the quadruple {H,{Q}>Q2},H,NF } with H,{Ql,Q2},H, 
andNF given by (3.4), (3.5), (3.7), and (3.8), respectively, 
is an SSQT with N = 2 supersymmetry. [Conditions (c) and 
(d) in Definition 2.1 are easily checked.] 

From (3.7), we have 

HB =L*L=HoB + VB' 

Hp =LL* = Hop + Vp , 

with 

HOB = Hop = - fl., 

V: = ± r" all <I> + <1>2, 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

where fl. is the n-dimensional Laplacian. The total Hamilto­
nian is written as 

H=Ho+ V, 
with 

( 
- fl. 

Ho= 0 ~J. 
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(3.13) 

(3.14) 

(3.15) 

We must check the conditions in Theorem 2.2 for the 
quantum scattering system {H,Ho} described above. For the 
existence and the completeness of the wave operators, we 
employ a standard result in potential scattering (see, e.g., 
Ref. 10). 

Lemma 3.1: Let X R (x) be the characteristic function of 
the set {xER"llxl >R} and suppose that 

h(R) = IIV(Ho+ l)-lxR II 
isinL 1(0,00 ),dx)asafunctionofR >0. Then, W ± (H,Ho) 
exist and are complete. 

Remark: If 

II V(x)II<c(1 + Ixl> -6, 

with some constants c>O and 8> 1, then V satisfies the 
above assumption. 

Lemma 3.2: Suppose, in addition to (A), that <I> is in 
L 2 (R",dx). Then (a) for all €>O, we have 

i "" 1 
ds-II(Q - Qo)(Qo ± is)-III < 00 ; 

€ S 

and (b) for all \f1eH, we have 

lim II (Q - Qo)e - itHo\f111 = O. 
t- ± "" 

Proof: (a) Since (Q - Qo) is bounded and Qo is self­
adjoint, we have 

II(Q - Qo)(Qo ± is)-III <cis, 

with some constant c > O. Hence we get the desired result. 
(b) It is sufficient to prove that 

lim II<I>eit.1fll = 0, feK. (3.16) 
1- ± 00 

By using the explicit representation of the integral kernel of 
expUtfl.), one can easily see that 

Hence, for allfinL InL 2(R",dx;CP), we have (3.16). By a 
limiting argument, we can extend the result to allfin K. 0 

Thus, under conditions in Lemmas 3.1 and 3.2 for <1>, 
assumptions in Theorem 2.2 are satisfied and we have, in 
particular, 

S(HB , - fl.) = uoS(Hp , - fl.)uoP ac ( - fl.) , 

where the operator uo on K is defined by 
A A 

(3.17) 

(uof) (k) = (-r"kllllkl)f(k) , keR" , feK, 
(3.18 ) 

with A denoting the Fourier transform. Eq. (3.17) gives an 
explicit relation between the corresponding T-matrices: 

TB(k,k') = (r"kllllkl)Tp(k,k')r"k~/lk'l, 

(3.19) 

where TB (resp. Tp) is the T-matrix defined from 
S(HB , - fl.) [(resp. S(Hp , - fl.)]. (For the definition of 
T-matrix, see, e.g., Ref. 7.) In particular, in the case n = 1 
where yl = 1, one has 

TB(k,k') = (sgnk)(sgnk')TF(k,k') , 

k,k 'eft , k 2 = k ,2 , (3.20) 
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which gives the result in Ref. 4 with respect to the one-di­
mensional model. 

As a by-product, under the same assumptions for <1>, we 
have proved that 

CT( - ll. ± l' al< <I> + <1>2) 

(3.21) 

where CTac (A) denotes the absolute continuous spectrum 
of the operator A. This follows from (i) that, by the com­
pleteness of the wave operators, H B ~ Hac (H B ) 

(resp. HF ~ Hac (H F) is unitarily equivalent to 
-ll. ~ Hac ( - ll.), (ii) that CT( -ll.) = CTac ( - ll.) 
= [0,(0), and (iii) that, by the spectral property of the su­
persymmetric Hamiltonian, CT(H B ) = CT(H F) C [0,00 ). 

Remark: One can extend the discussions in this section 
to the case of a more general case of <I> and also apply the 
general result (Theorem 2.2) to other models in SSQM. 

IV. CONCLUDING REMARKS 

We have derived in a general framework ofSSQT some 
relations between the wave and the scattering operators on 
bosonic states and those on fermionic ones and seen their 
concrete implications in a class of models ofSSQM on lRn 

• In 
some sense, our result on the scattering operators gives a 
rigorous proof for the consistency of the supersymmetry 
with scattering. We remark that our analysis in the present 
paper is restricted essentially to nonrelativistic cases, be-

476 J. Math. Phys., Vol. 28, No.2, February 1987 

cause, in relativistic quantum field theories, the concept of 
wave operators does not make sense in general, which is due 
to Haag's theorem (e.g., Refs. 11 and 12). We hope, how­
ever, that, if one employs the Haag-Ruelle scattering theory 
in the axiomatic quantum field theory (e.g., Ref. 11), one 
may obtain results similar to those in the present paper. 
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The general formalism of N = 2 pseudomechanics in the superspace is presented for one spatial 
dimension. Taking into account the (super) symmetries of the Lagrangian, an exhaustive 
classification of superpotentials into three categories is obtained. The first class contains the 
harmonic oscillator potential, the free particle constant potential, and the superposition of both 
with a linear potential. The second one contains the A 2/ q2 potential and its superposition with 
the harmonic oscillator potential and a constant one. The third class contains all other 
potentials. Through Noether's theorem, conserved quantities are associated with 
(super) symmetry properties, and, for each class, we, respectively, get the following 
superalgebras: osp(2,2) D sh( 1), osp(2,2), and spl(l,I) D so(2). 

I. INTRODUCTION 

In the 1970's supersymmetryl,2 emerged as one of the 
most elegant creations in theoretical physics. The associated 
supersymmetry transformations turn bosons into fermions 
and conversely, a very interesting property for the descrip­
tion of fundamental interactions in particle physics. 

Supersymmetry2 deals with fusion between space-time 
and internal symmetries, gauge invariance, spontaneous 
breaking of symmetry, string picture, local quantum field 
theory, asymptotic freedom in non-Abelian gauge theories, 
but a/so with classical and quantum pseudomechanics. 3

-
7 

This last context is very useful for getting acquainted with 
supersymmetry in advanced realistic field theories and asks 
for relatively simple but meaningful applications. 

In recent years many quantum-mechanical systems 
have been treated and solved completely within supersym­
metry developments. In particular, the supersymmetry of 
the Pauli equation in the presence of a magnetic monopole 
has already been pointed outS as well as for the cases9

,IO of 
the 1/r and Coulomb potentials. The so important harmon­
ic oscillator has also been extensively studied in the context 
of supersymmetry6.11-16 by dealing in particular with super­
conformal7 transformations. 

In fact, within the superfield formalism introduced by 
Salam, Strathdee,17 and others,2 N = 1 and N = 2 supersym­
metric quantum mechanics have been partially developed in 
a very elegant way.ll,IS In particular, D'Hoker and Vinees 

have presented the (N = 1) superspace formulation for the 
dynamical supersymmetry of the Pauli system in the pres­
ence of a Dirac magnetic monopole: they discovereds,ls that 
Osp ( 1, 1) is the largest dynamical invariance group of this 
system. More recently, one of US

14 discussed the particular 
(N = 2) example of the harmonic oscillator and obtained 
osp (2, 2) D sh ( 1 ), the semidirect sum of osp (2, 2) and of 

aJ Chercheur Institut Interuniversitaire des Sciences Nucleaires. 
bJ Boursier Institute pour la Recherche Scientifique dans I'Industrie et I' A­

griculture (I.R.S.I.A.). 
cJ Charge de recherches Fonds National de la Recherche Scientifique 

(F.N.R.S.). 

the Heisenberg superalgebra sh ( I ), as the largest invariance 
superalgebra of this system. 

This article deals with a general discussion of the one­
dimensional N = 2 pseudomechanics3

-
7 in the superspace 

formulation. Our purpose is to obtain a classification of su­
perpotentia/s in connection with the associated (super)sym­
metry properties and to get the corresponding invariance 
superalgebras. We restrict ourselves to superpotentials de­
pending only on the superposition Z. Let us insist on the fact 
that we here obtain an exhaustive classification of superpo­
tentials leading to only three kinds of invariance superalge­
bras. This classification corresponds essentially to the results 
already obtained by Durand, 19 but by another method. In­
deed his work, which does not refer to the superspace formu­
lation, deals with the study of the invariance of the quantized 
supersymmetric Schrodinger equation containing explicit 
potentials following the procedure issued from the works of 
Niederer20 and Boyer.21 

Let us now describe the contents of this paper. Section II 
is devoted to the construction of all the necessary superspace 
elements we need for the study of symmetries of the super­
space Lagrangian and for the determination of associated 
conserved quantities. We then give a classification of the 
superpotentials entering into the theory. In Sec. III, we dis­
cuss the symmetries leading to the superalgebras associated 
with the corresponding systems described by these poten­
tials. In this context we show that potentials such as the 1/ q2 
potential, the harmonic oscillator, the linear, the constant 
ones, and some superposition of these correspond to precise 
sets of symmetries leading to the existence of invariance su­
peralgebras such as spl(l,1) D so(2), osp(2,2), and 
osp(2, 2) D sh(l). 

II. N=2-SUPERSPACE FORMULATION AND 
SUPERPOTENTIALS 

The N = 2-supersymmetric pseudomechanics3
-

7 in one 
(spatial) dimension can be formulated in superspace. 18 Sec­
tion A contains the definition of the superspace Lagrangian 
.!f leading to the expected equations of motion and to an 
easy quantization. In Sec. B, from the study of the symme­
tries of .!f, we classify all the potentials of the theory. Final­
ly, the superspace Noether theorem is given in Sec. C. 
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A. Superspace Lagrangian and equations of motion 

Following Ravndal, II for example, it is sufficient in or­
der to construct the N = 2-superspace formulation of pseu­
domechanics, to extend the ordinary time variable (t) to a 
new supertime involving two Grassmann time variables (a 
and 9). Then in the (t, a, 9) superspace we call "super­
field" any arbitrary function of t, a, and 9. These super­
fields are characterized by their "components," which are 
the coefficients of their Taylor expansion in powers ofa and 
9. In particular, we define the ''superposition'' Z(t, a, 9) as 

Z(t, a, 9) = q(t) + i 9t/!(t) + ia fij(t) + a9A (t), 
(2.1 ) 

where the usual position variable q (t) and the function A (t) 
are bosonic variables while t/!(t) and fij(t) are fermionic ones 
describing spin degrees offreedom. Let us also introduce two 
superderivatives 

D=ae -iaap D=ae -i9ap (2.2) 

satisfying 

{D,D} = -2iat • 

Our physical system is governed by the action 

1= J dtL, 

(2.3) 

(2.4) 

where L is the usual supersymmetric Lagrangian. In this 
superspace formulation L is given by 

L= Jdad92'(Z,DZ,DZ), (2.5) 

where 2' (Z, DZ, DZ) is called the supers pace Lagrangian. 
Here we shall suppose that 2' reads 

2'(Z,DZ,DZ) =!DZDZ- W(Z), (2.6) 

where the so-called superpotential W(Z) is an arbitrary 
function of the superposition Z. The Taylor expansion of the 
superpotential in powers of a and 9 is 

W(Z) = W(q) + ia(W'(q) fij) + i 9(W'(q)t/!) 

+ a 9(W'(q)A + W"(q) fijf/!), (2.7) 

where the primes denote derivatives with respect to q. 
The corresponding Euler-Lagrange equation evidently 

reads 

a2' _ D a2' _ D a-!, = 0 
az a(DZ) a(DZ) , 

leading with 2' == (2.6) to the equation 

HD,D]Z=~~. 
In components, Eq. (2.9) explicitly gives 

A = W'(q), . 
fij = iW" (q)fij, 

if = - iW" (q)t/!, 

ij = - W"(q)A - W"'(q)fijf/!. 

From Eqs. (2.lOa) and (2.1Od) we have 

ij = - (!W'(q)2), - W"'(q)fijf/!. 
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(2.8) 

(2.9) 

(2. lOa) 

(2. lOb) 

(2.lOc) 

(2.lOd) 

(2.11) 

Thus, we can identify! W'(q)2 with the classical potential 
V(q). 

This formulation is of course equivalent to the usual 
one. Indeed, using the components of the superfields, the 
Lagrangian (2.5) can be written . 

L =!il +!A 2 - W'A + (~)(fijif - fijf/!) - W"fijf/!. 
(2.12) 

This Lagrangian is a constrained22.23.s one. It gives rise to 
three primary constraints 

'PI = 1T." + (~)fij, 
'P2 = ~ + (~)t/!, 
'P3 = 1TA , 

and a secondary one 

(2.13a) 

(2.13b) 

(2.13c) 

'P4 = A - W', (2.13d) 

where 1T .", ~, 1T A are the momenta conjugated to t/!, fij, and 
A, respectively. All these constraints are second class ones. 
Thus from the canonical Poisson brackets,4.s we can define 
Dirac brackets. Strongly realizing the second class con­
straints, the only two brackets different from zero are 

{t/!, fij}D = - i, {q,P}D = 1, (2.14) 

where p is the momentum conjugated to q. Once more, real­
izing the constraints, the total Hamiltonian is 

HT = !p2 +!( W,)2 + W"fijf/!, (2.15) 

and the equations of motion are 

p = {p, HT}D = - (!( W,)2 + W"fijf/!)" 

q={q,HT}D =p, * = {fij, HT}D = iW"fij, 

if = {t/!, HT}D = - iW"t/!. 

(2.16a) 

(2.16b) 

(2.16c) 

(2.16d) 

These equations are clearly equivalent to (2.10) [and 
(2.11 ) ]. Let us also notice that the Lagrangian 

L = H2 -! (W')2 + (~)(fij ip - #) - W"fijf/! (2.17) 

would give the same results. It means that it is not necessary 
to consider a Lagrangian depending explicitly on A. This 
variable appears in (2.12) only because of the superspace 
formulation. 

Finally, the quantization4.s of this supersymmetric 
pseudomechanics is realized by imposing 

{t/!,fij}=iIHt/!,fij}D = 1, [q,p] =ili{q,p}D =i, 
(2.18 ) 

where we have taken Ii = 1 and where [ , ] and { , } denote 
as usual commutators and anticommutators, respectively. 

B. Symmetries of the superspace lagrangian 

Let us now study infinitesimal transformations 

Z ..... Z +8Z, (2.19) 

leaving the action (2.4) unchanged. This happens if the vari­
ation of 2' (Z, DZ, DZ) is given by 

(2.20) 

or 

(2.21 ) 
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where 

A= (i/2)D(a+iaa+iea) +a, (2.22a) 

and 
A= (i/2)D(a+iaa+iea) +a (2.22b) 

[in fact, it is easy to see that the condition (2.21) is equiva­
lent to the usual condition 8L = df / dt]. In the following, we 
will consider transformations (2.19) characterized by 

8Z=8tat Z +8eae Z +8aaeZ 

+ K(t, e, a)Z + Zo(t, e, a), (2.23) 

with 

8t = F(t, e, a), 8e = 2(t, e, a), 8 a = 2(t, e, a) , 
(2.24) 

I 

where F, K, and Zo are arbitrary even24 functions of t, e, and 
a, while E and E are odd24 ones. Using the superderivatives 
(2.2), Eq. (2.23) becomes 

8Z = ! G{D, D}Z + 2 DZ + 2DZ + KZ + Zo, (2.25) 

with 

G = iF + e 2 + a2 . (2.26) 

With !I' == (2.6), we can then compute 

8!1' = ! D8Z DZ + ! DZ D8Z + 8Z aW(Z) . (2.27) 
az 

Using (2.25), after rather simple calculations, we get 

8!1' = -lD(GDZDDZ+DKZ2 + 2DZoZ +2GW'DZ) + 1D(GDDZDZ+DK Z2+ 2DZoZ 

+ 2GW'DZ) + ! (2K + D2 + D 2)DZ DZ + 1 (22 - DG) (DZ DDZ - 2W'DZ) 

-1 (22 - DG) (DDZ DZ + 2W'DZ) + 1 ([D, D ]K)Z2 + (! [D, D ]Zo)Z - KW'Z - ZoW'. 

We notice that condition (2.21) will be satisfied if and 
only if 

2=!DG, 2=!DG, K= -HD,D}G, (2.28) 

and 

1 ([D, D ]K)Z2 + ! ([D, D ]Zo)Z - KW'Z - ZoW' 

=DO+DO, (2.29) 

where 0 and 0 are functions of t, e, and a. 
These expressions lead to the quantities 

A =! G DDZ DZ - -hD{D, D}G Z2 

- ~ GW'DZ + !DZoZ + 0 

and (2.30) 

A= -lGDZDDZ+-hD{D,D}GZ2 

- ! GW'DZ + ! DZo Z + 0 . 
Let us discuss the system (2.28) and (2.29). We notice 

that Eqs. (2.28) give the expressions of E, E, and K in terms 
of G but are independent on the specific form of the superpo­
tential Wwhile Eq. (2.29) does depend on it and now be-
comes 

(MZ+N)W'=DO+DO-M'Z2_N'Z, (2.31) 

where 

M = HD, D}G, M' = - -h[D, D ]{D, D}G, 

N= -Zo' N'=! [D,D]Zo' 

Let us now solve Eq. (2.31) according to different possi­
ble superpotentials. 

If W' is not of the form 

W' = wZ + p + (A. /Z) + aZ 2, w, p, A., a constants, 
(2.32) 

we immediately see that Eq. (2.31) implies the vanishing of 
all the functions M, M', N, and N'. For such a potential, 82' 
reduces to a superbidivergence if and only if 
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{D,D}G=O 

and 

Zo=O. 

In this case, we have 

0=0=0. 

(2.33a) 

(2.33b) 

(2.34) 

If W' has the form (2.32), Eq. (2.31) gives, by identifi­
cation of the coefficients of the powers of Z, 

aM=O, 

wM +aN= -M', 

pM + wN = - N', 

pN +A.M=DO + DO, 

A.N=O. 

(2.35a) 

(2.35b) 

(2.35c) 

(2.35d) 

(2.35e) 

From Eqs. (2.35) we immediately deduce that, if a =I 0, we 
have to impose restrictions (2.33) in order to get Eq. (2.31). 
So, let us suppose that a = O. Then Eq. (2.35e) suggests 
considering separately the cases A = 0 and A =10. Let us be­
gin with A. =10. Equation (2.35e) gives N = 0, which also 
impliesN' = O. Equation (2.35c) tells us that, ifp=lO,M has 
to be zero, and this leads us once more to restrictions (2.33). 
So we consider p = 0, i.e., we study the potential 

W(Z) = (W/2)Z2 + A InlZ I, 
A =10, w arbitrary constants. (2.36) 

Equations (2.35) now become 

wM= -M', N=O, AM=DO+DO, 

and tell us that the potential (2.36) satisfies Eq. (2.31) if and 
only if 

([D, D] - 4w){D, D}G = 0 (2.37a) 

and 

Zo=O, 

with 

Bouquiaux, Oauby, and Hussin 
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0: = (A /4 )DG and 0 = (A /4 )DG. (2.38) 

Let us now consider A = O. We study the potential 

W(Z) = (W/2)Z2 + ILZ, w, IL arbitrary constants. 
(2.39) 

Equations (2.35) become 

wM = - M', ILM + wN = - N', ILN = DO: + DO. 

So the potential (2.39) satisfiesEq. (2.31) if and only if 

([D, D] - 4w){D, D}G = 0 (2.40a) 

and 

([D, D] - 2tu)Zo = ( -1L/2){D, D}G, 

with 0 and 0: determined by 

D 0: + D 0 = -ILZo' 

(2.40b) 

(2.41 ) 

In summary, we can classify all the potentials in three 
categories. 

(1) If W(Z) is any potential different from (2.36) and 
(2.39), weensureEq. (2.21) if and only if relations (2.33) 
are satisfied. 

(2) If W(Z) == (2.36), we have (2.21) if and only if 
relations (2.37) are satisfied. If w = 0, this case corresponds 
to the potential V(q) = A 2/q2, while if w;60, we get the su­
perposition of the A 2/ q2 potential with the harmonic oscilla­
tor potential and a constant one. 

(3) If W(Z) == (2.39), we have (2.21) if and only if 
relations (2.40) and (2.41) are satisfied. If IL = 0, we getthe 
harmonic oscillator potential. If w = 0, we get the free parti­
cle potential. If w;60 andwi=O, we get the superposition of 
the harmonic oscillator potential with a linear one and a 
constant one. 

Let us notice that the solutions of Eq. (2.33) are, of 
course, also solutions of (2.37) and (2.40). This means that, 
for any potential W(Z), the Lagrangian (2.5) will have the 
symmetries characterized by Eq. (2.33). 

These results are particularly meaningful in connection 
with Niederer's20 and Boyer's21 discussions on classes of po­
tentials within the nonrelativistic "conformal invariance" of 
the Schrodinger equation. In the following section, we will 
discuss the symmetries and supersymmetries of such super­
potentials. 

C. Superspace Noether's theorem 

Let us now end this section by giving Noether's theorem 
in the N = 2 superspace formulation, which enables us to get 
the conserved quantities associated with the symmetries we 
have found above. It reads as follows: If the transformation 
(2.19) is a symmetry of the Lagrangian .Y(Z,DZ,DZ) 
[i.e., it gives rise to (2.21) ], there exists a conserved quanti­
ty called a "superbicurrent" defined by 

aL - aL-1: = 6Z-_- - A 1: = 6Z- - A, (2.42) 
aDZ' aDZ 

such that 

D~ +D1: =0. (2.43 ) 

Assuming that the Euler-Lagrange equation (2.9) is satis­
fied, the proof is straightforward. Let us notice that this su­
perspace theorem is strictly equivalent to its fourth compo-
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nent which is the usual Noether theorem. 
With 

1: = u + 9s + 9s + i99uo 

and 

~ = 0- + 9 ii + 9u + i9 9 0-0 , 

Eq. (2.43) reads 

(2.44a) 

(2.44b) 

u + S - i9(0-0 +~) + i 9(uo - u) + i9 9(:~' - ti) = O. 
(2.45) 

The first three components do not teach us anything. So, in 
the following, we will only take into account the conserva­
tion law given by the fourth component 

~(s - u) = O. (2.46) 
dt 

III. SUPERPOTENTIALS AND INVARIANCE 
SUPERALGEBRAS 

Through Noether's theorem, we associate conserved 
quantities with symmetries described by Eqs. (2.33), 
(2.37), and (2.40). These quantities obey the structure 
equations of a superalgebra and we discuss separately the 
superalgebras associated with the various potentials, our 
choice of presentation going from the smallest to the largest 
superstructures. 

So we will get in Sec. III A the superalgebra spl ( 1, 1) 
o so (2) corresponding to the (super) symmetries character­
ized by Eqs. (2.33), i.e., the (super)symmetries of the La­
grangian (2.6) including an arbitrary superpotential. In the 
particular cases of the superpotentials (2.36) (Sec. B) and 
(2.39) (Sec. C), we will obtain the superalgebras osp(2, 2) 
and osp(2, 2) 0 sh( 1), respectively. As expected, we see 
that the arbitrary superpotential case leads to a supersubal­
gebra of the superalgebras associated with both the other 
cases. 

A. Arbitrary superpotentlals 

The symmetries of the Lagrangian (2.6) are associated 
with the transformations on Z, t, 9, and 9 given by Eqs. 
(2.23) and (2.24) such that we have Eqs. (2.28) and (2.29). 
So we get 

and 

& =! [ - 2G + 9DG + 9DG ], 

69 = ! DG, 69 = ! DG 
(3.1 ) 

DZ =! G{D, D}Z + ! DG DZ + ~ DG DZ, (3.2) 

where G satisfies Eq. (2.33a). The general solution G can 
then be written 

G(9,9) =ic-2a9-2a9+2d99, (3.3) 

where c and id are ordinary real parameters while a and a 
are Grassmann ones. From Eqs. (3.1) with (3.3) we expli­
citly get 

&=c+ia9+ia9, D9=a -d9, D9 =a+d9, 
(3.4) 

and from Eq. (3.2), definition (2.1), and Eq. (3.3), we de­
termine 
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. 
8q = cq + ia f/J + icifp, 8 "if = c"if - a(q + iA) - d"if, 

8f/J=cip-a(q-iA) +df/J, 8A =cA +a"if-aip. 
(3.5) 

The conserved superbicurrent is then given from 
(2.42), with (2.30) and (2.34), by 

1: = !G IJDZ DZ + !DG DZ DZ + !GW'DZ 

and (3.6) 

! = -!G DDZ DZ - !DG DZ DZ + !GW' DZ. 

In components, with the definitions (2.44) the general 
charge is 

C=S- u = 1:19 - !Ie 
= - i(cHT + dY + iaQ+ ia Q), (3.7) 

where 

HT = !p2 +! (W'(q»)2 +! W" (q) ["if, f/J], 

Y = ~ ["if, f/J], 

Q=(p+iW'(q»)f/J, • 

Q = (p - iW'(q»)"if. 

( 3.Sa) 

(3.Sb) 

(3.Sc) 

(3.Sd) 

In these charges (3.S), we have written p = (aL /aq) = q 
and strongly realized the second class constraint (2.13d): 
A = W'. Moreover we have made the skew symmetrization 
of the terms proportional to "if f/J. Let us also notice that the 
total Hamiltonian (3.Sa) admits the decomposition into a 
bosonic partH B' i.e., containing no fermionic degree offree­
dom, and a fermionic part H p such that 

HT = HB + H p , (3.9a) 

with 

HB = !p2 +! (W'(q)f = !p2 + V(q), (3.9b) 

Hp =! W"(q)["if, f/J]. (3.9c) 

Since we have 

Hp = - iW"(q)Y, (3.10) 

the bosonic and fermionic parts are separately conserved if 
and only if W" is independent of q. 

Charges (3.S) form a closed structure for the commuta­
tor and the anticommutator (2.1S) which turns out to be the 
semidirectsumofspl(l, 1) (generatedbyHT , QandQ) and 
so(2) (generated by n. The brackets different from zero 
are 

[ Y, Q ] = - iQ, [ Y, Q] = iQ, {Q, Q} = 2H T' 
(3.11) 

B. Superpotentlals W(Z) =(2.36) 

The symmetries of Lagrangian (2.6) are now associated 
with the transformations on t, a, and e such that we have 
Eqs. (3.1) and on Z such that 

8Z =! G{D, D}Z + ! DG DZ + ! DG DZ - ! {D, D}G Z, 
(3.12) 

whereG has to satisfy Eq. (2.37a). Let us then find thesym­
metries by considering separately the cases 0) oF 0 and 0) = O. 

ForO)¥(J, we get the general solution ofEq. (2.37a) 
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G(t,a,e) = ic - 2ae - ma + ua e 
+ i(a cos 2wt + b sin 2wt) (1 + 2wae) 

- 2{3e - 2ioJt e - iP e2ioJt a, (3.13) 

where the first four terms are evidently those given in Eq. 
(3.3). From Eqs. (3.1) with Eq. (3.13), we explicitly get 

8t = c + a sin 2wt + b cos 2wt + ia e + i a a 

+ iP ee - 2ioJt + i 73e~ioJt, 
8a =a +P(I- 2wa e)e- 2i

<>Jt 

+ aO)e- 2i«>ta - ibO)e- 2ioJta - da, (3.14) 

8 e = a + P( 1 - 2wa e)e2ioJt + aO)e2i«>te 

+ ibO)e2ioJte + d e, 
and from Eq. (3.2) with the solution (3.13), we explicitly 
have 

8q = cq + a(q sin 2wt - O)q cos 2wt) + b(q cos 2wt 

+ O)q sin 2wt) + ia "if + i af/J + ipe - 2;«>t"if + i pe2ioJtf/J, . 
8"if=c"if-a(q+iA) +ipe2iwt( -A +iq+2wq) -d"if . . 

+ a ("if - iO) "if) sin 2wt + b("if - ;0) "if) cos 2wt, 
(3.15) 

8f/J = c ip - a (q - iA) + ipe - 2ioJt ( - A + iq - 2wq) 

+ df/J + a(ip + iO)f/J)sin 2wt + b(ip + iO)f/J)cos 2wt, 

8A = c A + a(A sin 2wt + (AO) - 2w2q)COS 2wt) 

+ b (A cos 2wt - (AO) - 2w2q)sin 2wt) . . 
+ a "if - aip + pe - 2ioJt"if _pe2iwtip. 

The superbicurrent (2.42) becomes, with Eqs. (2.30) 
and (2.3S), 

and 

1: = !G DDZ DZ + !DG DZ DZ 

+ !GW'DZ - i{D, D}G Z DZ 

+ -hD{D, D}G Z2 - (,t /4)DG 

! = -!G DDZ DZ - !DG DZ DZ 

+! GW'DZ + i{D, D}G Z DZ 

- -hD{D, D}G Z2 - (,t /4)DG. 

(3.16a) 

(3.16b) 

By computation of the a component of 1: and the e compo­
nent of!, the general charge is easily found to be 

C= -i(cHT +dY+aC1 +bC2 

+ i aQ + ia Q + iPS + ;p S), (3.17) 

where H T , Y, Q, and Q are given in (3.S) with 
W' = O)q + (Ii. /q). Using p = q and A = W' and defining 
C ± = C1 ± iC2, we get the following: 

C+ = ! e - 2ioJt (p + iO)q)2 + (,t /q2)(,t - ["if, f/J]»), 
(3.1Sa) 

C_ = -! e2ioJt(p - iwq)2 + (,t /q2)(,t - ["if, f/J]»), 
(3.1Sb) 
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S = e2jOJ1(p - i((.tJq - (A /q) )tjI, 

S = e - 2jOJI(p + i((.tJq - (A /q) )¢, 
(3.18c) 

(3.18d) 

which are the additional charges [with respect to Eqs. 
(3.8) ], appearing for the particular potential we are consid­
ering here. Let us notice that in this case the bosonic and 
fermionicpartsgiven by Eqs. (3.9b) and (3.9c) arenotsepa­
rately conserved. 

We can verify that these charges form a closed structure 
which is the superalgebra osp(2, 2). The brackets different 
from zero are, in addition to those given in (3.11), 

[ H T' C ± ] = ± 2(.tJC ± ' 

[C+, C_] = - 4uJ(HT + i(.tJY), 

[HT'S] = - 2wS, [HTO S] = 2wS, 
[Y,S] = -is, [Y,S] =is, 

[C+,Q] = -2i(.tJS, [C+,S] = -2i(.tJQ, 

[C_,Q] = -2i(.tJS, [C_,S] = -2i(.tJQ, 

{Q, S} = - 2iC+, {Q, S} = 2iC_, 

{S,S} = 2(HT + 2i(.tJY). 

(3.19) 

For (.tJ=O, Eq. (2.37a) admits the general solution 

G(t, e, 9) =ic-2a9 - 2ae + 2de 9 

+ iat 2 + ibt + 2{3t 9 + 2 pte, (3.20) 

so that we get from Eqs. (3.1) 

~t = c + at 2 + bt + ia 9 + i ae - i/3t 9 - i pte, 

~e = a - /3(t - ie 9) + ate + (b /2)e - de, (3.21) 

~9=a-p(t+ie9) +at9+ (b/2) 9+d9, 

and from Eq. (3.2) with (3.20) 

~q = cij + a(t2q - tq) + b(tq - !q) 

+!a ¢ + iatjl - i/3t ¢ - iPttjl, 

~¢=c¢-a(q+iA) +P(qt+itA -q) . . 
- d¢ + at 2 ¢ + bt¢, 

~tjI = cip - a(q - iA) + /3(qt - itA - q) 

+ dtjl + at 2ip + btip, 

~A = c A + aCt 2 A + tA) + b(t A + ! A) . . 
+ a ¢ - aip - /3t ¢ + Ptip. 

(3.22) 

The conserved superbicurrent is given by Eqs. (3.16) so that 
in this case the general charge reads 

C= -i(cHT+dY+bD+aK 

+ iaQ + iaQ + i/3S + ipS), (3.23) 

where H T , Y, Q, and Q are once more given in (3.8) (with 
W' =A/q) and (p=q,A = W'), 

D = tH - !{q,p}, 

K= -t2H+2tD+!q2, 

S= - tQ+qtjl, 

S= -tQ+q¢. 

( 3.24a) 

(3.24b) 

(3.24c) 

(3.24d) 

These charges are the ones typically conserved for the super-
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potential W(Z) = A InlZ I. In this case, the bosonic and fer­
mionic parts of the Hamiltonian are not separately con­
served. 

We find that the superalgebra associated with this case 
is once more osp (2, 2). The brackets different from zero are, 
apart from those given in (3.11), 

[HT,D] =iH, 

[H T' K] = 2m, 

[D,K] =iK, 

[ H T' S] = - iQ, [ H TO S] = - i Q, 
[Y,S]= -is, [Y,S]=iS, 

[D,Q] = -!Q, [D,Q] = -!Q, (3.25) 

[D,S] =!S, [D,S] =!S, 

[K, Q] = is, [K, Q] = is, 

{Q, S} = - 2D + Y, {Q, S} = - 2D - Y, 

{S,S}=2K. 

As a last comment let us notice that here we recover 
Durand's results19 obtained for the above two cases, but not 
from the study ofthe supersymmetric SchrOdinger equation 
following the method of Niederero and Boyer.21 In fact the 
supersymmetries of the 1/ q2 potential have already been de­
termined in the work of Fubini-Rabinovicf and have been 
combined9 with those of the field of the magnetic monopole. 
The superposition of the harmonic oscillator and the 1/q2 
potentials (plus a constant one) has been studied by Boyer21 

and Durand19 as far as symmetries and supersymmetries, 
respectively, are concerned. Our approach differs from the 
preceding ones by the fact that we construct the superspace 
formulation as D'Hoker-Vinet18 in the N = 1 context. 

C. Superpotentlals W(Z)=(2.39) 

The symmetries of the Lagrangian (2.6) are associated 
with the transformations (3.1) on t, e, and 9 and the trans­
formation ~Z on Z such that 

~Z=! G{D,D}Z + !DGDZ 

+ !DGDZ-! {D,D}GZ +Zo, (3.26) 

where G and Zo have to satisfy Eqs. (2.40). Since Eq. 
(2.40a) is identical to Eq. (2.37a), we get solutions (3.13) 
for (.tJ¥0 and (3.20) for (.tJ = O. As a consequence, we again 
consider separately the cases (.tJ¥O and (.tJ = O. 

For (.tJ#O, inserting solution (3.13) into Eq. (2.40b) we 
get 

ZoCt, e, 9) = - p,(a cos 2wt + b sin 2wt) (1 + 4uJe 9) 
+ 2p, p~jOJI e _ 2p,/3e - 2""1 9 

+ (e cos (.tJt + jsin (.tJt)( 1 + (.tJe 9) 

(3.27) 

This solution contains two ordinary real parameters e,/, and 
two Grassmann ones y, y. Let us notice that the transforma· 
tions associated with these parameters affect only the super­
position Z .and not the variables (t, e, 9). Indeed, we have 
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Eq. (3.14) while from Eq. (3.26) with Eqs. (3.13) and 
(3.27), we get 

8q = cq + a(q sin 'JAJt - (roq + p,)cos 'JAJt) 

+ b (q cos 'JAJt + (roq + p, ) sin 'JAJt ) + e cos rot 

+ f sin rot + ia ~ + i af/! + i{3e - 2ioJ'~ + i pe2i"" f/!, . . 
8~ = c ~ + a(~ - iro~)sin 'JAJt . 

+ b(~ - iro ~)cos 'JAJt - d ~ - a(q + iA) 

+ i pe2ioJ' ( - A + iq + 2(roq + p,») - rei"", 

8f/! = c ip + a (ip + irof/!) sin 'JAJt 

+ b(ip - irof/!)cos 'JAJt + df/! - a(q - iA) (3.28) 

+ i{3e- 2ioJ'( - A + iq - 2(roq + p,») - ye - i"", 

8A = c A + a(A sin 'JAJt + (Aro _'JAJ2q -'JAJp,)cos 'JAJt) 

+ b (A cos 'JAJt + (Aro - 'JAJZq - 'JAJp, ) sin 'JAJt) . 
+ ero cos rot + fro sin rot + a ~ - aip . 
+ {3e - 2ioJ' ~ _peZioJ'ip. 

The conserved superbircurrent (2.42) then explicitly reads 

1: = 1 G DDZ DZ + 1 DG DZ DZ + ! W'G DZ 

and 

- HD, D}G Z DZ + -hD{D, D}G ZZ 

+ ! Zo DZ - ! ZDZo - n, (3.29a) 

!" = -1 GDDZ.DZ -l.DGDZDZ +! W'GDZ 

+ i{D, D}G Z DZ - -hD{D, D}G ZZ 

- ! ZO DZ + ! Z DZo - n, (3.29b) 

where n and n can be obtained from Eq. (2.41) with 
Zo=: (3.27). Going to the components, the general charge 
reads 

C = - i(cHT + dY + aCl + bCz + eC3 + fC4 + i'liQ 

+ ia Q + iPS + i{35 + iy T + ifT), (3.30) 

whereHT , Y, Q,andQaregivenin (3.8) with W' = roq +p,. 
Using p = q and A = W', and defining C ± = C l ± iCz, 
P ± = C4 ± iC3 we have 

C+ = i e- ZioJ'« p + i(roq + p,»)2 _ p,z), 

C_ = - i e2ioJt ( p _ i(roq + p,»)Z _ p,z), 

S = e2ioJt ( p - i(roq + p,»)f/!, 

5 = e - 2ioJt( P + i(roq + p,) )~, 

P + = ie- i""( p + i(roq + p,»), 

P _ = _ Mwt( P - i(roq + p,»), 

T=e-iwt~. 

(3.31a) 

(3.31b) 

(3.31c) 

(3.31d) 

In this case, let us notice that the bosonic and fermionic 
parts=: (3.9) of the total Hamiltonian are separately con­
served, the fermionic part H F essentially being the charge Y. 
It is easy to show that the charges (3.8a), (3.31a), and 
(3.31c) generating the so-called Schrooinger groupzs are ex­
actly those which would be obtained by considering the 
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problem where the fermionic degrees of freedom have been 
suppressed. This was not the case in the preceding section. 

The charges (3.31a) together with (3.8) again lead to 
the superalgebra osp(2, 2). Moreover we also have four ad­
ditional charges [(3.31c) and (3.31d)] which come from 
the nonannulation of ZOo Finally, if we add the identity I to 
them, we obtain the superalgebra sh( 1) characterized by the 
nontrivial relations 

(3.32) 

We can then check that, taken altogether, the charges (3.8) 
and (3.31) form the semidirect sum osp(2, 2) 0 sh(1). In­
deed we have 

[HT,P+] =roP+, [HT'P-] = -roP_, 

[Hn T] = -roT, [Hn T] =ro T, 

[Y, T] = - iroT, [Y, T] = iro T, 

[C+, P _] = 2iroP +, [C_, P +] = 2iroP_, 

[P +, Q] = - 2iro T, [P _, Q] = - 2iroT, (3.33) 

[P +, S] = - 2iroT, [P _,5] = - 2iro T, 

{T, Q} = iP _, {T, Q} = - iP +, 

{T,5} = - iP +, {T, s} = iP _. 

Forro=O, inserting the solution (3.20) into Eq. (2.40b) 
we get 

Zo(t, e, e) = et + f - p, pte + p,{3t e 
+ ire + iye + !p,be e, (3.34) 

so that in components 8Z =: (3.26) reads 

8q=cq+a(tZq-tq) +b(tq-!q) 

+ ia ~ + iaf/! - i{3t ~ - iPtf/! + et + f, . . . 
8 ~ = c ~ + at Z ~ + bt ~ - d ~ 

- a(q + iA) + P(qt + itA - q - ip,t) - r, 
8f/! = cip + at zip + btip + df/! _ a(q _ iA) (3.35) 

+ {3(qt - itA - q + ip,t) - y, 

8A = cA + a(tzA + tA) + b(tA +! (A +p,» . . 
+ a ~ - aip - {3t ~ + Ptip. 

The conserved superbicurrent is given by (3.29), nand 
n satisfying Eq. (2.41) withZo = (3.34). Going to the com­
ponents, the general charge is now 

C= -i(cHT +dY +aK + bD+eE+jF+iaQ 

+ ia Q + iPS + i{35 + iyT + irn, (3.36) 

whereHT , Y, Q,andQaregivenbyEqs. (3.8) with W' =p" 

D, K, S, and 5 are given by Eqs. (3.24) and, with p = q, 
E=tp-q, F=p, T=f/!, T=~. (3.37) 

Just as forro#O, we have to add the identity lin order to 
get a closed structure. If we want to see directly that this 
structure is the semidirect sum osp(2, 2) 0 sh( 1), we have 
to consider the linear combination 

Q I = Q _ ip,T = pf/!, Q I = Q + ip, T = p ~, 
(3.38) 
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instead of Q, Q, and H T' It can then be shown that these new 
charges verify the same commutation rules (3.11) as the old 
ones. One can also check that, together with D, K, S, and S, 
the charges (3.38) verify relation (3.25), which character­
izes the osp (2, 2) algebra. Moreover E, F, T, and T tum out 
to obey the (anti) commutation relations of the sh ( 1 ) super­
algebra. The other nonzero brackets are then given by 

[H;..,E] = iF, 

[D,E] = !E, 

[D,F] = - !F, 

[Y, T] = - iT, [Y, T] = i T, 
[Q~E]=iT, [Q~E]=i~ 

[S, F] = iT, [S, F] = i T, 
{Q', T} = {Q', T} =F, 

{S, T} = {S, T} = -E. 

(3.39) 

Finally, let us notice that from the superspace formula­
tion we have shown that we recover some results already 
known 14-16,19 about the supersymmetries of the physical sys­
tems such as the free particle and the harmonic oscillator. 
Let us recall that since Niederer25 we know that a change of 
variables realizes the one-to-one correspondence between 
the free particle and the harmonic oscillator showing that 
the superalgebras for both cases are isomorphic ones. 

In our approach we have (additionally with respect to 
Durand'sl9 work) considered (when w;fO in the preceding 
discussion) the potential 

V(q) =! w2q2 + !,u2 + w,uq, (3.40) 

which corresponds to the superpotential W(Z) = (2.39) in­
cluding the harmonic oscillator and constant potentials as 
well as the linear one. We have shown that it admits a sym­
metry also associated with the superalgebra osp(2,2) 
o sh (1 ). The correspondence is evident since the substitu­
tion q' = q + (,u/ w) leads to the harmonic oscillator poten­
tial. Let us notice that with V(q) == (3.40) we cannot recover 
the linear potential alone. It was expected since as already 
noticed by Durand,19 this case does not admit a large set of 
supersymmetries. More precisely, we can say here that such 
a case admits only the superalgebra (3.8) of symmetries 
when we have considered W' = vq1/2. This supersymmetric 
system breaks down some symmetries of the nonsupersym-

484 J. Math. Phys., Vol. 28, No.2, February 1987 

metric one. Indeed the symmetries25 of the Schrodinger 
equation with the linear potential are associated with the 
Schrodinger algebra Schr( 1) and there exists20 a one-to-one 
correspondence between the linear potential case and the 
free one. 
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A method for evaluating the weight of the color factor necessary for gluon decay in the context 
of quantum chromodynamics (QCD) is presented. As concrete examples, the method is 
applied to the three- and four-gluon decays from heavy quarkonium. 

I. INTRODUCTION 

To study the decay of any quarkonium in quantum 
chromodynamics (QCD) (Ref. 1), it is necessary to evalu­
ate the color factor involved in an amplitude for the n-gluon 
annihilation of a color singlet state as shown in Fig. 1. 

For the case of charmonium decay, two- and three­
gluon decays with definite charge conjugation (c.c.) states 
have been studied from realistic viewpoints. 2 The amplitude 
for the two-gluon decay of c.c. even states is given by 

41TasM,..., Tr(A. aA. b 122)e; (1)ee (2)/.Jj", (1) 

where a,b = 1,2, ... ,8, the A. a are the standard SU(3) matri­
ces, e,. a( 1) and e.., a(2) are the gluon wave functions, and as 
is the coupling constant of the quark-gluon interaction. 

Similarly, the amplitude for the three-gluon decay of 
c.c. odd states is given by 

41Tas 3/2M,...,p W3 1/2e,. a( 1)e.., b(2)ep C(3 )/.Jj", (2) 

with 

W 1/2 = Tr(A. aA. bA. C/23) 
3 sym' 

where the suffix "sym" means that the structure constants 
for the totally symmetric states, i.e., d coupling, are only 
taken into account. In the above expressions (1) and (2), 
the trace parts describing the color factors are easily calcu­
lated by using the general properties of A. matrices.2 How­
ever, recent argumene for heavier quarkonium, i.e., upsilon 
(bb), seems to need the contribution offour-gluon decay in 
addition to the three-gluon decay. If this is the case, we have 
to evaluate the amplitude involving the four A. matrices un­
der the constraint of the charge conjugation as follows: 

41Tas 2M"",puw41/2e,. a( l)e.., b(2)ep C(3 leu d( 4 )/3, 

with 

W4
1/2 = Tr(A. aA. bA. cA. d 124)c.c. odd' 

(3) 

The actual calculation of the trace W4 is, however, not so easy 
as that of W3 in (2) because the way of combining the A. 
matrices to form the c.c. odd states is very complicated. Un­
fortunately, the explicit value seems not to be given in any 
literature, to the best of our knowledge.4 Furthermore, from 

the physical viewpoint the color factor Wn with n;;;;.4 will 
become important for the study of heavier quarkonium such 
as topponium (ii). 

II. METHOD OF CALCULATIONS 

In this paper we give the explicit method to evaluate the 
color factor Wn for n-gluon decay by using the Young tab­
leaux and the concept of the nth symmetric group Sn. And 
we apply our method to three- and four-gluon decays with 
c.C. odd states as concrete examples. 

The systematic evaluation for the trace of the product of 
A. matrices is obtained from the following rule derived by the 
method of the Young tableaux5

•
6

: 

Tr~/r) = (1/~)Tr(D~). (4) 
n n 

The parentheses containing n boxes on the rhs of ( 4) stand 
for all possible normalized basis functions of the nth sym­
metric group Sn. The basis functions are constructed by the 
usual procedure6

•
7 as follows: 

I/,m) = 2:Dlm (R)R'If, (5) 
R 

where I,m = 1,2,oo.,d ( = dimension ofthe representation), 
and Dim (R) denotes the (I,m) component of orthogonal 
matrices of irreducible representations of Sn belonging to the 
group element R. Here, 'If represents a state vector of n iden­
tical particles. 

q---+----

n-gluon 

q-----' 

FIG. l. The decay of the quarkonium state into an n-gluon. The solid and 
wavy lines stand for quark and gluon. respectively. 

485 J. Math. Phys. 28 (2). February 1987 0022-2488/87/020485-04$02.50 @ 1987 American Institute of Physics 485 



                                                                                                                                    

III. CALCULATION OF 53 

For the case of S3 there are the following three possible 
Young tableaux: 

,ps = em , ,pa =§, ,pm = ffl , (6) 

where,ps (,pa) represents a state which is totally (anti)sym­
metric under the interchange of any two of the particles and 
stands for a basis vector of a one-dimensional irreducible 
unitary representation of S3' On the other hand,,pm denotes 
the tableau of mixed symmetry for the two functions which 
are the basis vectors of a two-dimensional irreducible repre­
sentation (doublets) of S3' In S3' there are six elements such 
asE, (12),(13),(23),(12 3),and (13 2). Thus we obtain 
from (5) with 'I' = ABC for,ps and,pa, 

,ps = (1IJ(J) (ABC + BAC 

+ CBA +ACB+ CAB+BCA), 

,pa = (1/J(J )(ABC - BAC 

- CBA -ACB+CAB+BCA), 

(7) 

(8) 

whereA,B, and C denote A a/2, A b 12, andA c12, respective­
ly, and also stand for gluons. For four functions of ,pm' it is 
sufficient to consider only one of them, e.g., 1= m = 1, to 
show the present procedure 

,p~.l) = (1/~)II,I) 

= (11~) [Dll (E)E + Dll (1 2) + Dll (1 3) 

+Dll (2 3)(2 3) 

+ Dll (1 23) (1 23) + Dll (1 32)( 1 32) ]ABC 

= (112~)( 2ABC + 2BAC - CBA 

-ACB-BCA - CAB), (9) 

where we use the same orthogonal matrices for D as those 
given by Hamermesh.6 Here it is worth giving the correspon­
dence of notations between the present expressions for the 
basis functions of S3 and those given by Lichtenberg5 

rPs =~6(Js' rPa =~6(Ja' rP= -11,1) +~12,1), rPl = /1,1) 
+ 12,I)/~, ,p = 212,2), andx= -2II,2)/~. Since the 

trace of the mixed symmetric states vanishes as easily as 
proved from (9), the trace of the Young tableaux in the rhs 
of (4) consists of the totally symmetric state and the anti­
symmetric one 

Tr(A aA bA CI23
) = (1IJ(J)Tr(,ps +,pa)' (10) 

For the charge conjugation we notice that a gluon field 
Gap goes into - GPa (a,/3 = 1,2,3), under the charge con­
jugation so that Tr(ABC) and Tr(BAC) go into 
- Tr(BAC) and - Tr(ABC) , respectively. This means 

that the c.c. odd state corresponds to the symmetric state,ps 
as known from (7) and (8). From the general properties of A 
matrices as 

{A a/2, A b 12} = oabl3 + dabcA c/2, (11) 

TrA=O, (12) 

we get the following relation: 

Tr,ps = (~/~)Tr({A,B}C) = (~/2~)dabc' (13) 
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FIG. 2. The Young tableaux for S4' 

Thus we obtain the well-known result2 for the weight W3 as 

[( 
1 ) ]2 ( dabc )2 5 W3= ~ - Tr( CIIJ) = L - =-. (14) 

a,b,c J(J a,b,c 4 6 

IV. CALCULATION OF 54 

For the case of S4 there are five Young tableaux as 
shown in Fig. 2. In S 4, there are 24 elements such as E, ( 1 2), 
(13), (14), (23), (24), (34), (12)(34), (13)(24), 
(14)(23), (123), (132), (124), (142), (134), 
(143), (234), (243), (1234), (1243), (1324), 
(1342), (1423), and (1432). In the same way as the 
case of S3' we first write down the basis functions of their 
irreducible representation for all Young tableaux contained 
in S4 by means of (5) with 'I' = ABCD. Next we select the 
nonvanishing Young tableaux by taking the trace of the basis 
functions. Then we find that there remain the totally sym­
metric tableaux (B 1) and one of the mixed symmetric ones 
(B4 ). Furthermore, it is easily shown that the mixed sym­
metric tableau B4 corresponds to the c.c. odd state of four­
gluon decay. 

Then we obtain for (4) as follows: 

Tr(A aA bA cA d 124
)c.c.odd = (1Iv'4f)Tr Er (15) 

This tableau denotes the basis vector of three three-dimen­
sional representations (triplets) for the mixed symmetry. 
For the function 11,1) we obtain 

/1,1) = [D1 I(E)E+D 1 1(12)(12) + ... 

+ Dl 1 (1432) (1432) ]ABCD 

=ABCD +BACD + ... +DABC/2. (16) 

The normalized function,pl is then given by II,1)/2~. Simi­
larly, we have all the orthogonal normalized basis functions 
,pi ( ex: li,I», Xi( ex: li,2», and rPi( ex: li,3» U= 1,2,3) be­
longing to each triplet (3 2 1 1), (3 1 2 1), and (1 3 2 1) in 
the Yamanouchi symbols.6 The explicit forms of them are as 
follows: 
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;1 = (114./2) (2ABCD - CABD - DACB - BCAD - BDCA - 2BADC + ACDB 

+ ADBC + CBDA + DBAC + 2BACD - ACBD - ADCB - CBAD 

- DBCA - 2ABDC + CADB + DABC + BCDA + BDAC) , 

;2 = (11~) ( - 3CABD - DACB + 3BCAD + BDCA - ACDB - 3ADBC 

+ 2CDAB + CBDA - 2DCBA + 3DBAC + 3ACBD + ADCB 

- 3CBAD - DBCA + CADB + 3DABC - 2DCAB - BCDA + 2CDBA - 3BDAC), 

;3 = (1I2..[3)(DACB-BDCA + ACDB + CDAB- CBDA -DCBA -ADCB 

+ DBCA - CADB - DCAB + BCDA + CDBA), 

Xl = (11~) (3CABD + DACB - 3BCAD - BDCA - 3ACDB - ADBC 

+ 2CDAB + 3CBDA - 2DCBA + DBAC + 3ACBD + ADCB 

- 3CBAD - DBCA - 3CADB - DABC + 2DCAB + 3BCDA - 2CDBA + BDAC) , 

X2 = (1I12../2)(6ABCD - 3CABD + 5DACB - 3BCAD + 5BDCA + 2BADC 

- ACDB - ADBC - 4CDAB - CBDA - 4DCBA - DBAC 

- 6BACD + 3ACBD - 5ADCB + 3CBAD - 5DBCA - 2ABDC 

+ CADB + DABC + 4DCAB + BCDA + 4CDBA + BDAC) , 

X3 = i (DACB + BDCA - 2BADC + ACDB - 2ADBC + CDAB + CBDA 

+ DCBA - 2DBAC - ADCB - DBCA + 2ABDC - CADB + 2DABC 

- DCAB - BCDA - CDBA + 2BDAC) , 

t/ll = (112..[3)( - DACB + BDCA + ADBC + CDAB - DCBA - DBAC - ADCB 

+ DBCA + DABC + DCAB - CDBA - BDAC) , 

t/l2 = i (DACB + BDCA - 2BADC - 2ACDB + ADBC + CDAB - 2CBDA 

+ DCBA + DBAC - ADCB - DBCA + 2ABDC + 2CADB - DABC 

- DCAB + 2BCDA - CDBA - BDAC) , 

t/l3 = (116../2) (3ABCD + 3CABD - DACB + 3BCAD - BDCA - BADC - ACDB 

- ADBC - CDAB - CBDA - DCBA - DBAC - 3BACD - 3ACBD 

(17) 

(18) 

(19) 

(20) 

(21 ) 

(22) 

(23) 

(24) 

+ ADCB - 3CBAD + DBCA + ABDC + CADB + DABC + DCAB + BCDA + CDBA + BDAC). (25) 

The trace of this mixed symmetry becomes [A. a 12, A. b 12] = ifabcA. c 12. (30) 

Tr Ef = k [Tr;I + (1I..[3)TrXI + (2../2/..[3) Trt/ll ], 
(26) 

with 

Tr;I = 4 Tr({A,B}[C,D]) = 2idabmlcdm' (27) 

Tr Xl = 4 Tr( {B,C}[D, A ]) + 4Tr( {A,C}[B,D ]) 

= 2i(dbcJdam + dacJbdm), (28) 

Tr t/ll = 2 Tr( [B,C] {A,D}) 

+ 2 Tr( [C,A]BD) + 2 Tr(AC[B,D]) 

(29) 

and 

k = (11../2 + 11..[3 + 11../6)/4. 

Here we use (1 1), (1 2), and the property as 

487 J. Math. Phys., Vol. 28, No.2, February 1987 . 

Thus we obtain the value of W4 from (15), 

W4 = L [( _1 )Tr(W)]
2 

= 3.581. 
a,b ,fi4 

(31) 

c,d 

v. CONCLUDING REMARKS 

Our method can be directly applied to arbitrary n-gluon 
states with the definite charge conjugation. As a summary, 
we briefly describe the procedures in order. First, we write 
down all Young diagrams belonging to Sn and find all ex­
pressions of the basis functions for their irreducible repre­
sentation by (5). Second, we take the trace of them and 
select the non vanishing Young tableaux. Third, we check 
the charge conjugation for their basis functions. Thus we can 
construct, straightforwardly, appropriate basis functions for 
n-gluon decay with definite c.c. states as shown above for the 
case of n = three- and four-gluon decays. 
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Applying a suitably modified Liapunov-Yoshizawa direct method [T. Yoshizawa, Stability 
Theory by Liapunov's Second Method (Math. Soc. Japan, Tokyo, 1966)], a rigorous 
mathematical proof of dissipativity in the sense of Levinson [N. Rouche, P. Habets, and M. 
Laloy, Stability Theory by Liapunov's Direct Method (Springer, Berlin, 1977)] to the majority 
of effective optical processes has been carried out. The ability of an upper final estimation of 
the average number of photons is demonstrated (as an example) on the well-known second­
harmonic generation process with classical pumping. 

I. INTRODUCTION 

It is very interesting that the ingenious idea of Liapunov, 
concerning the construction of comparing functions to the 
stability analysis, a straightforward expression of which has 
become his second (direct) method, grew rich essentially 
only after more than half a century. This famous generaliza­
tion due to the Japanese mathematician Yoshizawa 1 consists 
mainly of an extension of the analyzed object into the 
(semi-) invariant sets. 1 Recently, Habets and Peiffer per­
formed a classification of the Liapunov-Yoshizawa func­
tions (more precisely, of the single types of attractors stud­
ied by them) in detail. Moreover, Kushner3 transformed the 
actual deterministic stability theory by an implementation of 
the probability element on the stochastic models in the 
1960s. Therefore it seems to be only a little step to employ 
Liapunov's idea for the quantum dynamical systems. 

Although some attempts have been done in this field 
[namely the potential4 defined by virtue of the stationary 
(quasi-) distribution or the generalized entropy5 defined by 
virtue of the density operator have been used for the con­
struction of the Liapunov functions], the corresponding 
general theory does not yet exist. Maybe an operator nature 
of the variables included (in the Heisenberg picture) makes 
the largest difficulties in this respect. 

In spite ofthe intuitively clear (from the physical point 
of view) qualitative behavior of the lossy systems, here, we 
would like to prove rigorously the dissipativity in the sense of 
Levinson2 to some nonlinear optical phenomena, when ap­
plying the quantum theory of damping.6

•
7 As we will see, 

sometimes their final state can be deduced quantitatively in 
the same manner (at the simpler effects). 

The successive generalization of Liapunov's idea can be 
schematically sketched as follows: 

Liapunov's direct method--Yoshizawa's generaliza-
(1893) ! tion (1953) 

Kushner's probability 
:---. extension ( 1965 ) 

our transformation to the quantum systems. 

aj Present address: Department of Mathematical Analysis and Numerical 
Mathematics, Faculty of Science, Palacky University, 771 460lomouc, 
Czechoslovakia. 

There are de facto three conceptions of stability in our 
diagram, regarding the character of the level respected. The 
mutual correspondence is reached by the projection into the 
phase space of amplitudes through the basis of the coherent 
states.6 Here, it should be noted that such an averaging is not 
done a priori at the studied systems, but at the conservation 
laws of their "conservative parts" (which are taken just as 
the Y oshizawa's functions), because an influence of the 
quantum fluctuations is not eliminated in this way. 

II. DERIVATION OF RATE EQUATIONS (QUANTUM 
THEORY OF DAMPING) 

Let us consider the Hamiltonian H = H L + H N' where 

'" m 
HL = I (fk(t)Ok+Ok +Pk(t)o: +pr(t)od, 

k=l 

The functions fk (t) = Refk (t) are continuous and the 
Pk (t) are integrable (in Lebesgue's sense) everywhere, 
F = F + is a continuous multilinear form without the "un­
mixed terms" (i.e., without those like [g} ... k (t)Or .. Ok 

+ H.c.]) and 0: (Ok) are the creation (annihilation) pho­
ton operators6 which can be represented, e.g., as infinitely 
dimensional matrixes of some Hilbert space. 

Thus the corresponding Heisenberg equations take the 
form (Ii = 1) 

ifzj = jj (t)Oj + Pj (t) + :J~:' for j = 1, ... ,m. (2.1) 
vaj 

Assuming the actual (lossy) mechanism as to be connected 
with an infinite reservoir boson system in each of the modes 
(the quantum theory of damping) , (2.1) can be replaced6,7 

by the following Langevin equations: 

.i. (I' () .Yj)A aF lao = Jj t -1- a· +--
J J 2 J ao+ 

J 

'" + Pj (t) + iLj' for j = 1, ... ,m, (2.2) 

'" with Langevin forces Lj representing the quantum noise 
contributions of the reservoir and Yj being the positive 
damping constants. 

In order for the Bose-Einstein statistical rules to be sat­
isfied for the ensemble of the radiation field photons [whose 
dynamics is determined by (2.2)], we will traditionally re­
quire that 
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Since Pj (t) represents the pumping of the jth mode, 
(2.1) turns out under Pj (t) =0 (j = 1, ... ,m) to be a conser­
vative system with the conservation law 

(2.3 ) 

where the Ck are suitable positive reals. Indeed, if we multi­
ply (2.3) by the densityoperator,o, take the trace and deriva­
tive, we obtain a zero identity, i.e. (p = ° according to the 
Liouville theorem6

), 

d m A "'+'" m A i-.+.... "'+.:-. - 2: Tr pCkak ak = 2: Tr PCk (ak ak + ak ak ) = 0, 
dt k= 1 k= 1 

(2.4) 

where we have substituted for fzk and fz k+ from the right­
hand sides of (2.1) and have used the ability to find con­
stants Ck such that 

(2.5) 

III. DEFINITION OF YOSHIZAWA'S FUNCTION 

At first, let us recall the simplified version of Yo­
shizawa's theorem (see Ref. 4, p. 38). 

Yoshizawa's Theorem: Let there exist a function 
V( (n 1) , ... , (nm ) ) with continuous first-order partial deriva­
tives with respect to (n1), ... ,(nm) for all «n1), ... ,(nm» 
such that 

m 

2: l(nk)I>8>0, 
k=l 

where 8 is a suitable constant. If the following relations 
m 

(i) limV«n1),·· .. ,(nm» = 00, for 2: l(nk)I--+oo, 
k=l 

(ii) ~V«nl), ... ,(nm»< -E<O, forall 
dt 

m 

2: l(nk)I>8, t>O, 
k=l 

where E is a suitable number (time derivatives are respected 
to the continuous system of equations considered), are satis­
fied, then such a system is dissipative in the sense of Levin­
son2; i.e., such a constant D (common for all the solutions of 
the given system) can be found that 

m m 

<;; - 2: Ckrk«nk) - (n1,d») +22: 1l'k(t)lf(iI;j· 
k=l k=l 
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m 

limsup 2: l(nk(t»I<;;D. 
t-a> k=l 

(3.1) 

Hence defining [cf. (2.4)] 
def. m 

V( (n 1) , ... , (nm » = 2: Tr ,oCkOk+ Ok 
k=l 
m m 

= 2: Ck (Ok+ Ok) = 2: Ck (nk ), (3.2) 
k=l k=l 

where 

,0 =,os.Dr, ,os = ftPvV(0,al, ... ,am)iillaj)(ajld2aj 

is the Glauber-Sudarshan representation6 of the probability 
density operator for the field in the mixture of pure coherent 
states6 laj ) with a quasiprobability6 tPvV as a weight func­
tion, it is obvious that (.Dr is related to the reservoir modes) 

ktl(nk) = ktll(nk)1 = ftPvVktllakI2d2{a}, (3.3) 

where 

(nk) = ftPvV({a}lok+Okl{a})d2{a} 

= ftPvVlakI2d2{a}, {a} = (a1, ... ,am). 

Expression (3.3) [also included in (3.1) and (3.2)] repre­
sents the sum of the mean number of photons in the single 
modes. 

Furthermore, using the Schwarz inequality, we have 

l(ot)1 = I(Ok)1 = ITr,ook+ 1 = ITr,ook 1 

= If tPvV({a}IOk l{a})d 2{a} I 
= IftPvVakd2{a}l<ftPvVlakld2{a} 

<(f tPvV lak 12 d 2{a} )1/2 = f(iI;j, (3.4) 

and mainly (see, e.g., Ref. 7, p. 169) 
A A A A 

(LtOk +otLk ) = (Lk+Ok +Ok+Lk), 

= rk (nJ/» ( = const), (3.5) 

where (n1,d» is the mean number of the noise photons (more 
precisely, of the reservoir photons for the k th mode). 

Deriving the comparing function of (3.2) with respect 
to (2.2), we get by means of (2.4), (2.5), and (3.3)-(3.5) 
the following important inequality: 

(3.6) 
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IV. FORMAL PROBABILITY EXTENSION FOR 
STOCHASTIC PUMPING 

If the functions Pk (t) are of a stochastic nature and if 
they are bounded by suitable constants Pk almost every­
where ("a.e.," i.e., except the zero measure set) 

IPk (t) I <'Pk a.e. for t>O, (4.1) 

then, regarding (3.6), it is clear that condition (li) of Yo­
shizawa's theorem is satisfied a.e. as well; namely such posi­
tive constants €,l> can be found that 

d 
dt V( (nl), .. ·,(nm » (2.2) 

< - I CkYk(nk ) + 2 I CkPkf(n;J + C (n d ) 
k= 1 k= 1 

<.-€ (4.2) 

holds a.e. for 1:;:'= 1 (nk) >l>, where 

C(nd ) = ICkYk(nid ». 
k=1 

Since condition (i) of the same theorem is trivially satisfied, 
its assertion can be formally extended,3 namely that the sys­
tem (2.2) is under (4.1) dissipative with probability 1: 

t~ P{n}(S~P>t>Tk~l(nk(t»>D )=0, (4.3) 

where p{n} is the Lebesgue-Stieltjes-like probability mea­
sure. 

Theorem: If F = F + is a multilinear form of the vari­
ables 0\+ , ... ,0';; ,01, ... ,0';; , without the unmixed terms (see 
Sec. II), then the system (2.2) is under (4.1) dissipative in 
the sense of Levinson with probability 1. 

Remark 1: The assumptions of our theorem comprise6 

the majority of the effective quantum optical processes, but 
those of multilinear absorption and emission. 

Remark 2: The theorem asserts that the sum of the aver­
age number of photons is ultimately (finally) less than some 
D. However, using (4.2), we can, at least, approximately 
estimate this D. 

V. APPLICATION TO THE SECOND-HARMONIC 
GENERATION PROCESS WITH CLASSICAL PUMPING 

This process is described (see Ref. 7, p. 226) by the 
Hamiltonian (1% = 1) 

where 

1m llJ 1 = 0 = 1m llJ2 , sup 1P(t) I <P, 
IE(O,oo ) 

and g is a coupling constant. Furthermore, we assume that 
the sum-frequency mode is pumped only for simplicity. 

Thus system (2.2) reads 
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01 = - (illJ1 + (yI/2»)QI + 2ig*ot O2 + p(t)exp( - illJ1t), 

O2 = - (illJ2 + Y2/2)Q2 + igOi. (5.1) 

Defining Yoshizawa's function as V( (n l ),(n2» 
= (n l) + 2(n2 ) [i.e., substituting C1 = 1, c2 = 2 in (3,2) in 

order for (2.5) to be satisfied], we have, according to (4.2), 
that 

d 
dt V( (n l ),(n2» (S.\) < - YI (n l ) - 2Y2(n2) 

+ P~(nl) + C (n d ). 

From here we can estimate (see Remark 2) the constant D of 
(3.2) or (4.3) as follows: 

limsup(nl(t» + (n2(t») 
<-00 

<.2 max(C (nd ),4p 2IYI min(YI,2Y2))' 

Although the last relation determines (rather roughly) 
the corresponding attracting set, an invariant probability 
measure of the attractor itself may be much less. 

VI. CONCLUSIONS 

In the results above we have illustrated a dissipativity 
(and consequently also a Lagrange-like stability2) in the 
sense of Levinson to the majority of the lossy optical pro­
cesses. Nevertheless, those need not be stable in the sense of 
Liapunov. For example, considering just the second-har­
monic generation process as above, when C = 0 and 
p (t) =P, one of the stationary solutions of (5.1) is (Lia­
punov-like) nonstable already for P> YIY2/Igl, while the 
second one is stable. The same is true even for the more 
general parametric generation process8 (when 01 :;603 ), 
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ERRATUM 

Erratum: The Lorentz group and the Thomas precession. II. Exact results for 
the product of two boosts [J. Math. Phys. 27, 157 (1986)] 

N. A. Salingaros 
Division of Mathematics, Computer Science and Systems Design, The University of Texas at San Antonio, 
San Antonio, Texas 78285 

(Received 30 September 1986; accepted for publication 8 October 1986) 

Reference 1 attempted to derive the exact combination 
of two finite nonparallel Lorentz boosts and to calculate the 
rotation correction that is otherwise identified with the 
Wigner angle. The derivation in Ref. 1 sheds some light on 
this neglected aspect of special relativity. Some additional 
references that also derive the Wigner angle from the prod­
uct of two Lorentz boosts include Refs. 2-6 (see also Ref. 7). 
The result of two consecutive Lorentz boosts, first by a, then 
by b, is given by 

L(b)VL(a)=R(O)VL(d), (1) 

where 0 is the rotation correction (Wigner angle). What was 
a most surprising result in Ref. 1 is that the net boost vector d 
is not equal to the standard combination of the boosts a and 
b, which is denoted by s. Instead, there is a further rotation 
correction by another angle «I> as follows: 

L(b) VL(a) = R(O) VL(d) 

= R(O) VR(<<I» VL(s) VR( - «1». (2) 

The extra correction angle «I> is entirely the result of us­
ing the Clifford algebra in Minkowski space-time N4 (see 
Ref. 8) to realize the Lorentz Lie algebra. 1

,9 It should be 
emphasized that this realization is isomorphic to the Dirac 
gamma-matrix realization of the Lorentz Lie algebra, which 
provides the standard representation ofthe Lorentz group in 
field theory.lO,ll The rotation corrections to the product of 
boosts are not, however, easily derivable using explicit ma­
trix representations except in the infinitesimal case. The ad­
ditional correction angle «I> in (2) is entirely absent from the 
corresponding derivation of the Wigner angle in the Clifford 
algebra in three-dimensional Euclidean space $1 (see Ref. 
12). That algebra is isomorphic to the Pauli algebra, which 
has the well-known sigma-matrix representation, and is em­
ployed in Refs. 2-6 to calculate the product of Lorentz 
boosts. In the Pauli algebra $1' decomposition (1) implies 
that d = s, i.e., that «I> = 0 in (2). 

The puzzle is the following: apparently, the Lorentz 
group depends upon which algebra is used. Both algebras N4 
and $1 provide a faithful representation of the Lorentz Lie 
algebra 80(1,3) via the commutator bracket. Yet the two 
Clifford algebras are entirely distinct, and $1 is a subalgebra 
of N4 (see Refs. 13 and 14). Included in the Lie algebra 
80(1,5) of the Clifford algebra N4 is a duality rotation that 
defines a U (1) group outside the Lorentz group SO (1 ,3 ). 
This is not true in $1' which strictly contains the Lie algebra 

80(1,3).13.14 Exponentials of elements of the Lorentz alge­
bra in N4 therefore generate an intrinsic duality rotation 
which may be responsible for the additional rotation correc­
tion angle «I> in (2). 

The additional angle «I> identified in Ref. 1 was unfortu­
nately calculated incorrectly in Ref. 1. There is an algebraic 
error following Eq. (37) of Ref. 1 so that «I> does not equal 
-! O. Consequently, formulas (39), (40), (42), and (44) 

are not correct in substituting -! O. This error was pointed 
out in Ref, 6. The angle «I> can be calculated from the discus­
sion in Ref. 1, and one obtains the expression 

tan ¢ = A sin S - (B + C cos s)tan ! () 
B+Ccoss +Asinstan!()' 

A =yas -x/3s' B=xas +y/3s' 

C=yas +x/3s. (3) 

In (3) () is the Wigner angle, and S is the angle between 
the two boosts. The quantities x,y and as, /3s are defined in 
terms of the two boost parameters by Eqs. (27) and (34) of 
Ref. 1. Note, in particular, that the rotation «I> is along the 
axis of the Wigner rotation, i.e., ~ = O. As should be expect­
ed, 0 = 0, «I> = 0 for parallel boosts. Nevertheless, the inter­
esting special case of equal orthogonal boosts gives 0 = max­
imum, «I> = O. Otherwise, «1>#0. 

As the Lorentz group description in N4 , which naturally 
includes the additional rotation correction «1>, is isomorphic 
to the standard gamma-matrix representation of the Lorentz 
group, 10,11 I do not agree with the authors of Refs. 6 that Eq. 
(2) is mistaken. Rather, one has to seriously address the 
possible physical validity of the additional angle «1>, and the 
important question of which Clifford algebra correctly de­
scribes the physical Lorentz group. 
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